
Combining Entropy Based Heuristics with Minimax Search and
Temporal Differences to Play Hidden State Games

Gregory Calbert and Hing-Wah Kwok

 Defence Science and Technology, Edinburgh, South Australia, Australia, 5111.
Greg.Calbert@dsto.defence.gov.au

Abstract
In this paper, we develop a method for
playing variants of spatial games like chess or checkers, where
the state of the opponent is only partially observable. Each side
has a number of hidden pieces invisible to opposition. An
estimate of the opponent state probability distribution is made
assuming moves are made to maximize the entropy of subsequent
state distribution or belief. The belief state of the game at any
time is specified by a probability distribution over opponent’s
states and conditional on one of these states, a distribution over
our states, this being the estimate of our opponent’s belief of our
state. With this, we can calculate the relative uncertainty or
entropy balance. We use this information balance along with
other observable features and belief-based min-max search to
approximate the partially observable Q-function. Gradient decent
is used to learn advisor weights.

 Introduction
One of the first applications of temporal difference
methods in reinforcement learning was in the field of game
playing (Samuels, 1967). Games such as checkers,
backgammon, chess and go have been used as a template
under which the performance of these methods could be
assessed. In this paper, we look at the combination of two
current avenues of research in reinforcement learning to
develop strategies in playing hidden checkers, a variant of
checkers where each side has a number of hidden pieces.
Both agents know at all times the location of their hidden
pieces, whereas we are forced to infer a probability
distribution over probable opponent piece locations.

The two avenues of reinforcement learning are those of
multi-agent learning, (Shoham, Powers and Grenager,
2003) in which the actions of other agents intrinsically
affect an agents states and actions, and that of
reinforcement learning with hidden or partially observable
states (Kaelbling, Littman and Cassandra, 1997). Our
approach to game playing with hidden states is to first
construct a belief of our opponents states and further to
this, construct a belief of our opponent’s belief of our
states (as we will have hidden pieces). Given this, we are
able to calculate the best move based on what subsequent
move we believe the opponent will make, calculated
through min-max search.

Before describing the methods used in estimating the
state of the game and the development of strategy, we
describe the template game, hidden checkers, used to test
our algorithms. A variant of the checkers game is used in
which each side has a number of hidden pieces. This
means that each playing agent may move its hidden piece
without communicating the location to the opposing agent.
As is the case in classical checkers, each player takes turns
in making a move and upon reaching the baseline of the
opponent’s defending side, a piece is kinged, implying
additional mobility. Because we have included hidden
pieces, there are four piece types that occur during the
game, the unkinged or hidden unkinged and the kinged or
hidden kinged pieces.

When there is uncertainty in the opponent’s state, it is
possible to attempt a move that violates the rules of the
game. Such an attempt occurs when we make a move
based on a positive probability estimate for an opponent’s
state, whereas the opponent is actually in another state.
Thus in hidden checkers there are three move types:

1. A legal move done in accordance with the rules
of checkers.

2. An illegal move, outside the rules of checkers,
when both sides have perfect state information
about the opponent’s state.

3. An illegitimate move being an illegal move done
because of the imperfect information of the
opponent’s state.

In the hidden checkers game, we assume an external
agent communicates if a move attempted was illegitimate.
If an illegitimate move was made, a player is not allowed
to correct it, the pieces remain in exactly the same position
as before the move was made. However if the opponent
makes an illegitimate move we are not told. We also
assume that both sides have perfect knowledge of the
number of pieces on both sides thus are aware of success
or failure if the capture of an opponent hidden piece is
attempted.

When an opponent makes a move, there are three
possibilities, the first being a legal move of an exposed
piece. The second and third possibilities are the move of a
hidden piece and an illegitimate move. Both are not

observed. The difficulty in playing this game is the
determination of whether a hidden piece or illegitimate
move was made.

Following this Introduction, we describe the estimator
of our opponent’s state in the following section. Next we
develop move strategies by defining a value function with
entropy balance as a feature. Subsequent we describe the
methods to apply the belief based min-max version of the
TD)(λ algorithm, TDLeaf)(λ for a limited number of
hidden pieces (Baxter, Tridgell and Weaver, 1998).
Finally we report on the advisor values of various features
through the application of this algorithm, and discuss
conclusions.

 Belief State Dynamics
For partially observable problems, an agent possesses a

belief state and transition equations that specify the
dynamics of this belief state as observations are made.
Thus for possible states nsss ,,, 21 L an agent has a
probability distribution)(,),(),(21 nsbsbsb L and a state
transition probability),,|'Pr(oabb which determines the
probability of the new belief state 'b given current belief
state b and action/observation ., oa It has been shown that
the combination of the belief state and transition functions
are statistically sufficient to describe the dynamics of the
system in the future (Monahan, 1982).

For this paper it is useful to describe a single state of the
checkers board to be the vector),(ou ss where

us describes the positions of our pieces (us) and

os describes the positions of our opponent’s pieces.
Clearly all combinations of),(ou ss are not allowed, as in
checkers and in the hidden checkers variant, no two pieces
can occupy the same position at the same time. Thus this
state vector description is governed by the rules of the
checkers game.

In the game of hidden checkers, owing to the large
number of states, we do not possess such transition
probabilities. Instead transitions must be constructed from
a number of or assumptions of the way the opposing agent
determines strategy. Instead of storing just a belief state
over the opponent’s possible states, we store both this
distribution and conditional on one of these states, a belief
state that specifies the opponent’s distribution of our
pieces.

Suppose },,,{ 21 ojooo sssS L= are the possible states

of our opponent, given our state us and suppose
)|'(,),|'(1 okuloku ssss L are our possible states, as

perceived by the opponent, conditioned on the state of the
opponent being ook Ss ∈ . Then for each transition we
store the vector of probability densities or belief state

))(,),(),((21 ojoo sbsbsbb L= and

))|(,),|(()(' 1 okulokuok ssbssbsb L= for each .,,1 jk L=
In essence, this means we keep a probability

distribution of the positions of our opponent’s pieces and
an estimate of our opponent’s probability distribution of
our pieces. The overall belief state, denoted by b is thus a
tree structure, the root being the true state of the board, the
first tier nodes being our belief of the opponent’s state
conditioned on the true state of our pieces. Finally the leaf
nodes are the estimates of our state, conditioned on the
first tier opponent states. Given these estimates are
probabilities, the usual simplex conditions apply.

),(ou ss

)(1osb)(2osb)(3osb

)|(11 ou ssb)|(12 ou ssb)|(21 ou ssb)|(22 ou ssb)|(31 ou ssb)|(32 ou ssb

True state

Belief of Opponent’s
State

Our estimate of the opponent’s belief state

Figure 1: Belief state representation for partially
observable games.

Now given that the opponent makes a legal visible

move, it is easy to update our combined belief state
through the use of conditional probability, however if a
move is not observed, this means that either a hidden piece
was moved or an illegitimate move was made. As no
information is transferred as to what type of move
occurred, we make the first assumption to infer the
possibility of an illegitimate move:
Assumption 1: Each player attempts only to make legal
moves, with an illegitimate move being made only
because of incomplete information.

Let),(ou
h
o ssM be the set of hidden legal moves

(actions) of the opponent, given our state is us and the
opponent’s is .os Now suppose we define a function that
maps a set of possible moves onto 0 or 1 depending on the
legality of each action in the set, so





=
 otherwise.1

,givenlegalarein movesallif0
)|(

sM
sML (1)

We consider the possibility of an illegitimate move by
testing the legality of each move by the opponent for
which 0)|'(>ojui ssb on the board where .0)(>ojsb We

denote the set of these moves as).,'(ou
h
o ssM This means

that if

1,|),'(
0)'|(

=













>
U

ou ssb
uoou

h
o ssssML (2)

for a particular positive belief state ,0)(: >oo sbs then
there is the possibility of an illegitimate move. Intuitively,
this process considers all possible moves of our opponent
based on our estimate of its beliefs of our state
distribution. Under assumption one, the opponent
considers all of these moves to be legal, however in the
true state (which we know as they are our pieces) some are
illegal, thus illegitimate.

Once we have ascertained the possibility of an
illegitimate move for a particular opponent state belief (an
element of the first level of the tree structure), we must
assign probabilities to the combined set of hidden moves,
found from considering all hidden moves in the set

.0)(for),,(>oou
h
o sbssM (3)

and the illegitimate opponent move in which the spatial
state of the opposition pieces remains the same. Again we
must evoke an assumption in order to assign these
probabilities.
Assumption 2: Hidden or illegitimate moves are made to
maximize our uncertainty of the state of the opponent.

Suppose that
},,,,{}{),(21 illegnillegou

h
o mmmmmssM LU =

are the possible hidden or illegitimate moves of our
opponent. In order to maximize our uncertainty of the state
of the opponent, we assign probabilities to all moves in
order to maximize the entropy,

)),(),(,),(),((21 illegn mpmpmpmpH L (4)
which owing to its convexity of the entropy function,
assigns equal probabilities to each of the moves.

By assumption 2, assigning equal probabilities to each
move generates a transition probability from old opponent
to new opponent states,),|'Pr(mss oo with a component
of the new belief state (up to a normalizing constant) being

∑∑=
m s

oooo
o

mpsbmsssb).()(),|'Pr()'((5)

Once the first tier nodes are updated, the root nodes (our
estimate of the opponent’s estimate of our state) are also
updated, which means we calculate the probabilities

).'()'|'Pr()'|'(
0)(

oo
sb

uou sbssssb
o

∑
>

= (6)

Minimax Search
At a particular belief state, represented by a belief tree

we conduct a minimax search to find the best possible

move. In essence, this is done by considering all moves in
the set

).,(0
0)(

ssM u
sb

u

o

U
>

 (7)

this being the total number of moves available where the
probability of the opposition being in state os is greater
than zero (uM denotes the set of moves available to us).
Leaf nodes of the minimax search are evaluated by an
approximation to the value function. This is constructed in
two parts. First we take the expectation over a number of
chosen features for each opposition state such that

.0)(>osb Further we add to this expected set of features
another feature describing our estimated balance of
uncertainty in state information. This term is called the
entropy balance and has the form

),())'((ou bHbHE − (8)
which is the expected difference between our estimate of
our opponent’s uncertainty of our state ()'(ubH) and our
uncertainty of our opponent’s state ()(obH).

Our value function, for our belief tree can then be
written as the inner product of the our belief state of our
opponent and a vector of observable and information
based features for each state

(){ })log()()w()(obs ouI bbHwVbbV −+⋅= (9)
where the vector of weighted observable features for each
probable opponent state, ,0)(>ojsb (φ,w are vectors
also) is

)),(.w,),(.w),(.w()w(21obs ojoo sssV φφφ L= (10)
the entropy of our estimate of the opponent’s estimate of
our state is

∑
>

−=
0)(

))|(log()|()(
osb

ououu ssbssbbH (11)

and ()))(log(,)),(log()),(log()log(21 ojooo sbsbsbb L= .
We note that the value function satisfies the general
structure of the value function for a POMDP (Kaelbling,
Littman and Cassandra, 1998).

In the games we simulated, the features included a
number of balance terms, these being the difference
between material numbers of our side and the opponent’s.
We considered the balance of exposed unkinged, kinged
pieces as well as the balance of hidden unkinged and
kinged pieces. The components of the combined vector of
weights,),w(Iw are often termed advisors, and the scalar
weight Iw is called the information theoretic advisor
(Bud, et al. 2001) is it considers the balance of uncertainty
one side has over another as measured by the entropy
difference. In (Bud, et al. 2001) the concept of an
information theoretic advisor was introduced, however no
attempt was made to determine the correct advisor value.
Further to this, it should be noted that this decomposition

of the value function into observable and information
features is similar to “weighted entropy control” seen in
(Cassandra, 1998).

Having defined the value function, let us define the
value function found from applying minimax search at
varying search depths. There are several approaches to
minimax search when there is partial information about
the opponent, as is illustrated by a two-ply search. One
way, which we term the risk sensitive approach is to back-
up the minimum value of each possible move by the
opponent. Alternatively one could back-up an expected
value, done over an appropriate probability distribution. In
the case of a two-ply search, the Q-function for our move
m would be

),(E),(VmbQ = (12)
where V is the value function after the opponent’s move.
An appropriate probability distribution over which this
expectation might be generated is a modified Gibb’s
distribution, where

).)(exp())exp(()Pr(11 −− ∑= TVTVV j
j

ii (13)

The limit as ±∞→T corresponds to equal weights of all
opponent’s moves, making no assumption (hence risk-
prone) about our opponent’s intentions. In the limit as

0→T corresponds to the risk averse assumption that our
opponent tries to minimise our value function, as the
probabilities are all zero except at the minimum value. In
this paper we took the risk-averse assumption, that of the
opponent attempting to minimise our value function.

Minimax search proceeds along the same lines as that of
deterministic minimax tree search except that it is done
over a series of belief trees. Over some belief states our
move may be legal or illegitimate, and therefore we back-
up the expected values of such a move, conditioned on it
either being legal or illegitimate (Russell and Norvig,
2002).

Our experiments have shown that for a small number of
hidden pieces on each side, the branching factor of moves
is not as great as some have thought, as there is some
dependence between moves. The branching factor of
moves is also restricted because of the requirement of
compulsory captures in checkers. The following table lists
the estimated branching factor for a small number of
hidden pieces, given two-ply search.

Number of Hidden Pieces Branching factor
Zero versus zero 7.6
One versus one 8.3
Two versus two 8.5
Three versus three 9.5

Figure 2: Branching factor as a function of hidden piece
number.

 The Application of Belief Based TDLeaf)(λ
Having defined a value function dependent on a number
advisor values, we use reinforcement learning to find
appropriate values for these weights. We approximate the
Q-function, defined as

().move,statebelief|winPr),(mbmbQ = (14)
Clearly, the Q-function at terminal belief states, denoted by

Tb has the values of one for a win, and zero for a loss. We
define the terminal value for a draw as a half. Functional
approximation is used to estimate the Q-function, with

)),,(((),(~ wmbQsigmbQQ n=≈ (15)

where),,(wmbQn is the Q-function of a n-ply minimax
search from belief state b applying move m with advisor
weights .w We smooth the approximation by applying the
sigmoidal function .))exp(1()(1−−+= xxsig

The approximation to the optimal Q-function is done via
on-line gradient decent, in which the advisor weights are
altered with Q-function version of the TDLeaf)(λ
algorithm (Baxter, Tridgell and Weaver, 1998) ()(λTD
with probabilistic minimax tree search) :

∑
=

−
++ ∇−=∆

0

11),(~)),(~),(~(
tk

kkw
kt

tttt mbQmbQmbQw λα .

(16)
The value of 75.0=λ was chosen as a balance between

altering the advisor values for long term prediction of the
terminal state and prediction of state-action value of
subsequent states, short term prediction. One can show that
the functional approximation, of the probability of winning
or losing, is shifted towards the terminal state, (Q~ moves
towards),(•TbQ) when ,1=λ and shifted towards

subsequent states, (),(~
tt mbQ moves towards)),(~

tt mbQ
when 0=λ (Sutton, 1993). In other examples from the
cited literature of learning in the game of chess, authors
have found that values between 0.7 and 0.8 have the
greatest success, though more research is required on this
topic (Beal and Smith, 1997).

As is the case of general machine learning, the rate of
which the advisor values change is determined by the
coefficient .α In general, this coefficient is dependent on
the number of games played during the learning process.
We slowly anneal this coefficient sequence to zero. If n is
the number of games played, then the sequence 0→nα in
such a way that satisfies the stochastic convergence
conditions given in (Barto and Sutton, 1999).

In our experiments to learn advisor values, initially all
were set to unit (1.0) value. A set of two thousand five
hundred games were played to learn the values of advisor
weights for exposed unkinged or kinged piece balance as
well as hidden unkinged or kinged piece balance and the

value of the information theoretic advisor for the entropy
or information balance. Each side possessed one hidden
piece at the commencement of the game. Minimax search
was conducted at three-ply. The following graph shows us
the outcomes.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 501 1001 1501 2001

Episodes

A
dv

is
or

 V
al

ue
s

Unkinged King
Hidden Unkinged Hidden King
Entropy Balance

 Figure 3: Advisor values for 2500 games, normalized
with an exposed unkinged piece of unit value.

On observation of the graph several important points
may be noted. In ascending order, we have the advisor
values for entropy balance (0.3), unkinged (1.0), hidden
unkinged (1.1), kinged (1.2) and hidden kinged (1.3) pieces
respectively. Intuitively we would accept such results, as
kings have the advantage of mobility, hidden pieces
stealth, thus the combination of the two generates the
highest value.

At this stage of our research, we would like to consider
several ways to grade the performance of policies based on
our learnt advisor weights. First it would be interesting to
conduct a series of experiments against human players
trained with a number of hidden pieces on the board or
capture their expertise through likelihood methods (Jansen,
et al., 2000). Second, a comparison with other methods for
developing strategies, such as heuristics and policy
gradient methods would be helpful.

 Discussion and Conclusions
In this paper, we developed a series of methods of playing
a game, when there is partial observability of the opponent.

The impact of large state numbers and hidden opposition
dynamics made the use of various assumptions on the
transitions of pieces critical, leading to a simple, risk-
averse model of belief state dynamics. We stored a model
of the opponent’s belief of our states for two principal
reasons. First one must consider, with imperfect
information, the possibility that an illegitimate move is
made. Second, an estimate of the opponent’s entropy was
calculated, enabling us to include the entropy balance as a
feature of the game.

We chose a hidden variant of checkers, because it is a
game of intermediate strategic complexity, even with
perfect information of the opponent’s state. Other games of
imperfect state information have been studied. Examples
include poker and bridge (Frank and Basin, 2001).
However these games are strategically simple given perfect
information.

If our approach is to scale up to games of further
strategic complexity, several research avenues need to be
pursued. In games with higher strategic complexity, the
higher branching factor combined with hidden states
results in an explosion in the number of moves that can be
made in each round. It will therefore we necessary to prune
this probabilistic game tree in a systematic way. Through
forward pruning methods are considered unreliable in the
perfect information context, they should be explored with
hidden states, to determine sensitivity and bounds on such
methods (Bjornsson and Marsland, 2000).

Another exciting avenue of research is to approximate
the optimal policy directly, rather than finding a policy
through an estimate of the Q or value functions. These
methods, termed direct or policy gradient methods should
be explored, as mixed strategies may be found, as opposed
to just the restriction on pure strategies found with the
current approach (Baxter and Bartlett, 2001). Policy
gradient methods also easily extend to partially observable
and multi-agents domains.

In summary, a combined belief state of our opponent’s
pieces and model of our opponent’s beliefs allowed us to
estimate the dynamics of a game with hidden pieces. In
turn, we decomposed our approximate value function into
observable and information based features. Combined with
probabilistic min-max search and gradient decent, we were
able to learn advisor values for observable and information
based features. Future research will focus on probabilistic
tree pruning and policy gradient methods for scaling to
domains of increased complexity.

Acknowledgements
We are grateful to Jason Scholz, Drew Mellor and a
number of anonymous referees for taking the time to look
through the paper and point out typos, grammar and
concept corrections.

References
Barto, A.G. and Sutton, R.S. 1998. Reinforcement
Learning: An Introduction. MIT Press.

Baxter, J.; Tridgell, A.; and Weaver, L,; 1998.
TDLeaf)(λ : Combining Temporal Difference Learning
with Game Tree Search. Proceedings of the Ninth
Australian Conference on Neural Network: 168-172.

Baxter, J. and Bartlett, P.L.; 2001 Infinite Horizon
Gradient Based Policy Search. Journal of Artificial
Intelligence Research. 15:319-350.

Beal, D.F. and Smith, M.C..; 1997 Learning Piece Values
Using Temporal Differences. ICCA Journal 20(3): 147-
151.

Bjornsson, Y. and Marsland, T.A. 2000. Risk management
in game tree pruning. Information Sciences Journal
122(1): 23-41.

Bud, A.E.; Albrecht, D.W.; Nicholson, A.E.; and
Zukerman, I. 2001. Information Theoretic Advisors in
Chess. AI and STATISTICS 2001, Eighth International
Conference on Artificial Intelligence and Statistics.
Florida, U.S.A.

Cassandra, A.R. 1998. Exact and Approximate Algorithms
for Partially Observable Markov Decision Processes.
Unpublished Ph. D. Thesis. Brown University.
Frank, I. and Basin, D. 2001. A theoretical and empirical
investigation of search in imperfect information games.
Theoretical Computer Science. 252:217-256.

Jansen, A.R.; Dowe, D.L.; Farr, G.E., 2000. Inductive
Inference of Chess Player Strategy. Pacific Rim
International Conference on Artificial Intelligence.61-71.

Kaelbling, L.P.; Littman, M.L.; and Cassandra, A.R. 1998.
Planning and Acting in Partially Observable Stochastic
Domains. Artificial Intelligence (101): 1-45.

Monahan, G.E. 1982. A Survey Of Partially Observable
Markov Decision Processes: Theory, Models, and
Algorithms. Management Science 28(1):1-16.

Russell, S. and Norvig, P. 2002. Artificial Intelligence: A
Modern Approach, New Jersey: Prentice-Hall.

Samuel, A.L. 1967. Some studies in machine learning
using the game of checkers. II-Recent progress. IBM
Journal on Research and Development: 601-617.

Shoham, Y.; Powers, R.; and Grenager, T. 2003. Multi-
Agent Reinforcement Learning: a critical survey. Preprint
found in www.stanford.edu/~grenager/.

Sutton, R. S. 1988. Learning to Predict by the Methods of
Temporal Differences. Machine Learning 3: 9-44.

