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Abstract
In this paper, we develop a method for 
playing variants of spatial games like chess or checkers, where 
the state of the opponent is only partially observable. Each side 
has a number of hidden pieces invisible to opposition. An 
estimate of the opponent state probability distribution is made 
assuming moves are made to maximize the entropy of subsequent 
state distribution or belief. The belief state of the game at any 
time is specified by a probability distribution over opponent’s 
states and conditional on one of these states, a distribution over 
our states, this being the estimate of our opponent’s belief of our 
state. With this, we can calculate the relative uncertainty or 
entropy balance. We use this information balance along with 
other observable features and belief-based min-max search to 
approximate the partially observable Q-function. Gradient decent 
is used to learn advisor weights.  

 Introduction 
One of the first applications of temporal difference 
methods in reinforcement learning was in the field of game 
playing (Samuels, 1967). Games such as checkers, 
backgammon, chess and go have been used as a template 
under which the performance of these methods could be 
assessed. In this paper, we look at the combination of two 
current avenues of research in reinforcement learning to 
develop strategies in playing hidden checkers, a variant of 
checkers where each side has a number of hidden pieces. 
Both agents know at all times the location of their hidden 
pieces, whereas we are forced to infer a probability 
distribution over probable opponent piece locations.  

The two avenues of reinforcement learning are those of 
multi-agent learning,  (Shoham, Powers and Grenager, 
2003) in which the actions of other agents intrinsically 
affect an agents states and actions, and that of 
reinforcement learning with hidden or partially observable 
states (Kaelbling, Littman and Cassandra, 1997). Our 
approach to game playing with hidden states is to first 
construct a belief of our opponents states and further to 
this, construct a belief of our opponent’s belief of our 
states (as we will have hidden pieces). Given this, we are 
able to calculate the best move based on what subsequent 
move we believe the opponent will make, calculated 
through min-max search.  

Before describing the methods used in estimating the 
state of the game and the development of strategy, we 
describe the template game, hidden checkers, used to test 
our algorithms. A variant of the checkers game is used in 
which each side has a number of hidden pieces. This 
means that each playing agent may move its hidden piece 
without communicating the location to the opposing agent. 
As is the case in classical checkers, each player takes turns 
in making a move and upon reaching the baseline of the 
opponent’s defending side, a piece is kinged, implying 
additional mobility. Because we have included hidden 
pieces, there are four piece types that occur during the 
game, the unkinged or hidden unkinged and the kinged or 
hidden kinged pieces. 

When there is uncertainty in the opponent’s state, it is 
possible to attempt a move that violates the rules of the 
game. Such an attempt occurs when we make a move 
based on  a positive probability estimate for an opponent’s 
state, whereas the opponent is actually in another state.  
Thus in hidden checkers there are three move types: 

1. A legal move done in accordance with the rules 
of checkers. 

2. An illegal move, outside the rules of checkers, 
when both sides have perfect state information 
about the opponent’s state. 

3. An illegitimate move being an illegal move done 
because of the imperfect information of the 
opponent’s state.  

In the hidden checkers game, we assume an external 
agent communicates if a move attempted was illegitimate. 
If an illegitimate move was made, a player is not allowed 
to correct it, the pieces remain in exactly the same position 
as before the move was made. However if the opponent 
makes an illegitimate move we are not told. We also 
assume that both sides have perfect knowledge of the 
number of pieces on both sides thus are aware of success 
or failure if the capture of an opponent hidden piece is 
attempted.  

When an opponent makes a move, there are three 
possibilities, the first being a legal move of an exposed 
piece. The second and third possibilities are the move of a 
hidden piece and an illegitimate move. Both are not 



observed. The difficulty in playing this game is the 
determination of whether a hidden piece or illegitimate 
move was made.  

Following this Introduction, we describe the estimator 
of our opponent’s state in the following section. Next we 
develop move strategies by defining a value function with 
entropy balance as a feature.  Subsequent we describe the 
methods to apply the belief based min-max version of the 
TD )(λ algorithm, TDLeaf )(λ for a limited number of 
hidden pieces (Baxter, Tridgell and Weaver, 1998). 
Finally we report on the advisor values of various features 
through the application of this algorithm, and discuss 
conclusions.  

 Belief State Dynamics  
For partially observable problems, an agent possesses a 

belief state and transition equations that specify the 
dynamics of this belief state as observations are made. 
Thus for possible states nsss ,,, 21 L  an agent has a 
probability distribution )(,),(),( 21 nsbsbsb L and a state 
transition probability ),,|'Pr( oabb which determines the 
probability of the new belief state 'b given current belief 
state b and action/observation ., oa It has been shown that 
the combination of the belief state and transition functions 
are statistically sufficient to describe the dynamics of the 
system in the future (Monahan, 1982).  

For this paper it is useful to describe a single state of the 
checkers board to be the vector ),( ou ss where 

us describes the positions of our pieces (us) and 

os describes the positions of our opponent’s pieces. 
Clearly all combinations of ),( ou ss are not allowed, as in 
checkers and in the hidden checkers variant, no two pieces 
can occupy the same position at the same time. Thus this 
state vector description is governed by the rules of the 
checkers game.  

In the game of hidden checkers, owing to the large 
number of states, we do not possess such transition 
probabilities. Instead transitions must be constructed from 
a number of or assumptions of the way the opposing agent 
determines strategy. Instead of storing just a belief state 
over the opponent’s possible states, we store both this 
distribution and conditional on one of these states, a belief 
state that specifies the opponent’s distribution of our 
pieces.  

Suppose },,,{ 21 ojooo sssS L=  are the possible states 

of our opponent, given our state us and suppose 
)|'(,),|'( 1 okuloku ssss L are our possible states, as 

perceived by the opponent,  conditioned on the state of the 
opponent being ook Ss ∈ . Then for each transition we 
store the vector of probability densities or belief state   

))(,),(),(( 21 ojoo sbsbsbb L= and 

))|(,),|(()(' 1 okulokuok ssbssbsb L= for each .,,1 jk L=  
In essence, this means we keep a probability 

distribution of the positions of our opponent’s pieces and 
an estimate of our opponent’s probability distribution of 
our pieces. The overall belief state, denoted by b  is thus a 
tree structure, the root being the true state of the board, the 
first tier nodes being our belief of the opponent’s state 
conditioned on the true state of our pieces. Finally the leaf 
nodes are the estimates of our state, conditioned on the 
first tier opponent states. Given these estimates are 
probabilities, the usual simplex conditions apply.  
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Figure 1: Belief state representation for partially 
observable games.  

 
Now given that the opponent makes a legal visible 

move, it is easy to update our combined belief state 
through the use of conditional probability, however if a 
move is not observed, this means that either a hidden piece 
was moved or an illegitimate move was made. As no 
information is transferred as to what type of move 
occurred, we make the first assumption to infer the 
possibility of an illegitimate move:  
Assumption 1: Each player attempts only to make legal 
moves, with an illegitimate move being made only 
because of incomplete information.  

Let ),( ou
h
o ssM  be the set of hidden legal moves 

(actions) of the opponent, given our state is us  and the 
opponent’s is .os Now suppose we define a function that 
maps a set of possible moves onto 0 or 1 depending on the 
legality of each action in the set, so  





=
 otherwise.1

,givenlegalarein  movesallif0
)|(

sM
sML  (1) 

We consider the possibility of an illegitimate move by 
testing the legality of each move by the opponent for 
which 0)|'( >ojui ssb  on the board where .0)( >ojsb We 



denote the set of these moves as ).,'( ou
h
o ssM This means 

that if  
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for a particular positive belief state ,0)(: >oo sbs  then 
there is the possibility of an illegitimate move. Intuitively, 
this process considers all possible moves of our opponent 
based on our estimate of its beliefs of our state 
distribution. Under assumption one, the opponent 
considers all of these moves to be legal, however in the 
true state (which we know as they are our pieces) some are 
illegal, thus illegitimate. 

Once we have ascertained the possibility of an 
illegitimate move for a particular opponent state belief (an 
element of the first level of the tree structure), we must 
assign probabilities to the combined set of hidden moves, 
found from considering all hidden moves in the set  

.0)(for),,( >oou
h
o sbssM   (3) 

and the illegitimate opponent move in which the spatial 
state of the opposition pieces remains the same. Again we 
must evoke an assumption in order to assign these 
probabilities.  
Assumption 2: Hidden or illegitimate moves are made to 
maximize our uncertainty of the state of the opponent.  

Suppose that 
},,,,{}{),( 21 illegnillegou

h
o mmmmmssM LU =  

are the possible hidden or illegitimate moves of our 
opponent. In order to maximize our uncertainty of the state 
of the opponent, we assign probabilities to all moves in 
order to maximize the entropy,  

)),(),(,),(),(( 21 illegn mpmpmpmpH L  (4) 
which owing to its convexity of the entropy function, 
assigns equal probabilities to each of the moves.  

By assumption 2, assigning equal probabilities to each 
move generates a transition probability from old opponent 
to new opponent states, ),|'Pr( mss oo   with a component 
of the new belief state (up to a normalizing constant) being 

∑∑=
m s

oooo
o

mpsbmsssb ).()(),|'Pr()'(  (5) 

Once the first tier nodes are updated, the root nodes (our 
estimate of the opponent’s estimate of our state) are also 
updated, which means we calculate the probabilities  

).'()'|'Pr()'|'(
0)(

oo
sb

uou sbssssb
o

∑
>

=  (6) 

Minimax Search 
At a particular belief state, represented by a belief tree 

we conduct a minimax search to find the best possible 

move. In essence, this is done by considering all moves in 
the set  

).,( 0
0)(

ssM u
sb

u

o

U
>

  (7) 

this being the total number of moves available where the 
probability of the opposition being in state os is greater 
than zero ( uM  denotes the set of moves available to us). 
Leaf nodes of the minimax search are evaluated by an 
approximation to the value function. This is constructed in 
two parts. First we take the expectation over a number of 
chosen features for each opposition state such that 

.0)( >osb  Further we add to this expected set of features 
another feature describing our estimated balance of 
uncertainty in state information. This term is called the 
entropy balance and has the form  

),())'(( ou bHbHE −   (8) 
which is the expected difference between our estimate of 
our opponent’s uncertainty of our state ( )'( ubH ) and our 
uncertainty of our opponent’s state ( )( obH ). 

Our value function, for our belief tree can then be 
written as the inner product of the our belief state of our 
opponent and a vector of observable and information 
based features for each state 

( ){ })log()()w()( obs ouI bbHwVbbV −+⋅=  (9)  
where the vector of weighted observable features for each 
probable opponent state, ,0)( >ojsb  ( φ,w  are vectors 
also) is  

)),(.w,),(.w),(.w()w( 21obs ojoo sssV φφφ L=     (10) 
the entropy of our estimate of the opponent’s estimate of 
our state is  

∑
>

−=
0)(

))|(log()|()(
osb

ououu ssbssbbH  (11) 

and ( )))(log(,)),(log()),(log()log( 21 ojooo sbsbsbb L= . 
We note that the value function satisfies the general 
structure of the value function for a  POMDP (Kaelbling, 
Littman and Cassandra, 1998).  

In the games we simulated, the features included a 
number of balance terms, these being the difference 
between material numbers of our side and the opponent’s. 
We considered the balance of exposed unkinged, kinged 
pieces as well as the balance of hidden unkinged and 
kinged pieces. The components of the combined vector of 
weights, ),w( Iw  are often termed advisors, and the scalar 
weight Iw  is called the information theoretic advisor 
(Bud, et al. 2001) is it considers the balance of uncertainty 
one side has over another as measured by the entropy 
difference. In (Bud, et al. 2001) the concept of an 
information theoretic advisor was introduced, however no 
attempt was made to determine the correct advisor value. 
Further to this, it should be noted that this decomposition 



of the value function into observable and information 
features is similar to “weighted entropy control” seen in 
(Cassandra, 1998). 

Having defined the value function, let us define the 
value function found from applying minimax search at 
varying search depths. There are several approaches to 
minimax search when there is partial information about 
the opponent, as is illustrated by a two-ply search. One 
way, which we term the risk sensitive approach is to back-
up the minimum value of each possible move by the 
opponent. Alternatively one could back-up an expected 
value, done over an appropriate probability distribution. In 
the case of a two-ply search, the Q-function for our move 
m  would be  

),(E),( VmbQ =    (12) 
where V is the value function after the opponent’s move. 
An appropriate probability distribution over which this 
expectation might be generated is a modified Gibb’s 
distribution, where  

).)(exp())exp(()Pr( 11 −− ∑= TVTVV j
j

ii  (13) 

The limit as ±∞→T corresponds to equal weights of all 
opponent’s moves, making no assumption (hence  risk-
prone) about our opponent’s intentions. In the limit as 

0→T   corresponds to the risk averse assumption that our 
opponent tries to minimise our value function, as the 
probabilities are all zero except at the minimum value. In 
this paper we took the risk-averse assumption, that of the 
opponent attempting to minimise our value function.  

Minimax search proceeds along the same lines as that of 
deterministic minimax tree search except that it is done 
over a series of belief trees. Over some belief states our 
move may be legal or illegitimate, and therefore we back-
up the expected values of such a move, conditioned on it 
either being legal or illegitimate (Russell and Norvig, 
2002). 

Our experiments have shown that for a small number of 
hidden pieces  on each side, the branching factor of moves 
is not as great as some have thought, as there is some 
dependence between moves. The branching factor of 
moves is also restricted because of the requirement of 
compulsory captures in checkers. The following table lists 
the estimated branching factor for a small number of 
hidden pieces, given two-ply search.  
 
 
Number of Hidden Pieces Branching factor 
Zero versus zero 7.6 
One versus one 8.3 
Two versus two 8.5 
Three versus three  9.5 

Figure 2: Branching factor as a function of hidden piece 
number.  

 The Application of Belief Based TDLeaf )(λ  
Having defined a value function dependent on a number 
advisor values, we use reinforcement learning to find 
appropriate values for these weights. We approximate the 
Q-function, defined as  

( ).move,statebelief|winPr),( mbmbQ =  (14) 
Clearly, the Q-function at terminal belief states, denoted by 

Tb  has the values of one for a win, and zero for a loss. We 
define the terminal value for a draw as a half. Functional 
approximation is used to estimate the Q-function, with  

)),,(((),(~ wmbQsigmbQQ n=≈   (15) 

where ),,( wmbQn is the Q-function of a n-ply minimax 
search from belief state b applying move m  with advisor 
weights .w We smooth the approximation by applying the 
sigmoidal function .))exp(1()( 1−−+= xxsig  

The approximation to the optimal Q-function is done via  
on-line gradient decent, in which the advisor weights are 
altered with Q-function version of the TDLeaf )(λ  
algorithm  (Baxter, Tridgell and Weaver, 1998) ( )(λTD  
with  probabilistic minimax tree search) :  

∑
=

−
++ ∇−=∆

0

11 ),(~)),(~),(~(
tk

kkw
kt

tttt mbQmbQmbQw λα . 

(16) 
The value of 75.0=λ was chosen as a balance between 

altering the advisor values for long term prediction of the 
terminal state and prediction of state-action value of  
subsequent states, short term prediction. One can show that 
the functional approximation, of the probability of winning 
or losing, is shifted towards the terminal state, (Q~ moves 
towards ),( •TbQ ) when ,1=λ and shifted towards 

subsequent states, ( ),(~
tt mbQ  moves towards )),(~

tt mbQ  
when 0=λ (Sutton, 1993). In other examples from the 
cited literature of learning in the game of chess, authors 
have found that values between 0.7 and 0.8 have the 
greatest success, though more research is required on this 
topic (Beal and Smith, 1997). 

As is the case of general machine learning, the rate of 
which the advisor values change is determined by the 
coefficient .α In general, this coefficient is dependent on 
the number of games played during the learning process. 
We slowly anneal this coefficient sequence to zero. If n is 
the number of games played, then the sequence 0→nα in 
such a way that satisfies the stochastic convergence 
conditions given in (Barto and Sutton, 1999).  

In our experiments to learn advisor values, initially all 
were set to unit (1.0) value. A set of two thousand five 
hundred games were played to learn the values of advisor 
weights for exposed unkinged or kinged piece balance as 
well as hidden unkinged or kinged piece balance and the 



value of the information theoretic advisor for the entropy 
or information balance. Each side possessed one hidden 
piece at the commencement of the game. Minimax search 
was conducted at three-ply. The following graph shows us 
the outcomes.  
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   Figure 3: Advisor values for 2500 games, normalized 
with an exposed unkinged piece of unit value.  

 
 

On observation of the graph several important points 
may be noted. In ascending order, we have the advisor 
values for entropy balance (0.3), unkinged (1.0), hidden 
unkinged (1.1), kinged (1.2) and hidden kinged (1.3) pieces 
respectively. Intuitively we would accept such results, as 
kings have the advantage of mobility, hidden pieces 
stealth, thus the combination of the two generates the 
highest value.  

At this stage of our research, we would like to consider 
several ways to grade the performance of policies based on 
our learnt advisor weights. First it would be interesting to 
conduct a series of experiments against human players 
trained with a number of hidden pieces on the board or 
capture their expertise through likelihood methods (Jansen, 
et al., 2000). Second, a comparison with other methods for 
developing strategies, such as heuristics and policy 
gradient methods would be helpful.  

 Discussion and Conclusions 
In this paper, we developed a series of methods of playing 
a game, when there is partial observability of the opponent.  

The impact of large state numbers and hidden opposition 
dynamics made the use of various assumptions on the 
transitions of pieces critical, leading to a simple, risk-
averse model of belief state dynamics. We stored a model 
of the opponent’s belief of our states for two principal 
reasons. First one must consider, with imperfect 
information, the possibility that an illegitimate move is 
made. Second, an estimate of the opponent’s entropy was 
calculated, enabling us to include the entropy balance as a 
feature of the game.  

We chose a hidden variant of checkers, because it is a 
game of intermediate strategic complexity, even with 
perfect information of the opponent’s state. Other games of 
imperfect state information have been studied. Examples 
include poker and bridge (Frank and Basin, 2001). 
However these games are strategically simple given perfect 
information.  

If our approach is to scale up to games of further 
strategic complexity, several research avenues need to be 
pursued. In games with higher strategic complexity, the 
higher branching factor combined with hidden states 
results in an explosion in the number of moves that can be 
made in each round. It will therefore we necessary to prune 
this probabilistic game tree in a systematic way. Through 
forward pruning methods are considered unreliable in the 
perfect information context, they should be explored with 
hidden states, to determine sensitivity and bounds on such 
methods ( Bjornsson and Marsland, 2000).  

Another exciting avenue of research is to approximate 
the optimal policy directly, rather than finding a policy 
through an estimate of the Q or value functions. These 
methods, termed direct or policy gradient methods should 
be explored, as mixed strategies may be found, as opposed 
to just the restriction on pure strategies found with the 
current approach (Baxter and Bartlett, 2001). Policy 
gradient methods also easily extend to partially observable 
and multi-agents domains.  

In summary, a combined belief state of our opponent’s 
pieces and model of our opponent’s beliefs allowed us to 
estimate the dynamics of a game with hidden pieces. In 
turn, we decomposed our approximate value function into 
observable and information based features. Combined with 
probabilistic min-max search and gradient decent, we were 
able to learn advisor values for observable and information 
based features. Future research will focus on probabilistic 
tree pruning and policy gradient methods for scaling to 
domains of increased complexity.   
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