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Abstract 
Pathological dependency cycles occur in state-space 
planners when control structures cannot efficiently 
determine a maximal matching for a bipartite 
operator/binding graph. Without proper search control, the 
planner will require many computationally expensive 
backtracks to arrive at a solution. We present a method for 
improving planning efficiency in the midst of pathological 
dependency cycles by employing informed resource re-
allocation in lieu of uninformed backtracking. Empirical 
studies demonstrate significant improvement in search 
effort when search control is employed in backtracking. 
Existing theoretical results suggest that some form of 
informed resource re-allocation can be used to produce an 
approximately O(n2.5) solution for many pathological 
domain classes, as opposed to the O(kn) solution produced 
in uninformed backtracking. 
 

Introduction 
 
Search techniques are ubiquitous in computer science and 
in artificial intelligence in particular. The typical 
uninformed tree search algorithms such as depth-first 
search and breadth-first search are often inadequate for 
problems of even moderate complexity, and so it becomes 
necessary to employ search controls in finding better 
solutions more quickly. For example, it is known that 
domain-independent planning is at least PSPACE-
complete (Bylander, 1991; Chapman, 1987; Selman, 
1994), so effective search must be guided by some form of 
search control. We will show in this paper that state-space 
planning search controls that possess the expressive power 
of the first order predicate calculus (FOPC) cannot 
effectively guide search in certain pathological domains 
possessing pathological dependency cycles, but may often 
be supplemented with search controls that guide 
backtracking to retain acceptable search efficiency. 

State-space planners seek to produce sequences of 
actions that transform some initial state of the environment 

into a particular desired state. Such planners find a solution 
by searching through a set of action representations in the 
form of planning operators. Operators represent actions by 
associating the effects of the operator with the 
preconditions that must be true for the operator to be 
applied. For example, a FIT operator may achieve the 
effect of having a peg fitting inside a hole, contingent upon 
the operator’s preconditions being satisfied. Both effects 
and preconditions are simply world-state predicates or 
relations between objects in the domain. For example, if 
peg1 has been FIT into hole1, then the world state would 
contain a predicate such as inside(peg1, hole1). 

A domain is said to contain binding/operator 
dependencies if the use of certain operators or bindings 
prevents the use of certain other operators or bindings. For 
example, our pegs-into-holes domain possesses 
dependencies insofar as a hole can contain at most one 
peg, and a peg can be driven into at most one hole. Thus, if 
we FIT peg1 into hole1, then we may not also FIT peg1 
into hole2. Note that such a dependency may be 
represented as a matching problem on a bipartite graph 
(Asratian, Denley, & Häggkvist, 1998), with pegs 
representing one node coloring and holes representing 
another. We will employ this isomorphism in estimating 
the computational complexity of our algorithm as outlined 
in section three. 

An additional dependency arises if we expand our 
simple pegs-into-holes domain such that it contains 
multiple types of pegs (e.g., square, round, and hex pegs), 
as well as multiple types of holes (e.g., square, round, and 
hex holes). If we further allow that certain pegs may be 
FIT into multiple types of holes, then it becomes necessary 
that search control be employed in insuring that we 
successfully FIT as many pegs into as many holes as 
possible. If we accidentally fill all square holes with round 
pegs, only to find that our square pegs will not fit into 
round holes, then we must then employ computationally 
expensive backtracking to transfer our round pegs to round 
holes. Alternatively, we could have simply employed 
search control to insure that we use all of our square pegs 
to fill the square holes before we start to use round pegs to 
fill the square holes. 

Copyright © 2004, American Association for Artificial 
Intelligence (www.aaai.org).  All rights reserved. 



The problem that we confront in this paper relates to 
sets of domain rules whose graphical representation 
contains cycles1. Such pathological dependencies prevent 
efficient solutions during search for a plan. In the next 
section, we examine the problem of using search control in 
a domain containing a pathological dependency cycle. 
Section three proposes a solution to the problem examined 
in section two, and section four presents the empirical 
results of our solution’s application. Finally, we conclude 
this paper with discussion and a roadmap for future 
research. 
 

Pathological Domains 
 
The standard logistics (or package delivery) domain 
(Veloso, 1994) is used by many researchers who study 
planning. This domain models the transfer of objects and 
vehicles between various locations. Its basic operations are 
as follows.  
 
DRIVE (loc1, loc2) – transfers a vehicle and its contexts 
from loc1 to loc2 
LOAD (obj1) – loads an object of type obj1 onto a vehicle 
UNLOAD (obj1) – unloads an object of type obj1 
 

The preconditions for these operators are fairly 
intuitive. For example, to unload an object from a vehicle, 
the object must first be inside the vehicle (i.e., it must have 
been loaded), and to load an object into a vehicle both the 
object and vehicle must be at the same location.  

We modified the basic logistics domain to create what 
we call the Pathological Logistics Domain. The purpose of 
this domain is to demonstrate the ineffectiveness of search 
control under certain conditions and to examine alternate 
control mechanisms. In this new domain, we specified that 
every truck could load only one object per problem, and 
every operator-binding match carried an equal utility 
(every graph edge had an equal weight). 

For testing purposes, we implemented in Allegro 
Common Lisp 6.2 using CLOS (Common Lisp Object 
System) a multiple inheritance version (dubbed Sprodigy) 
of a state-space non-linear planning and learning 
architecture called PRODIGY (Carbonell, et al, 1992; 
Veloso, et al, 1995). The Object System’s built-in multiple 
inheritance hierarchy allowed us to write a compact 
pathological domain containing only three operators.  
 
LOAD-FREEZER_TRK (OR(Meat, Dairy)) 
LOAD-REFRIG_TRK (OR(Dairy, Produce)) 
LOAD-STD_TRK (OR(Produce, Meat)) 
 

                                                 
1 For example, a domain wherein square pegs can be driven into 
square or round holes, round pegs can be driven into round or hex 
holes, and hex pegs can be driven into hex or square holes. 

This domain contains three different TRUCK types, 
each capable of loading a single object from a list of two 
PACKAGE types. In turn, each of the three different 
PACKAGE types is capable of being loaded onto a single 
truck from a list of two TRUCK types. In Figure 1, we 
represent this domain as a bipartite graph. Because there is 
a 1-to-1 correspondence (that can be generalized to an N-
to-M correspondence) between Trucks and Objects, a 
planner will require some means of performing maximum 
matching between Trucks and Objects to effectively 
implement this domain.2

LOAD-FREEZER TRK LOAD-REFRIG TRK

Meat Dairy Produce

LOAD-STD TRK

Figure 1. Pathological dependencies. 
 

In general, a domain will be pathological if it contains 
a set of cyclic operators: 

1 ≤ i ≤ N, N ≥ 2, 
Opi <vi> (OR(ti t(i mod N) + 1)) 
 
Problem solving in PRODIGY is performed by 

means-end analysis, in which a goal is picked that is not 
yet satisfied and an attempt is made to find an operator to 
satisfy it. The open preconditions of this operator become 
sub-goals, and the process is repeated until all goals are 
attached to operators or are satisfied. The PRODIGY 
decision cycle has four decision points that can be 
heuristically manipulated by the application of control 
rules. 

 
1. Given a list of pending goals, the system decides 

which goal to pursue next. 
2. Given a goal, it decides with which operator it will try 

to achieve the goal. 
3. Given an operator, it decides with what variable-

bindings it will instantiate the operator. 
4. Given instantiated operators with no open 

preconditions and a list of pending goals, it decides 
whether to apply an operator and hence change the 
current state, or whether to choose a pending goal to 
solve. 

 

                                                 
2We did not examine the more complex problem of finding a 
stable matching on a bipartite graph with weighted edges, which 
is analogous to a domain implementation containing inferential 
goal transformations (Cox and Veloso, 1998). However, the 
principle of the stable matching problem is identical to that of the 
maximum matching problem. 



When PRODIGY applies an instantiated operator in 
decision number four above, an action's effects are 
projected from the current state. Although backtracking 
may reverse this decision, a final plan will consist of a 
sequence of these operator applications. 

As shown in Table 1, we attempt to improve planning 
efficiency with control rules that order the goal/operator 
selection process (decision points 1 and 2 above). No well-
defined entry point for the graph exists, so we arbitrarily 
choose our starting point at the Is-Loaded(Meat) goal. 
 

Table 1. Pathological control rule set 
1 if candidate-goal(Is-Loaded(Meat)) & 

   candidate-goal(Is-Loaded(Dairy))  
then prefer goal Is-Loaded(Meat) 

2 if candidate-goal(Is-Loaded(Meat)) & 
   candidate-goal(Is-Loaded(Produce)) 
then prefer goal Is-Loaded(Meat)) 

3 if candidate-goal(Is-Loaded(Dairy)) & 
   candidate-goal(Is-Loaded(Produce)) 
then prefer goal Is-Loaded(Dairy) 

4 if current-goal(Is-Loaded(Meat)) &  
   candidate-op(LOAD-FREEZER_TRK) 
then select op LOAD-FREEZER_TRK 

5 if current-goal(Is-Loaded(Dairy)) & 
   candidate-op(LOAD-FREEZER_TRK) 
then select op LOAD-FREEZER_TRK 

6 if current-goal(Is-Loaded(Produce)) &  
   candidate-op(LOAD-REFRIG_TRK) 
then select op LOAD-REFRIG_TRK 

 
Unfortunately, this is a Pathological Domain. It 

contains one pathological dependency cycle (though in 
general, a Pathological Domain can contain any number of 
dependency cycles). When a pathological dependency 
cycle exists in a domain, then for any arbitrary set of 
FOPC control structures we can nevertheless generate a 
problem that will require backtracking.  

For example, even when we employ our logistics 
control rules in the Pathological Logistics Domain, 
backtracking is needed to solve the problem with 2 
Freezer_Trks, 1 Refrig_Trk, 3 Std_Trks, 2 Meat objects, 2 
Dairy objects, and 2 Produce objects. In the initial state, all 
Truck and Food objects are at the same location. The goal 
is to Load all of the Food objects. 

First, all Is-Loaded(Meat) goals are achieved (control-
rules {1,2}) using up all Freezer_Trk resources (control-
rule {4}). The planner then attempts to achieve all goals Is-
Loaded(Dairy) (control-rule {3}), but there are insufficient 
resources for achieving this. Thus, the planner must 
backtrack to use a Std_Trk vehicle in achieving a goal Is-
Loaded(Meat) so that a Freezer_Trk vehicle can be re-
allocated to achieving a goal Is-Loaded(Dairy). 

It is important to realize that no given set of control 
rules will be able to efficiently solve all problems in this 

domain. If the control rules are re-ordered, then the 
numbers of instances in the problem above can be 
similarly re-ordered to defeat the new set of control rules. 

 
An Algorithm for Resource Reallocation 

 
Our solution to this problem is to employ directed resource 
reallocation to improve backtracking efficiency. Presently, 
this essentially amounts to the use of control rules during 
backtracking. Given the problem example above, planning 
proceeds as usual. However, when the planner finds that 
insufficient carriers exist to solve all Is-Loaded(Dairy) 
goals, it does not immediately close the search node. 
Instead, it searches the problem-space for alternative 
bindings that it can employ in achieving the remaining 
goals Is-Loaded(Dairy) and then attempts to re-allocate 
those resources. 

In this particular example, the planner attempts to free 
an instance of {Freezer_Trk, Refrig_Trk} to achieve Is-
Loaded(Dairy). There are no instances of Refrig_Trk that 
are not already being employed in achieving goals of the 
type Is-Loaded(Dairy), but there are instances of 
Freezer_Trk that are not being employed in achieving 
goals of the type Is-Loaded(Dairy). The planner attempts 
to find operator/binding alternatives to an instance of 
Freezer_Trk, and finds that there is a free instance of 
Std_Trk that it can use in lieu of an instance of 
Freezer_Trk in achieving one of the instances of Is-
Loaded(Meat). It de-allocates an instance of Freezer_Trk, 
uses the alternative binding Std_Trk to achieve the 
relevant instance of Is-Loaded(Meat), and re-allocates the 
freed instance of Freezer_Trk to achieve the unsolved goal 
Is-Loaded(Dairy). Ordinarily a planner will try all possible 
combinations of Freezer_Trk and Refrig_Trk in achieving 
goals Is-Loaded(Meat) and Is-Loaded(Dairy) before it 
exhausts its alternatives and employs Std_Trk in achieving 
goal Is-Loaded(Meat). Directed resource re-allocation 
bypasses this exhaustive and expensive search process 
using two basic functions called expand and de-allocate. 
 
Expand 

The expand function proceeds as follows.  
 
(EXPAND node 
 if unallocated binding exists then 
  select binding 
 else if allocated binding exists and 
  (DE-ALLOCATE binding) then 
  select binding 
 else 
  no plan) 

 
If an unallocated binding exists, then the search 

proceeds as normal. If no unallocated bindings exist but an 
allocated binding may be de-allocated, then the allocated 



binding is de-allocated and used as if it were unallocated. 
A binding is “allocated” if it is already maximally bound. 
In the Pathological Logistics Domain, a truck can be used 
in a single LOAD binding before it is allocated, but in the 
general case an object can be used in N bindings before it 
is allocated. 

The only allocated bindings considered are those of a 
different “kind,” e.g., if a Carrier binding is needed for an 
Is-Loaded(Meat) goal then the algorithm will not DE-
ALLOCATE bindings already bound by an Is-
Loaded(Meat) goal. This amounts to the use of control 
rules during backtracking, though we are researching the 
possibilities of employing a domain-independent definition 
of “kind.” 
 
De-Allocate 

The de-allocate function proceeds as follows.  
 
(DE-ALLOCATE binding 
 if binding is currently being DE-ALLOCATED then 
  return nil 
 else if unallocated alternate-binding exists then 
  de-select binding 
  select alternate-binding 
  return t 
 else if allocated alternate-binding exists and 
  (DE-ALLOCATE alternate-binding) then 
  de-select binding 
  select alternate-binding 
  return t 
 else 
  return nil) 
 

If a binding is already being DE-ALLOCATED by a 
function call on the stack, then it will not be DE-
ALLOCATED a second time. This avoids infinite de-
allocation loops. 

If a binding is de-selected, then the appropriate 
binding-node is closed, and the alternate-binding is then 
selected by the parent node. This is sufficient for a simple 
domain like the Pathological Logistics Domain, but we are 
examining the possibilities of this causing unintended side-
effects in a more complex domain. 

This algorithm is similar to the double-looping 
structure used in Hopcroft and Karp’s bipartite matching 
algorithm (Hopcroft and Karp, 1973), which runs in 
O(n2.5). (Further research is needed to determine if our 
solution fully matches this performance, but given 
Hopcroft and Karp’s results we expect that a polynomial 
time algorithm exists that will efficiently solve all binding 
problems that can be represented as a bipartite matching 
problem, regardless of whether the domain is non-
pathological or pathological.) Hopcroft and Karp’s 
algorithm searches for an augmenting path for a given non-
maximal matching, whereas PRODIGY’s default search 
strategy may destroy large sections of the current matching 

path during the backtracking process. In terms of search, 
goal-directed backtracking will only close a node after a 
meta-search determines that the node can never be 
expanded, thus insuring that minimal destruction is 
performed on the search tree. In contrast, PRODIGY may 
close large sections of the search tree during backtracking, 
which often leads to the inadvertent destruction of many 
useful search nodes that will merely have to be re-
expanded later. 

Though a polynomial-time solution to searching the 
Pathological Logistics Domain exists, it is known that the 
3-Color Bipartite Matching problem (being reducible to 
the problem of partitioning a graph into triangles) is NP-
Complete (Garey and Johnson, 1979). This means that a 
modified Logistics domain that must match Drivers to 
Trucks, Trucks to Packages, and Drivers to Packages3 may 
not have an efficient solution through directed 
backtracking. We examine the ramifications of this 
problem in our conclusion, but note that the problem is not 
fundamentally altered if the choice of Driver does not 
interfere with the choice of Package and vice versa, since 
said domain’s graph representation would still possess 
only two colors. 
 

Empirical Results 
 
We ran tests on three different i-Pack4 domains: the 3-Pack 
domain, the 4-Pack domain, and the 5-Pack domain (see 
Figures 2, 3, and 4 respectively). The 3-Pack domain is 
equivalent to the domain described in the Pathological 
Domain section, the 4-Pack domain contains an additional 
Load operator (for a total of 4), an additional vehicle type 
(for a total of 4), and an additional object type (for a total 
of 4), while the 5-Pack domain contained 5 Load 
operators, 5 vehicle types, and 5 object types. Each domain 
is represented by a 2-regular bipartite graph, with vehicle 
types and object types respectively composing the two 
colors.  

The domains did not contain any control rules, but 
instead used Prodigy 4.0’s Random-Behavior flag to vary 
the planning decisions. That is, PRODIGY normally 
chooses equal decision alternates (i.e., those without 
control rule guidance) at each of its four decision points in 
a left to right order within the search tree. The flag 
imposes an arbitrary order instead.  

The test results are on the x1, x2, x3, and x4 problems, 
where x1 denotes that the problem contained one object of 
each Food type and one vehicle of each Truck type, x2 
denotes that the problem contained two objects of each 
Food type and two vehicles of each Truck type, and so 
forth. The initial state for each problem placed all Truck 

                                                 
3 Perhaps some Drivers have an aversion to transporting Produce, 
for example. 
4 With apologies to Hewlett Packard. 



and Food objects at the Start location, and the goal state 
for each problem was to place all Food objects at the 
Destination location. Thus, to solve the problem, each 
vehicle had to Load a single object, then the vehicle had to 
Drive to the Destination where the object would be 
Unloaded. 

We halted a search after 20,000 nodes were opened. 
This limit is represented by the “cutoff” line near the top of 
figures 2, 3, and 4. The default data begins to converge to 
the cutoff point as the domains and problems increase in 
complexity because complex problems are less likely to be 
solved within the 20,000 node limit. For example in Figure 
4, 90% of the x3 problems in the 5-Pack domain were 
terminated at the cutoff point during Default search, 
whereas 100% of the x4 problems in the 5-Pack domain 
were terminated at the cutoff point during Default search. 
Had we allowed these tests to run to completion, then we 
would have expected to see an exponential increase in the 
average number of nodes expanded, but it is not practical 
to run multiple tests in which hundreds of thousands (or 
even millions) of search nodes are expanded. None of the 
directed tests ever reached the cutoff point. 
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 Figure 2. Search effort as a function of the number of 
object instances in the 3-Pack domain 
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 Figure 3. Search effort as a function of the number of 
object instances in the 4-Pack domain 
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Figure 4. Search effort as a function of the number of 

object instances in the 5-Pack domain 
 

Conclusions 
 
Resource re-allocation presents itself as a viable solution 
to the problem of pathological looping within a planning 
domain. The catastrophic results produced without the aid 
of directed resource re-allocation justify the inclusion of 
this technique in solving pathological domains. 

We seek to implement an inter-agent communication 
protocol for the Prodigy/Agent system (Cox et. al, 2003; 
Cox et. al, 2001; Elahi, 2003) to provide a means by which 
agents can intelligently distribute resources between one 
another. This is the first step in designing a perpetual agent 
that will be able to collaborate/compete with other agents 
for the purpose of recognizing and handling surprise (Cox, 
1997). As we noted in the Resource Reallocation section, 
directed backtracking performs minimal destruction of the 
search tree. This should greatly improve the blame 
assignment process when an agent inevitably experiences 
reasoning failure. Ideally, we would prefer multiple agents 
with incomplete search trees (i.e., exhibiting partial 
success) to coalesce these into a more complete search tree 
(i.e., exhibiting greater, even total, success). 

During our preliminary research, we found that single-
agent planners could also benefit from a similar 
communication protocol, particularly in domains 
containing pathological dependency cycles. We have 
therefore begun to implement a single-agent 
communication protocol that we can easily extend into a 
multi-agent communication protocol. For example, 
multiple agents may exist that specialize in handling of 
packages of particular types. The agents would therefore 
need to coordinate with each other given individual and 
shared resources (i.e., motor-pools). 

Although control structures with the expressive power 
of FOPC cannot be used in directing search in a 
pathological domain, we have determined that there exists 
a class of control structures beyond the power of FOPC 



that may be employed to this end. We are therefore in the 
process of determining the various tradeoffs between 
employing classic FOPC control structures, our meta-
FOPC control structures, and directed backtracking. 

We are also in the process of investigating the 
computational complexity of the directed backtracking 
algorithm, as well as the possible benefits of integrating 
GA’s (Genetic Algorithms) into the directed backtracking 
system. The Pathological Logistics Domain may be simple 
enough to have a polynomial-time solution, but, as noted 
in the introduction, domain-independent search is in 
general at least PSPACE-complete. We thus hope that 
GA’s will provide a means of searching in complex 
problem spaces, as well as provide a means of integrating 
the results of multiple perpetual search agents into one 
search tree (solution). However, we realize that integrating 
GA’s into PRODIGY will be a far more daunting task than 
that of integrating directed resource re-allocation. 
Nonetheless taken as a whole, the research contained in 
this paper provides a number of avenues for further 
research that promise to make significant contributions to 
planning and to a better understanding of the problems 
therein. 
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