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Abstract

In cooperative problem solving, the communication neces-
sary for solution search can also lead to privacy loss on the
part of the agents involved. Such loss can be assessed either
by directly tallying the number and importance of specific
items of information revealed or by tracking reductions in the
set of possible values associated with a particular item of in-
formation. In both cases information loss can occur either
because of direct communication or by inferences that other
agents make from one’s communications. The results of these
inferences are stored in the “views” that agents have of other
agents. In the present work on distributed constraint solving,
such views are organized as extensions of normal CSP rep-
resentations that model information about possible values in
unknown CSPs of other agents. Here we show how this ap-
proach can be extended so that agents also maintain views of
other agents’ views of themselves; the latter are called “mir-
ror views”. Mirror views can in turn be used to monitor one’s
own privacy loss, and can support strategies designed to re-
duce the loss of particular kinds of private information. Ex-
periments with a simulated meeting scheduling system show
that it is possible to reduce privacy loss with strategies based
on mirror views.

Introduction
When agents collaborate on a problem solving task, the as-
sumption is often made that any requisite information will
be shared. In many settings, however, agents may want to
maintain their privacy as much as possible while still engag-
ing in collaborative problem solving. This raises the ques-
tion of how to meet the added requirement of privacy main-
tenance while still trying to solve problems efficiently.

Privacy issues were, in fact, a driving force behind the
development of distributed algorithms for constraint solving
(Yokoo 1998). However, only in recent years has this con-
cern been taken into account in algorithm design and eval-
uation (Bella & Bistarelli 2001) (Freuder, Minca, & Wal-
lace 2001)(Silaghi, Sam-Haroud, & Faltings 2000) (Yokoo,
Suzuki, & Hirayama 2002).

The majority of existing algorithms for solving distributed
constraint satisfaction problems are based on constructive
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search. Despite the fact that they claim to support privacy
requirements, none of them offers support for strategies that
would attempt to reveal less important data in favor of saving
sensitive information. Only after such support for privacy-
related strategies is developed, will existing algorithms be
able to exploit their potential to reduce privacy loss (Silaghi
& Faltings 2002).

Privacy issues are complicated by the fact that agents may
make deductions about aspects of another agent’s problem
even under conditions of limited communication. This can
be done by reasoning in terms of sets of possibilities regard-
ing problem elements, some of which can be ruled out de-
pending on the information communicated. For example,
in a meeting scheduling scenario, if a proposed meeting is
accepted by another agent, this rules out certain possibili-
ties regarding other meetings that might have been in the
communicating agent’s schedule. More complex reasoning
can be carried out with specialized data structures to repre-
sent various forms of possibilistic information, using both
arc consistency reasoning and inferences based on set inclu-
sion relations among different kinds of possibilities (Wallace
2002).

Building on these earlier ideas, the present paper intro-
duces new techniques that allow an agent to assess the
amount of privacy loss that may occur when different items
of information are communicated. This allows an agent to
select items to minimize privacy loss. The basic idea is
to allow agents to develop views of themselves as they are
viewed by other agents; for this reason we call them “mirror
views”. Mirror views can be used to track one’s own privacy
loss during the course of problem solving and to estimate
additional loss due to one or another communication. With
this information, agents can make informed decisions about
communications in order to minimize such loss.

Using a meeting scheduling testbed described in earlier
papers (Freuder, Minca, & Wallace 2001) (Wallace, Freuder,
& Minca 2004), we examine the effects of such knowledge
on efficiency and privacy loss when agents collaborate to
solve a problem of mutual interest. As earlier, each agent
has a pre-existing schedule of meetings that is known only
to it. The problem is to schedule k further meetings that are
suitable for all agents, while limiting the amount of informa-
tion revealed during problem solving.

In this initial investigation on mirror views, we show that



agents can choose meetings to reduce either the amount of
information revealed concerning their possible schedules, or
places in their schedule where no meeting has been sched-
uled (“open slots”). In some cases, this is accomplished
with a marked loss in efficiency, but in other cases the ef-
ficiency/privacy tradeoff can be managed successfully.

The remainder of the paper is organized as follows. The
next section describes some situations where both privacy
and efficiency can be assessed. Then we discuss the assess-
ment of privacy loss and introduce basic measures. We con-
tinue with a section introducing the idea of “shadow CSPs”
that can represent an agent’s current knowledge about an-
other agent’s schedule in terms of existing possibilities, and
which is used here to implement the “mirror views”. The
next section describes experiments based on the meeting
scheduling scenario that test the effect of strategies designed
to reduce privacy loss, and the last gives conclusions.

Example Scenarios
For expository purposes, we will use some problems from
previous work as examples. These problems, in fact, con-
stitute the environment in which our basic ideas concern-
ing privacy loss were originally derived. Our expectation
is that, once properly fledged, these ideas can extend their
present range to include other kinds of distributed problems
and multi-agent systems.

The first example is a simplified meeting scheduling prob-
lem. In this scheduling problem, each of k agents has its
own calendar, consisting of appointments in different cities
at different times of the week. The problem is to find one or
more meetings that all agents can attend given their existing
schedules and constraints on travel time. Agents commu-
nicate on a 1:1 basis; the basic protocol is for one agent to
suggest a meeting time in a certain city to each of the other
agents, who then tell the first agent whether the choice is ac-
ceptable or not given their existing schedules. This contin-
ues until a meeting is found that is acceptable to all agents.

To further simplify the problem, we assume a fixed set of
cities where meetings can be held: London, Paris, Rome,
Moscow and Tbilisi. We also restrict meeting times to be an
hour in length and to start on the hour between 9 AM and 6
PM, inclusive, on any day of the week.

We can represent a problem of this type as a CSP, where
variables are the 70 time-slots, and values are the cities
where a meeting can occur. The basic constraints are the
times (in hours) required for travel between meetings in dif-
ferent cities, as shown in Figure 1. In this figure, times be-
tween cities within one region (Western Europe or the for-
mer Eastern Bloc) are shown beside arcs connecting cities;
the arc between the two ellipses represents constraints be-
tween any two cities in the different regions.

The second example is a multi-agent graph coloring prob-
lem, where agents must color a portion of the graph in com-
mon. In one variant of the problem, all agents have the same
graph to color, so that for a graph of V nodes, K must be col-
ored in common and V − K can be colored independently
by each agent. In another variant, a common subgraph forms
part of each agent’s graph, while the remaining part is dif-
ferent for each agent. In all cases, agents start with the same

Figure 1: Time constraint graph. Cities are London, Paris,
Rome, Moscow and Tbilisi.

set of colors, i.e. the domains are the same for all (common
and private) variables. Here, also, the same protocol has
been used as for the meeting scheduling problem, so the ba-
sic communications are either a proposed assignment (color
variable vi with color ck) broadcast to other agents, or an
acceptance or rejection sent to the proposer.

Characterizing and Measuring Privacy Loss
Basic considerations
In the first example described in the last section, private in-
formation pertains to meetings and open slots; in the sec-
ond, private information pertains to existing assignments in
the private portion of one’s graph and to colors available for
assignment to the common nodes.

In the first case, the most obvious measures of privacy loss
involve the number of meetings and open slots that another
agent either learns about directly or can deduce, and in the
second the number of existing assignments or available col-
ors. Therefore, a viable measure of privacy loss is in terms of
information gain. This is supported by examples like the fol-
lowing. Suppose 100 possibilities can be discarded in each
of two situations, in the first case from an original set of
400, in the second from an original case of 101. It certainly
appears that the latter constitutes a greater loss of privacy.

In general, privacy loss seems to involve discriminatng
values of personal attributes from other possibilities. This
becomes important when private informatin involves pre-
dictability, that is, knowing something about an agent that
allows one to predict its behavior in some way. In some
cases the relation between an item of information and pre-
diction may be indirect. If someone knows your name, he
may be able to find your address in a phone book, and thus
predict where you are likely to be. In contrast, knowing that
your name contains the letter “a” is unlikely to lead to being
able to predict anything, so in this case the loss of privacy
would be insignificant.

It is therefore reasonable to measure privacy in terms of
reductions in sets of possibilities. In this case, we can refer
to an “original-relevant-set” and a “resultant-set” of possi-
bilities. Then privacy loss can be defined as follows:

privacyloss = log2(|original relevant set|) −

log2(|resultant set|)

and can, therefore, be measured in bits of information.



In addition, it may be possible to reduce the set of possi-
bilities so desired information can be known with certainty.
In this case, we call the resultant set the “effective-set”. If
we can determine the size of the effective-set in a given sit-
uation, then we can also describe privacy loss in relation to
a maximum value.

Privacy loss can also be assessed more directly, in terms
of the number of actual items of information revealed, for
example the number of actual meetings and open slots. This
tells us how many effective-sets are known with certainty at
the end of a session. The latter can be inferred directly from
some communications (proposals or acceptances) and also
by more elaborate inference. (E.g. if all possible meetings
have been ruled out for a time slot, then it must be open.)

Although in the work described in this paper, all items
of information are assumed to be equally important with re-
spect to privacy loss, in many situations it may be important
to preserve the secrecy of some items over others. Such re-
quirements can be readily accomodated by using soft con-
straints (e.g. (Bistarelli et al. 1996)), for example by asso-
ciating each item or tuple of items (in a CSP representation)
with an evaluation related to its importance as well as the
estimation of privacy loss. For example, the basic privacy
loss measure could be multiplied by a weight that is non-
linear in the information gain, with different constants for
different items of information. In this way, as information
gain increases so that the set of possibilities converges to the
effective-set, the cost of further loss is also increased, caus-
ing the decision maker to avoid communications that reveal
more information about these items.

Agent self-assessment of privacy loss
Given a measure of privacy loss over a well-defined set
of possibilities, it becomes possible for agents to estimate
their own privacy loss. Such assessments can then be used
to guide decision making. In this way, privacy considera-
tions can be incorporated into an agent’s own utility func-
tion. Since earlier research on privacy issues did not have an
actual measure of privacy loss, such incorporation was not
possible.

We will organize the procedure of estimating one’s own
privacy loss around the concept of agent views, using the
representation for such views found in the work stem-
ming from the paper of (Freuder, Minca, & Wallace 2001).
Specifically, these (additional) views represent information
that can be deduced about what another agent knows about
oneself, given general assumptions about the information in
question and the communications, in particular, communi-
cations that the agent is considering. To distinguish them
from ordinary views we call them “mirror views”. (In the
present work we assume that agents do not exchange secrets
learned about a third party.)

Structures for Representing and Making
Inferences about Other Agents’ Information

The measure of privacy loss described above depends on
each agent knowing a set of possible values, under the as-
sumption that this set contains the actual value of an ele-

ment in another agent’s problem as well as all other values
that could be valid. This set will be part of that agent’s view
(of the other agent). A view can be updated after each com-
munication from another agent, which may involve reducing
some sets of possibilities, with resulting privacy loss for the
communicating agent.

For CSPs in general, the kinds of possible values can be
organized into “shadow CSPs” that represent sets of possi-
ble domain values and constraint tuples. For domain val-
ues (unary constraints) there are three kinds of shadow val-
ues: possible existing assignments, possible conflicting as-
signments, and possible future assignments. In the meet-
ing scheduling example, the first kind refers to meetings in
another agent’s schedule, the second to possible meetings
responsible for a rejection, the third to city-in-time-slot el-
ements that might be available for a common meeting. A
simple example of a shadow system for representing unary
constraints is shown in Figure 2.

Systems of shadow CSPs represent two basic kinds of
information, related to existing and future variable assign-
ments. In addition, there are other requirements that we can
derive from consideration of the basic problem. The most
important is that the set inclusion relation should hold be-
tween corresponding domains of an actual CSP (that con-
tains actual values revealed by the other agent) and any re-
lated shadow CSP, where “corresponding” means being as-
sociated with the same variable. In addition, the same rela-
tion must hold between corresponding domains of shadow
CSPs related to the same actual CSP, here between do-
mains of possible-conflict values, and corresponding do-
mains of possible-existing-assignment values. Generalizing
from this, we require that:

1. The entire set of shadow CSPs plus the representation of
the actual CSP has a supremum, which we call the “uni-
versal” (shadow) CSP and an infimum which may be the
null set (cf. Figure 2).

2. For this entire set, the set inclusion relations are reflexive
and transitive.

3. There is an additional property of good structure in that if
a domain of shadow CSP X is a subset of the correspond-
ing domain of shadow CSP Y, then another domain of X
will be a subset of the corresponding domain of Y.

The first two requirements insure that there is a partial order
on each set of corresponding domains under the set inclu-
sion relation. Requirement three gives a transitive, reflexive
relation for complete shadow CSPs.

The proof that the system remains well-structured shows
that, with a given set of communications and rules of in-
ference, as, for example, described for the scenarios in the
second section, the set inclusion relation remains achievable
at every step in search (Wallace 2002). In particular, this
means that we cannot deduce an actual value that has been
ruled out as a possible value in any corresponding domain
of a superordinate shadow CSP. In other respects, the sys-
tem is sound because inferences rely on standard logic, plus
a closed world assumption.

In the simplest case, at the beginning of a negotia-
tion session, when an agent knows nothing about the



Figure 2: Structure of a basic shadow CSP system for unary
constraints. Shadow CSPs are shown as dashed circles. Ar-
rows represent the realization (set inclusion) relation holding
between the domains of super- and subordinate CSPs.

other agents’ problems, all domains of possible-existing-
assignments and possible-future-assignments, as well as
the “universal” shadow CSP, have all possible values. In
the meeting scheduling situation, for example, each of the
70 domains of the possible-existing- and possible-future-
assignment CSPs will have five values, corresponding to five
possible cities. This represents the fact that any value may
be a value in the other agent’s exisiting schedule or it may
be a value that is available for future assignment, in this case
as an additional meeting. The possible-conflicts shadow and
the actual CSPs have empty domains, since no conflicts have
been deduced, nor any actual existing or future values.

As search proceeds, values are deleted from the domains
of the first two CSPs and added to the last two. For exam-
ple, if an agent proposes a meeting in London at 2 PM on
Tuesday, other agents can infer that this agent does not have
any meetings in this time-slot; nor can it have meetings in
another city at 1 or 3 PM, since the time constraints would
prevent it from meeting in London at 2; the latter agents
can, therefore, delete these (and other) shadow values from
their views of this agent. Similar deductions can be made by
the proposing agent if another agent accepts this proposal.
On the other hand, if the other agent rejects this proposal,
the proposing agent can deduce that the rejection could have
been due to an existing meeting at 2 PM in the other agent’s
schedule, or to a meeting in Paris within two hours of this
time, or to a meeting in London within three hours, etc.,
and can therefore add these shadow values to the possible-
conflicts CSP.

In this system, privacy loss is assessed in terms of reduc-
tions in the number of possible values for a given domain;
since in this sense domains are independent, separate assess-
ments must be made for each domain. In addition, privacy
regarding existing assignments must be assessed indepen-
dently of privacy regarding values available for future as-
signment. For existing assignments, the original-relevant-set
consists of all possible values plus the possibility that there

is no assignment at all (if this is possible). For the meet-
ing scheduling example this would be the possibility that the
agent has no meeting in a slot; in this case, there are there-
fore six possibilities for the original-relevant-set for each
slot in each agent view. And in this case the effective-set
is obviously always one. For possible future assignments,
the situation is not as straightforward. One approach, which
has been used so far in this work is to consider each possible
subset of a domain as an information-element. The original-
relevant-set is then the power-set of the set of possibilities.
For the meeting scheduling example the size of this set is 2

5.
In our new approach, each agent also maintains the

shadow CSPs assumed to be maintained by other agents
about himself. As mentioned before, these shadow CSPs
form a “mirror view” and are used to select the next action
of the agent so that progress is achieved with minimal pri-
vacy loss for himself.

An Experimental Testbed
System and methods
In order to make some assessment of mirror views in prac-
tice, a system used earlier for simulating the multi-agent
meeting scheduling problem described above was elaborated
with mirror views. This system is written in Java, and allows
the user to pose the basic problem with different numbers of
agents and initial meetings, as well as varying the kinds of
information that is gathered, as well as protocols and pro-
posal strategies. The version used here also allows the user
to vary the number of common meetings to be found, as well
as specifying whether the problem has a solution or not.

In the present elaboration of this system, mirror views
were simulated simply by allowing agents to examine other
agent’s views of themselves before making proposals. This
was acceptable because in this situation, general informa-
tion about constraints and possible variables is the same for
all agents, who would therefore make the same deductions
about a given communication. Agents could also calculate,
for each potential proposal, the number of additional possi-
ble existing assignments that could be ruled out and the num-
ber of open slots in their schedule that would be revealed.
The basic comparisons were between criteria for proposal
selection:

• agents simply propose meetings, using possibilistic
knowledge inferred about the other agents’ schedules, as
described in the previous section (cf. (Wallace, Freuder,
& Minca 2004))

• each agent proposes a meeting that minimizes the number
of possible existing assignments that could be ruled out
by an agent receiving this proposal

• each agent proposes a meeting that minimizes the num-
ber of open slots that would be discovered on the basis of
inferences about this proposal

Experimental tests were run with various numbers of
agents, initial meetings in the agents’ schedules, number of
new assignments required and differences in problem solu-
bility. Each experiment (in which these factors were held
constant) consisted of 100 runs. For these experiments,



agents followed a “round-robin” procedure in which agents
take turns making proposals following a fixed order (cf.
(Freuder, Minca, & Wallace 2001)).

To give an overview of the experimental procedure, an
individual test run begins with random generation of sched-
ules followed by a series of proposals which continue until
one is found that is acceptable to all agents. Proposals are
selected by choosing a time slot and city at random (to en-
sure unbiased sampling). This is repeated until the candi-
date meeting fits the proposer’s schedule. After that, further
tests are made. These include checking that this proposal has
not been made before, and then checking against the agent’s
knowledge, for example, knowledge of other agents’ actual
meetings, current possible-has-meeting’s, etc. The first vi-
able proposal (one meeting all tests specified for the experi-
ment) is communicated to each of the other agents, and the
latter reply with an acceptance or rejection to the proposer
alone.

The efficiency measure used in these tests was number of
proposals per run, averaged over all 100 runs in an experi-
ment. The measures of privacy loss were the entropic mea-
sure applied to reductions in possible existing assignments
plus the actual number of open slots identified.

Results
In the first experiments to be described, agents searched for
one common meeting to add to their schedules. In one set of
experiments there were three agents whose initial schedules
had 15 meetings. In a second set there were seven agents,
each with 10 initial meetings. Some results from the first set,
showing efficiency and one direct (non-entropic) indication
of privacy loss, are shown in Figure 3. Results for privacy
loss related to possible existing assignments are shown in
Figure 4.

Figure 3: Mean proposals (per run) and open slots revealed
(per agent view) in experiments with three agents having 15
pre-existing meetings in their schedules. “Proposal strate-
gies” are based on the criteria described in the text. “min
NG has” refers to the strategy that minimizes the number
of possible existing assignments that could be ruled out by
other agents; “min OpSl” refers to the strategy of minimiz-
ing the number of open slots that could be deduced on the
basis of a proposal.

These results show it is possible for agents to reduce

privacy loss by specific proposal strategies based on their
mirror views, although in these experiments the effects are
not large. However, for the strategy that involves tallying
prospective no-good possible existing assignments there is a
considerable loss in efficiency, both in terms of the standard
measure (proposals per run) and runtime. As a result, more
open slots were discovered than in the reference condition
(cf. Figure 3). (In fact, it is somewhat surprising that this
proposal strategy was still effective with respect to the tar-
geted quantity, given the marked increase in number of pro-
posals communicated before finding a solution.) A similar
pattern of results was found in the second set of experiments.

Figure 4: Privacy loss with respect to existing assignments
in experiments with three agents having 15 pre-existing
meetings in their schedules.

A third series of experiments was based on a harder task
that required backtrack search. Here, there were five agents
each with eight meetings in their initial schedules. The
task was to find three additional meetings that all agents
could attend; in fact, the problems in this series were con-
structed to be insoluble, with at least one viable instance
of two additional common meetings. Agents used a form
of backtrack search based on successive assignments (vari-
able/value pairs) rather than variables; each agent also used
forward checking to prune its own search space. In this case,
the validity of some of the knowledge gathered, specifically
previous proposals and possible future assignments ruled
out, depended on the state of search, so that retracting a pro-
posal was accompanied by discarding the information that
depended upon it.

Because the task in these experiments required a full tree
search, selecting proposals to minimize privacy loss did not
reduce efficiency as in the first experiments. (About 290 pro-
posals were required in all conditions.) Again, there was a
modest but noticeable reduction in privacy loss that corre-
sponded to the quantity targeted by the proposal strategy.

Further results: Dynamic versus static (presearch)
assessment
The proposal strategies tested in the previous experiments
evaluate privacy loss dynamically, i.e. in terms of expected
further loss based on the current view. Hence, they are re-
sponsive to the actual, effective loss of privacy at any point
in search. This approach can be compared with one based



on more static assessments, in particular, those made prior to
actual search. The latter will not be able to assess actual loss
at a particular stage of search, but it is not clear how much
difference this will make. In addition, dynamic assessment
is much more expensive, so that in some situations, where
computational opportunities or resources are limited, it may
be more realistic to use static assessments.

An initial evaluation of this difference was carried out,
using a variation on the strategy that minimizes the number
of possible existing assignments. In this case, assessments
were carried out for each viable meeting proposals prior to
search; at each step of search, candidate proposals were cho-
sen that had the lowest tallies.

Figure 5: Privacy loss with respect to existing assignments
in the three kinds of experiments. Dynamic versus static
assessment of privacy loss.

The main results of these experiments are, (i) the static
strategy impairs performance uniformly in relation to its dy-
namic counterpart (and, therefore, in relation to the baseline,
no-strategy condition), (ii) partly because of (i), privacy loss
with respect to possible existing assignments is greater than
with the dynamic strategy (Figure 5), as well as the baseline
condition.

The results suggest that dynamic assessment is required
to accurately estimate and control privacy loss. In this con-
nection, it should be noted that such assessment will usually
require some kind of view that is constantly updated, such as
the shadow system used in this work. The only exceptions
would involve stringent independence conditions, in which
possibilities cannot be discarded unless a particular item is
communicated.

Conclusions and Future Directions
By quantifying privacy loss, we enable agents to estimate
their own potential privacy loss and to act in ways that can
modify these quantities. This can be done if agents can
reason about the effects of communications on the basis of
valid general knowledge about sets of possible values for el-
ements of the problem. In other words, agents must have
articulated views of other agents and some means of updat-
ing these views based on sound inferences from communi-
cations. The present work shows that with these capacities
agents can modify their communications in order to reduce
privacy loss. However, for these problems improvements

were modest and in some cases there was an attendant loss
of efficiency that, of course, works against the goal of main-
taining privacy. There is some indication in this work that
trying to minimize actual information lost is more effective
than trying to minimize information loss according to en-
tropic measures.

We have also begun to evaluate the difference between
dynamic and static strategies for assessment. Our initial re-
sults suggest that dynamic assessment will be necessary for
effective modulation of privacy loss in most situations. Ob-
viously, however, the whole issue of static versus dynamic
assessment of privacy loss is an important area for futher
research.

As indicated in the section on privacy measures, it should
be possible to refine assessments of privacy loss according
to the ‘value of secrecy’. Based on these initial studies, it
seems reasonable to expect that this should lead to success-
ful strategies along the lines of those developed here, espe-
cially when there are only a few elements of high value.
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