
CSAA: A Distributed Ant Algorithm Framework for Constraint Satisfaction

Koenraad Mertens and Tom Holvoet
KULeuven Department of Computer Science

Celestijnenlaan 200A
B-3001 Leuven, Belgium

koenraad.mertens, tom.holvoet@cs.kuleuven.ac.be

Abstract
In this paper the distributed Constraint Satisfaction Ant Algo-
rithm (CSAA) framework is presented. It uses an ant-based
system for the distributed solving of constraint satisfaction
problems (CSPs) and partial constraint satisfaction problems
(PCSPs). Altough ant algorithms have already proven to be a
viable alternative to classical approaches for a variety of op-
timization and combinatorial problems, current ant systems
work in a centralized manner. Problems where the flexibility
of ant systems can be useful, usually tend to get large. There-
fore a distributed solving approach is needed. We show that
when the distribution is done in an appropriate manner, ant
algorithms conserve their flexibility. The distribution how-
ever is not trivial. A number of difficulties (especially with
relation to speed and accuracy) emerge when the centralized
framework would just be distributed over multiple hosts. In
this paper we address those difficulties and provide solutions.
We show that with the right design decisions, a distributed
ant algorithm is a viable alternative for classical approaches.
When flexibility in the solving method becomes an issue
(for example in dynamic problems), ant algorithms, who use
an flexible decision mechanism without hard commitments,
even have an advantage over traditional algorithms.

Ant Algorithms
An Ant-based System can be thought of as a special kind
of multi-agent system, where each agent is modelled after a
biological ant (therefore, agents are also called ants in ant-
based systems). Each ant-based system consists of an en-
vironment and a number of agents. The environment is the
topology of the system, the structure wherein agents are sit-
uated.

Agent (ants) can move around in their environment and
manipulate the objects that are placed inside it. Moving
around (walking) allows the agents to find (an approxima-
tion for) the solution to the problem the system is used to
solve. The agents are not able to communicate directly with
each other, but they put objects (named pheromones, after
the biological chemicals) in the environment, which can be
observed by other agents. Pheromones evaporate, thereby
limiting their influence over time. In ant-based systems, a
large number of agents are placed in the environment si-
multaneously (a swarm of agents), each dropping a small

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

amount of pheromones, but enough to influence other agents
when a number of similar pheromones are dropped at the
same locations. These influences are exploited while the
agents walk in the environment. At first, each agent walks
around randomly, but the agents who find the best approxi-
mations to the solution, drop pheromones at the paths they
walked on. In a next step, other agents (slightly) prefer these
paths. Stochastic processes and evaporation of pheromones
allow for further exploration of the environment, but in a
guided manner. This way, the agents continuously try to im-
prove the currently best solution, in a manner similar to local
search.

In general, ant-based systems tend to perform well on a
number of optimization problems (e.g. the Travelling Sales-
man Problem (Dorigo, Maniezzo, & Colorni 1991)). In
(Mertens & Holvoet 2004), we presented the Constraint Sat-
isfaction Ant Algorithm (CSAA) framework: an ant-based
system using a graph structure for the environment that
is able to solve Constraint Satisfaction Problems (CSPs)
and Partial Constraint Satisfaction Problems (PCSPs). The
framework incorporates a number of heuristics that are
widely used in traditional solving methods. These heuris-
tics increase the efficiency of the ant algorithm and allow to
reach an initial solution fast. This paper describes the distri-
bution of the CSAA framework.

Our ultimate goal is to solve dynamic constraint satisfac-
tion problems (DCSP). These are problems where the prob-
lem instance itself changes while it is being solved (addi-
tion/removal of variables, values and constraints). There-
fore, maintaining the flexibility of ant-based systems was a
very important aspect for the system. Flexibility is this con-
text means that the system should be able to react to changes
quickly. In other words, an initial solution should not take a
long time to compute and no hard commitments (like no-
goods) should be made: when the problem changes, the
relevance of those commitments cannot be predicted, and
we want to avoid checking them all as this takes a lot of
time. Evaporating pheromones are very efficient to avoid
hard commitments: they suggest a certain direction to the
agents, but changes in the problem instance are dealt with a
transparent manner.

In the next section we recall the most important design
decisions of the CSAA framework. It is followed by the
main section of this paper, dedicated to the distribution of



(a) (b) (c)

Figure 1: Construction of a graph for a problem with 3 variables: A ∈ {4, 5, 6} ; B ∈ {2, 3} ; C ∈ {2, 3} and 2 constraints:
A = B + C ; B > C (a) Each main node represents a variable. (b) Going to the next main node is a two-step process: first
the selection edge is chosen, then the value for the current variable (A has 3 possible values, thus there are 3 value edges from
AB). (c) The complete graph for the problem.

the algorithm. The conclusion and future work are described
in the last section.

Principles of the Constraint Satisfaction Ant
Algorithm (CSAA)

This section recalls briefly the design decisions of our algo-
rithm. It addresses first the environment of the algorithm,
followed by the algorithm itself. Full details about the algo-
rithm can be found in (Mertens & Holvoet 2004).

Environment
Figure 1 shows the construction of a CSAA graph for a prob-
lem with three variables: A ∈ {4, 5, 6}, B ∈ {2, 3} and
C ∈ {2, 3}. The problem has two constraints: A = B + C
and B > C. The graph consists of main nodes, selection
nodes, selection edges and value edges. Each main node
represents a variable. The number of main nodes is the same
as the number of variables. This is depicted in Figure 1(a).
In Figure 1(b), we see that each main node is connected
through a number of selection edges to selection nodes. The
selection edges determine the ordering of the variables: from
a selection node, only one main node can be reached. In a
problem with N variables, every main node has N − 1 se-
lection nodes. The selection nodes are connected to the next
main node through value edges. Each value edge is associ-
ated with one possible value for the variable that is associ-
ated with the previous main node. The constraints are stored
in the main nodes: a reference to A = B + C is stored in
nodes A, B, and C; a reference to B > C is stored in nodes
B and C.

Ant Algorithm
The algorithm uses a swarm of agents. The size of the swarm
depends on the size of the problem and the computational
power of the host. Each agent is placed at a randomly cho-
sen main node of the graph. The agent walks the graph,
thereby remembering the path it walked (and thus the partial
solution it has created). The agents are also responsible for

checking the constraints. Pheromones are only updated after
each agent of the swarm has finished. Only the best agents
(those that found the best solutions) and agents that failed
are allowed to drop pheromones. We first give a detailed
overview of the agent behavior in the CSP case. Differences
for the PCSP case are described afterwards.

When an agent arrives in a main node (suppose: main
node A in Figure 1), it first chooses which selection edge
to take next (suppose: the edge that leads to selection node
AB). From the selection node, there are a number of value
edges, each leading to the same main node (B). The number
of edges is equal to the number of values in the domain of
the previous main node (A). Each value edge is associated
with one of those values (so there are three value edges be-
tween AB and B, because the domain of A consists of three
values: A ∈ {4, 5, 6}). Thus, choosing a value edge means
choosing a value for the variable, associated with the previ-
ous main node. Only value edges whose values do not create
a conflict with the values that have already been assigned can
be allowed. This implies that the agent has to check the ap-
propriate constraints (those that involve the present variable
A) at this point. If no value exists that does not violate any
constraints, no solution can be found with the currently cho-
sen values: the variable associated with the previous main
node fails. When all variables can be assigned a value, the
agent has constructed a solution by combining all collected
values from the value edges it walked upon. No pheromones
are dropped in this case: the algorithm has ended.

When a variable fails, the agent returns to all edges
it walked upon in order to drop pheromones on them.
Pheromones are used to influence choices: positive
pheromones that are placed on an edge increase the prob-
abilities of that edge to be chosen by an agent, nega-
tive pheromones decrease those probabilities. The use of
pheromones, in combination with the structure of the graph,
mimics the behavior of aspects of traditional algorithms:

• Arc consistency: because the pheromone values on the
edges (and thus the experiences of previous agents) are
taken into account when the next node and the value are



chosen, arc consistency is mimicked.
• Min-conflict (Minton et al. 1992): the pheromones on

value edges indicate whether a value is likely to be in-
cluded in a solution or not. This way, “bad” values are
avoided, minimizing the risk of conflicts with future val-
ues.

• First-fail: the pheromones on selection edges indicate if a
variable is likely to cause conflicts. This way, “difficult”
variables can be addressed quickly.

Pheromones evaporate. This limits their influence over
time, allowing for a more flexible adaptation to changes,
and a weaker commitment to wrong assumptions (e.g.
an invalid assumption about the likeliness of a value).
Pheromones due to correct assumptions are enhanced by fu-
ture pheromone droppings, pheromones due to wrong as-
sumptions are not and evaporate. Mathematic formulas
of how fast pheromones should evaporate and how much
importance an agent should assign to it, can be found in
(Rauch, Millonas, & Chialvo 1995; Chialvo & Millonas
1995; Dorigo, Bonabeau, & Theraulaz 2000).

There are some differences for the PCSP case. When
solving a PCSP, it is assumed that no solution can be found
which satisfies all constraints. Instead of searching for such
a solution, variable-assignments that satisfy part of the con-
straints are allowed. An ordering between these “solutions”
has to be made. Our framework is well suited for a spe-
cial case of such an ordering, one that assigns priorities to
constraints. We distinguish between hard constraints (with
an infinite priority) and soft constraints (with a limited pri-
ority). While walking the graph, agents must satisfy hard
constraints. Violations of soft constraints can be allowed.
This means a variable can only fail when no value can be
found that does not violate any hard constraints. The order
of a solution is determined by the sum of the priorities of
the violated soft constraints. In the PCSP case, agents that
found the best solutions drop pheromones.

When solving a PCSP, an extra heuristic can be incorpo-
rated: the hill-climbing heuristic. When using hill-climbing,
an agent chooses the value that violates “the least” con-
straints. In our stochastic ant-based system, we increase
the probability that an agent chooses a value that violates
few constraints. At the beginning of the algorithm, the
pheromone trails do not contain much information, so the
impact of the hill-climbing probabilities is large compared
to those of the pheromones. The longer the algorithm is
working, the larger becomes the impact of the pheromones.

Conclusion
As stated in (Mertens & Holvoet 2004), the CSAA frame-
work reaches its goals: it is able to find a first solution rather
quickly and the first solution as well as the final solution
violate less constraints than other algorithms that are also
designed for flexibility.

A Distributed Framework
Some constraint problems are not suited to be solved by one
host, e.g. when a problem is too big or when some con-
straints can not be generally known for security reasons. In

such cases, a distributed solution for solving them has to
be used. In this section, we elaborate on the distribution of
the CSAA framework. First we discuss the layout of the
distributed framework. The second subsection gives details
about the pheromone dropping process: how does it work,
what are the problems that are associated with it and how
can they be solved. The following subsection details about
the security concerns. Thereafter comes a subsection with
a number of additional optimizations. These include per-
formance issues that are not yet implemented in the frame-
work. We conclude this section with experimental results of
the distributed framework.

Layout of the Distributed Environment

The easiest way to distribute the centralized version of the
CSAA, is to place each node of the graph on a different host
(this can also be a virtual host, with one physical host con-
taining multiple virtual hosts). For problems with many vari-
ables, this would require a lot of (virtual) hosts. In addition,
communication between different physical hosts is more ex-
pensive than internal communication in a host and should
be avoided as much as possible. Therefore, we developed a
distributed version of the CSAA framework, optimized for
flexibility and bandwidth.

On each host, a centralized version of the CSAA is run-
ning, with only those variables that were assigned to the
host. When a constraint involves variables that are on differ-
ent hosts, the constraint is kept on all those hosts. Figure 2
shows a layout with nine variables and three hosts: each
host is responsible for three variables. A swarm of agents
is started on each host. The agents in the swarm search for
a solution for all variables on their host (e.g. variables A,
B and C on Host I). All agents that find a solution for
those variables, are transferred to the next host (and placed
in a queue on that host). Agents that can not find a solution
(because all possible values of a variable have hard conflicts
with values of other variables) do not get transferred to the
next host, but drop pheromones on the edges they walked
upon after which they are terminated. Below, we explain
how the next host should be chosen. After transferring the
agents, a new swarm is started. Therefore, the agents that
are present in the queue of the host are used. If the num-
ber of agents in the queue is not enough for composing the
swarm, a number of newly created agents is added. An agent
that has already found a solution for variables on a previous
host, takes the values it found for those variables into ac-
count when searching for a solution for the variables on its
present host.

There are two ways of choosing the next host. The first is
to simply number all hosts and to visit them in order. This
is depicted in Figure 2. The second way is to implement
some sort of “inter-host” pheromones and to let each agent
decide for itself (based upon those pheromones) which host
to visit next. Using pheromones has the advantage of a more
accurate first-fail imitation. A disadvantage is that because
of this first-fail principle, all pheromone trails tend to go the
the host with the most constrained variables, causing a bot-
tleneck at that host.



Figure 2: Distributed graph for the CSAA framework

Feedback with Pheromones

In the centralized version of the CSAA framework, an agent
drops pheromones on the edges it walked when it fails (be-
cause of hard constraints) or, when solving a PCSP, after
finding a solution that still violates a number of (soft) con-
straints. Doing the same thing in the distributed version of
the framework would introduce a serious bandwidth issue:
all agents that had visited more than one host would have
to be retransferred to their previous hosts, causing the used
bandwidth to be doubled (even worse, because the agents
have acquired more information than when they were first
transferred). Using a swarm of agents is somewhat better,
because only the best agents drop pheromones and have to
be transferred. Nevertheless, it is something we would like
to avoid if there is an alternative. Only dropping pheromones
on the last host the agent was on would mean a performance
penalty: less feedback is provided for the future agents,
causing the algorithm to slow down or, even worse, caus-
ing it to find an inferior solution. Therefore, we developed
an intermediate solution. The best agents of the swarm drop
pheromones before being transferred. This way, they do not
have to return after they fail or have found a solution. The
feedback that the pheromones provide for future agents is
based on partial information and reduces the accuracy of the
heuristics.

Dropping pheromones before being transferred to the next
host introduces a new difficulty. Because some agents fail to
find a partial solution on one host (due to hard constraint
violations), they are not transferred to the next host. The
incomplete swarm from the queue on that next host is com-
plemented with new agents, because of efficiency reasons.
This way, not all agents that have completed their work on a
host, have visited the same number of hosts. This makes it
hard to decide which agents have the best results so far. An
agent that has only visited one host is likely to have found a

solution that violates less constraints that an agent that has
already visited several hosts. If we would only consider the
partial solution on the present host, we would not make use
of all available information, making the feedback informa-
tion less useful. More important, an agent that has visited
several hosts would be more restricted in choosing its val-
ues on the present host. As a solution several groups of
agents within the swarm are identified. Each group consists
of agents that have visited the same hosts. The best agents of
each group are allowed to drop pheromones. The more hosts
an agent has visited (and thus the more information is con-
tained in the pheromones), the more pheromones it drops.

Security
Next to very big problem instances, constraint satisfaction
problems that require some degree of security are an impor-
tant reason for distributed solving. Keeping the exact nature
of a constraint private to one host is one of the main objec-
tives. This type of security concern can be addressed by our
framework. In the distributed version of the CSAA frame-
work, each variable is assigned to a host. For security sen-
sitive problems, the nature of the problem determines which
host this is. In contrast with non-security sensitive problems,
where a constraint between two variables that are located
on a different host is present on each of those hosts, con-
straints that should remain private are only present on one
host (suppose Host I). Such a constraint is checked when
the second variable must be given a value. If the constraint
is not present on the host the second variable is at (suppose
Host II), it can not be checked at that moment. It may be
even so that the second host (Host II) is not even aware
there is a constraint at all. Consequently, an agent that has
found a solution, must revisit all hosts to check if there are
any constraints that have not been checked yet. If other hosts
are allowed to know there is a constraint, but not allowed to



know the constraint itself, an agent can remember if there
are any unchecked constraints and avoid unnecessary band-
width consumption.

Having to revisit (some or all) hosts also has conse-
quences on the pheromone dropping. If the possibility that
an agent will revisit a node is large (this is the case when
there are only a few hard constraints and thus the possibility
of failure of a variable is small), the best agents could drop
pheromones only when they revisit the host. This would de-
lay the pheromone dropping, but it would incorporate more
information in the pheromone trail (because all instead of
part of the constraint checks are taken into account). An in-
termediate solution would be to drop pheromones two times:
once during the first visit and a second time during the re-
visit. In that case, a suited ratio between the first and second
dropping is very important.

In order to prevent an agent to remember a constraint and
to make sure it can not violate the privacy, agents should no
longer be responsible for checking the constraints. Instead,
constraints should be checked by the nodes, only providing
the agents with permitted values and, if applicable, the ac-
cumulated priorities of the violated soft constraints. Agents
can then choose between those values.

Additional Optimizations
Initially, the variables (of a non-security related problem)
are distributed randomly over the available hosts. This is
not the optimal distribution: a better distribution can be
achieved by using heuristics or by dynamically rearrang-
ing the variables. The number of constraints between a set
of variables can be a heuristic for grouping them on the
same host: a strong connection between variables on the
same host tends to improve the behavior of the arc consis-
tency and min-conflict heuristics. But sometimes, the num-
ber or importance of constraints is not a very good measure
for such a strong connection. Furthermore, searching the
most constrained groups would take a long time. There-
fore, we chose to let the CSAA framework decide at run-
time which variables should be grouped on the same host.
This way, the startup-time can remain very short. The deci-
sion of which variable has to be transferred is made by using
pheromones. Each main node keeps one pheromone trace
for each remote host. When an agent has finished a run and
drops pheromones on the selection and value edges, it can
also drop pheromones on the main nodes. Pheromones are
dropped when the variable that is associated with the main
node has violated some constraints that involve variables on
remote hosts. An amount of pheromones proportional to the
priority of the violated constraints is dropped on the trace of
that remote host. When one of the amounts of pheromone
exceeds a predefined value, the variable is transferred to that
host. Because pheromones evaporate, variables that only
violate low-priority constraints with remote variables will
never be transferred.

The distribution of the variables has one last drawback.
Because not all variables are equally constrained, not all
constraints are equally computationally intensive, not all
hosts have an equal amount of variables because of the dy-
namic transfer of variables, and not all hosts have the same

processing power, a swarm on one host can finish faster than
a swarm on another host. When there are two hosts, this
leads to very long queues on the slower host, because dur-
ing the time one swarm is processed, the agents of more
than one swarm, coming from the faster host arrive. Conse-
quently, the slower host never needs to add any newly con-
structed agents. This also means that no agents are trans-
ferred from the slower host to the faster host, causing the
queue of the faster host to be always empty and the queue
of the slower host to keep growing. Eventually, this leads
to memory overflows. In distributions with more than two
hosts, similar queue problems arise.

There are two possible solutions for this problem. The
first is to dynamically transfer variables and the associated
constraints from the slower host to the faster host. However,
this could interfere with the dynamic transfer of variables
for efficiency reasons. The second solution is to restrict the
number of agents in a swarm that are transferred. Agents
that are not transferred, get terminated. Transferring only
those agents that have the best solution so far, would pre-
vent any local exploration of the graph (the violation of one
extra constraint on the first host, that allows for a number
of violations not to occur on a second host would never get
transferred). Therefore, we chose to add a stochastic func-
tion to the transfer process. The better the partial solution
of an agent, the bigger its chances of being transferred. The
number of agents that can be transferred depends on the ho-
mogeneity of the hosts (measured in the number of agents
that can be processed per unit of time). Because of possible
transfer of variables, this number varies in time.

Experimental Results
We tested the distributed version of the CSAA framework on
graph coloring problems: 10 different problems were gener-
ated, each with 30 variables. Each problem has a number of
hard constraints (in the first problem 3% of all constraints
were hard, in the second 6%,. . . , in the last one 30%), ran-
domly chosen but ensuring a coloring with 20 colors is pos-
sible. Soft constraints with a random importance between
1 and 50 were added between all variable pairs that did not
have a constraint yet. We used the distributed version of the
CSAA framework on two hosts to color these problems us-
ing maximal 20 colors, trying each problem 10 times.

We compared the performance of the distributed CSAA
framework with the Iterative Distributed Breakout (IDB) al-
gorithm (Hirayama & Yokoo 1997). The IDB algorithm
was chosen because it leads quickly to a (near-optimal) so-
lution. As stated at the beginning of this paper, this is an
important characteristic when dynamic problems have to be
solved and the CSAA framework is also designed to exhibit
this behavior. The IDB algorithm was distributed the same
way as the CSAA framework was: the variables were di-
vided randomly into two groups, each of which was placed
on a different host. The CSAA framework was executed
with the additional optimizations from the previous subsec-
tion (dynamic transfer of variables and stochastic choosing
which agents are transferred) implemented. The best agents
dropped pheromones each time before they left a host and
did not return to previous hosts after a complete solution



1e+03 1e+04 1e+05 1e+06 1e+07 1e+08

#Checks0
50

0
10

00
15

00

S
ol

ut
io

n

Iterative Distributed Breakout

Two swarms of 250 ants, on two hosts

Figure 3: Average any-time curves for PCSP problems with 30 variables and 10 values, using Iterated Distributed Breakout
(full line) and using the distributed version of the CSAA on two hosts with a swarm of 250 ants with pheromone trails on each
host (dashed line). The thin lines indicate some runs found a solution at that number of checks, other did not yet. Error bars
indicate 95% confidence intervals around the mean. The number of checks on the X-axis is the total number of checks on both
hosts.

was found.
The results can be found in Figure 3. The thin lines in-

dicate that some runs found a solution at that number of
checks, other did not yet. Thick lines indicate all run found
a solution. Assignments that violated one of the hard con-
straints were not counted as solutions. As for the mean per-
formances, the CSAA framework is better than the IDB al-
gorithm. The variance of the IDB algorithm is a lot larger
than the one of the CSAA framework (see 95% confidence
intervals on Figure 3). Statistically, the performance of the
CSAA framework is not significantly better than the per-
formance of the IDB algorithm, but there is only a 17%
chance that IDB reaches better results. The Iterative Dis-
tributed Breakout algorithm finds a first solution faster than
the CSAA framework. Problems the IDB algorithm is well
suited for have a first solution 350 times faster with the IDB
algorithm than with the CSAA framework (beginning of the
thin lines). Problems that are hard for the IDB algorithm still
receive a first solution three times faster than with CSAA
(beginning of thick lines). This can be explained by the use
of swarms: before the CSAA can decide on a first solution,
two swarms of 250 agents have to complete the graph (or
have to be terminated because of failure of a variable).

Conclusion and Future Work
In this paper, we discussed the distributed Constraint Satis-
faction Ant Algorithm (CSAA) framework. It uses a very
flexible ant-based system to solve Constraint Satisfaction
Problems (CSP) and Partial Constraint Satisfaction Prob-
lems (PCSP). Pheromone trails are used both to mimic tra-
ditional search heuristics and to provide a flexible way of
searching. The distribution of the framework is no trivial
task, but requires a number of well thought-out design de-
cisions we described in detail. The overall performace of
the CSAA framework is good, compared to other algorithms
that were designed for flexibility, in the centralized as well

as in the distributed version.
Our ultimate goal is to extend the framework for han-

dling Dynamic (Partial) Constraint Satisfaction Problems
(DPCSP). That are PCSPs where the problem changes con-
stantly. Given the flexibility and robustness of ant-based
systems, the prospects of solving DPCSPs with the CSAA
framework are looking very promising.

References
Chialvo, D. R., and Millonas, M. M. 1995. How Swarms
Build Cognitive Maps. In Steel, L., ed., The Biology and
Technology of Intelligent Autonomous Agents, volume 144.
Nato ASI Series. 439–450.
Dorigo, M.; Bonabeau, E.; and Theraulaz, G. 2000. Ant
Algorithms and Stigmergy. Future Generation Computer
Systems (16):851–871.
Dorigo, M.; Maniezzo, V.; and Colorni, A. 1991. Positive
Feedback as a Search Strategy, Technical Report 91016,
Dipartimento di Elettronica e Informatica, Politecnico di
Milano, Italy.
Hirayama, K., and Yokoo, M. 1997. Distributed Partial
Constraint Satisfaction Problem. In Proceedings of the
Third International Conference on Principles and Practice
of Constraint Programming (CP’97), 222–236.
Mertens, K., and Holvoet, T. 2004. CSAA; a Constraint
Satisfaction Ant Algorithm Framework. In Proceedings of
the Sixth International Conference on Adaptive Computing
in Design and Manufacture (ACDM’04).
Minton, S.; Johnston, M. D.; Philips, A. B.; and Laird, P.
1992. Minimizing Conflicts: A Heuristic Repair Method
for Constraint Satisfaction and Scheduling Problems. Arti-
ficial Intelligence 58(1-3):161–205.
Rauch, E.; Millonas, M. M.; and Chialvo, D. R. 1995. Pat-
tern Formation and Functionality in Swarm Models. Phys.
Lett. A 207:185–193.


