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Abstract

A distributed search algorithm for solving distributed
constraint satisfaction problems (DisCSPs) is pre-
sented. The proposed algorithm is composed of
multiple search processes (SPs) that operate con-
currently. Concurrent search processes scan non-
intersecting parts of the search space. Each SP is
represented by a unique data structure, containing a
current partial assignment (CPA), that is circulated
among the different agents. The splitting of the search
space, leading to several concurrent SPs is achieved by
splitting the domain of one or more variables. The pro-
posed algorithm generates concurrent search processes
dynamically, starting with the initializing agent, but
occurring also at any number of agents during search.

The Concurrent BackTracking (ConcBT) algorithm
is presented and an outline of the correctness proof
is given. Experimental evaluation of the algorithm,
on randomly generated DisCSPs, is presented. Con-
cBT outperforms asynchronous backtracking (ABT)
(Yokoo2000) on random DisCSPs with different pat-
terns of message delays. Load balancing for ConcBT
is achieved by adding concurrent search trees dynami-
cally, performing re-splitting of the search space by the
use of a simple heuristic.

Introduction
Distributed constraint satisfaction problems (DisCSPs)
are composed of agents, each holding its local con-
straints network, that are connected by constraints
among variables of different agents. Agents assign val-
ues to variables, attempting to generate a locally con-
sistent assignment that is also consistent with all con-
straints between agents (cf.(Yokoo2000; Solotorevsky
et. al. 1996)). To achieve this goal, agents check
the value assignments to their variables for local con-
sistency and exchange messages with other agents,
to check consistency of their proposed assignments
against constraints with variables owned by different
agents. Following common practice, it is assumed
that an agent can send messages to any one of the
other agents (Yokoo2000; Meseguer and Jimenez2000;
Bessiere et. al. 2001).
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Several asynchronous search algorithms for DisCSPs
have been proposed in the last decade (Yokoo2000;
Bessiere et. al. 2001). The common feature of all
asynchronous search algorithms is that agents process
their assignments asynchronously, even if their local as-
signments are not consistent with other agents’ assign-
ments. In order to make asynchronous backtracking
correct and complete the algorithm usually keeps data
structures for nogoods (cf. (Bessiere et. al. 2001)).

The present paper proposes a search algorithm on
DisCSPs that is composed of several concurrent search
processes, each of which is a synchronous backtrack pro-
cedure. The proposed algorithm uses a form of mes-
sage in which agents send and receive a consistent par-
tial assignment of multiple agents. When such a mes-
sage includes a complete assignment, to all variables
of all agents, the search stops and the solution is re-
ported. Agents that initialize a search process generate
a data structure that we term current partial assign-
ment - CPA. The initializing agent records on the CPA
its consistent assignment and sends it to another agent.
Each receiving agent adds its consistent assignment if it
exists to the CPA. Otherwise, it backtracks by sending
the same CPA to a former agent.

The concurrency of the concurrent backtrack (Con-
cBT) algorithm is achieved by the circulation of mul-
tiple CPAs. Each CPA represents one search process
(SP ) and each search process scans a different part of
the global search space. The search space is split dy-
namically at different points on the path of the search
process by agents generating additional CPAs. This
changes dynamically the degree of concurrency during
search and enables automatic load balancing. The split-
ting and re-splitting of the search space is performed
independently by agents and is thus a distributed pro-
cess.

The concurrent backtrack (ConcBT) algorithm is de-
scribed in the following section. A correctness and com-
pleteness proof for ConcBT is outlined next. Then we
present experimental evaluations, in which the Con-
cBT algorithm, out performs asynchronous backtrack-
ing (ABT), on randomly generated DisCSPs in systems
with different patterns of message delays. The last sec-
tion summarize our conclusions.



Concurrent Backtrack - ConcBT
The ConcBT algorithm performs concurrent backtrack
searches on disjoint parts of the DisCSP search-space.
Each agent holds the data relevant to its state on each
sub-search-space in a separate data structure which
we term Search Process (SP). Agents in the ConcBT
algorithm pass their assignments to other agents on
a CPA (Current Partial Assignment) data structure.
Each CPA represents one search process, and holds the
agents current assignments in the corresponding search
process. An agent that receives a CPA tries to assign
its local variables with values that are not conflicting
with the assignments on the CPA, using only the cur-
rent domains in the SP related to the received CPA.
The uniqueness of the CPA for every search space en-
sures that assignments are not done concurrently in a
single sub-search-space.

The main point of interest of the ConcBT algorithm,
is its ability to split the search space dynamically. Each
agent can generate a set of CPAs that split the search
space of a CPA that passed through that agent, by
splitting the domain of one of its variables. Agents
can perform splits independently and keep the result-
ing data structures (SPs) privately. All other agents
need not be aware of the split, they process all CPAs
in exactly the same manner (see Algorithm descrip-
tion below). CPAs are created either by the Initializing
Agent (IA) at the beginning of the algorithm run, or
dynamically by any agent that splits an active search-
space during the algorithm run. The present study uses
a heuristic of counting the number of times agents pass
the CPA in a sub-search-space (without finding a so-
lution), to determine the need for re-splitting of that
sub-search-space. This generates a nice mechanism of
load balancing, creating more search processes on heav-
ily backtracked search spaces.

A backtrack operation is performed by an agent
which fails to find a consistent assignment in the search-
space corresponding to the partial assignment on the
CPA. Agents that have performed dynamic splitting,
have to collect all of the returning CPAs, of the rele-
vant SP , before performing a backtrack operation.

Main objects of ConcBT
The main data structure that is used and passed
between the agents is a current partial assignment
(CPA). A CPA contains an ordered list of triplets
< Ai, Xj , val > where Ai is the agent that owns the
variable Xj and val is a value, from the domain of
Xj , assigned to Xj . This list of triplets starts empty,
with the agent that initializes the search process, and
includes more assignments as it is passed among the
agents. Each agent adds to a CPA that passes through
it, a set of assignments to its local variables that is
consistent with all former assignments on the CPA. If
successful, it passes the CPA to the next agent. If
not, it backtracks, by sending the CPA to the agent
from which it was received. Splitting the search space
on some variable divides the values in the domain of

this variable into several groups. Each sub-domain de-
fines a unique sub-search-space and a unique CPA tra-
verses this search space (see subsection Example of
dynamic splitting for a detailed example).

Every agent that receives a CPA for the first time,
creates a local data structure which we call a search
process (SP). This is true also for the initializing agent
(IA), for each created CPA. The SP holds all data on
current domains for the variables of the agent, such as
the remaining and removed values during the path of
the CPA.

The ID of a CPA and its corresponding SP is a pair
< A, j >, where A is the ID of the agent that created
the CPA and j is the number of CPAs this agent created
so far. The ID of CPAs enables all agents to create
CPAs independently, with a unique ID. This is the basis
for dynamic splitting of the search space. When a split
is performed during search, all CPAs generated by the
agent that performs the split have a unique ID and
carry the ID of the CPA from which they were split.

Algorithm description
The ConcBT algorithm is run on each of the agents in
the DisCSP and uses the following terminology:
• CPA generator: Every CPA carries the ID of the

agent that created it.
• steps limit: the number of steps (from one agent to

the next) that will trigger a split, if the CPA does
not find a solution, or return to its generator.

• split set: the set of SP -IDs, stored in each SP , in-
cluding the IDs of the active SPs that were split
from the SP by the agent holding it.

• origin SP : an agent that performs a dynamic split,
holds in each of the new SPs the ID of the SP it was
split from (i.e. of origin SP ). An analogous defini-
tion holds for origin CPA. The origin SP of an SP
that was not created in a dynamic split operation is
its own ID.

The messages exchanged by agents in ConcBT are the
following:
• CPA - a regular CPA message.
• backtrack msg - a CPA sent in a backtrack opera-

tion.
• stop - a message indicating the end of the search.
• split - a message that is sent in order to trigger a split

operation. Contains the ID of the SP to be split.
The ConcBT algorithm is presented in two parts.

The first part includes the main function of the algo-
rithm and functions that perform assignments on the
CPA when it moves forward (Figure 1).
• The main function ConcBT, initializes the search

if it is run by the initializing agent (IA). It initial-
izes the algorithm by creating multiple SPs, assigning
each SP with one of the first variable’s values. After
initialization, it loops forever, waiting for messages
to arrive.



• ConcBT:
1. done ← false
2. if(IA) then initialize SPs
3. while(not done)
4. switch msg.type
5. split: perform split
6. stop: done ← true
7. CPA: receive CPA
8. backtrack: receive CPA

• initialize SPs:
1. for i ← 1 to domain size
2. create SP(i)
3. domain SP[i] ← first val[i]
4. CPA ← create CPA(i)
5. assign CPA

• receive CPA:
1. CPA ← msg.CPA
2. if(first received(CPA ID))
3. create SP(CPA ID)
4. if(CPA generator = ID)
5. CPA steps ← 0
6. else
7. CPA steps ++
8. if(CPA steps = steps limit)
9. send(split msg, CPA generator)
10. if(msg.type = backtrack msg)
11. remove last assignment
12. assign CPA

• assign CPA:
1. CPA ← assign local
2. if(is consistent(CPA))
3. if(is full(CPA))
4. report solution
5. stop
6. else
7. send(CPA, next agent)
8. else
9. backtrack

Figure 1: Main and Assign parts of ConcBT

• receive CPA first checks if the agent holds a SP
with the ID of the current CPA and if not, creates a
new SP. If the CPA is received by its generator, it
changes the value of the steps counter (CPA steps)
to zero. This prevents unnecessary splitting. Oth-
erwise, it checks whether the CPA has reached the
steps limit and a split must be initialized (lines 7-9).
Before assigning the CPA a check is made whether
the CPA was received in a backtrack msg, if so the
previous assignment of the agent which is the last
assignment made on the CPA is removed, before
assign CPA is called (lines 10-11).

• assign CPA tries to find an assignment for the local
variables of the agent, which is consistent with the
assignments on the current CPA. If it succeeds, the
agent sends the CPA to the selected next agent (line
7). If not, it calls the backtrack method (line 9).

The rest of the functions of the ConcBT algorithm
are presented in Figure 2.

• backtrack:
1. delete(current CPA from origin split set)
2. if(origin split set is empty)
3. if(IA)
4. CPA ← no solution
5. if(no active CPAs)
6. report no solution
7. stop
8. else
9. send(backtrack msg, last assignee)
10. else
11. mark fail(current CPA)

• perform split:
1. if(not backtracked(CPA))
2. var ← select split var
3. if(var is not null)
4. create split SP(var)
5. create split CPA(SP ID)
6. add(CPA ID to origin split set)
7. assign CPA
8. else
9. send(split msg, next agent)

• stop:
1. send(stop, all other agents)
2. done ← true

Figure 2: Backtrack and Split for ConcBT

• The backtrack method is called when a consistent
assignment cannot be found in a SP. Since a split
might have been performed by the current agent,
a check is made, whether all the CPAs that were
split from the current CPA have also failed (line
2). When all split CPAs have returned unsuccess-
fully, a backtrack message is sent carrying the ID of
the origin CPA. In case of an IA, the origin SP is
marked as a failure (lines 3-4). If all other SPs are
marked as failures, the search is ended unsuccessfully
(line 6).

• The perform split method tries to find in the SP
specified in the split message, a variable with a non-
empty current domain. It first checks that the CPA
to be split has not been sent back already, in a back-
track message (line 1). If it does not find a variable
for splitting, it sends a split message to next agent
(lines 8-9). If it finds a variable to split, it creates a
new SP and CPA, and calls assign CPA to initialize
the new search (lines 3-5). The ID of the generated
CPA is added to the split set of the divided SP s
origin SP (line 6).

The algorithm ends unsuccessfully, when all CPAs
return for backtrack to the IA and the domain of their
first variable is empty. The algorithm ends successfully
if one CPA contains a complete assignment, a value for
every variable in the DisCSP.

Example of dynamic splitting
Consider the constraint network that is described in
figure 3. All three agents own one variable each, and



the initial domains of all variables contain four values
{1..4}. The constraints connecting the three agents
are: X1 < X2, X1 > X3, and X2 < X3. The initial
state of the network is described on the LHS of Fig-
ure 3. In order to keep the example small, no initial
split is performed, only dynamic splitting. The value
of steps limit in this example is 4. The first 5 steps of
the algorithm run produce the state that is depicted on
the RHS of Figure 3. The run of the algorithm during
these 5 steps is described in detail below:
1. X1 assigns it’s variable with 1, and sends to X2 a

CPA with a step counter CPA steps = 1.
2. X2 assigns it’s variable with 2, and sends the CPA

with both assignments, and CPA steps = 2, to X3.
3. X3 cannot find any assignment consistent with the

assignments on the CPA. It passes the CPA back
to X2 to reassign it’s variable, with CPA steps = 3.

4. X2 reassigns it’s variable with the value 3, and sends
the CPA again to X3 after raising the step counter
to 4.

5. X3 receives the CPA with X2’s new assignment.

Figure 3: Initial state and the state after the CPA trav-
els 5 steps without returning to its initializing agent

In the current step of the algorithm, agent X3 receives
a CPA which has reached the step limit. According to
lines 8-9 of function receive CPA it has to generate
a split operation. Before trying to find an assignment
for its variable, X3 sends a split message to X1 which
is the CPAs generator and changes the value of the
CPA steps counter to 0. Next, it sends the CPA to X2

in a backtrack message. The algorithm run proceeds as
follows:
• When X1 receives the split message it performs the

following operations:
– Creates a new (empty domain) SP data structure.
– Deletes values 3 and 4 from its original domain and

inserts them into the new domain.
– Creates a new CPA and assigns it with 3 (a value

from the new domain).
– Sends the new CPA to a randomly chosen agent.

Figure 4: The new non intersecting search spaces now
searched using two different CPAs

• Other agents that receive the new CPA create new
SPs with a copy of the initial domain.

After the split, two CPAs are passed among the agents.
The two CPAs perform search on two non intersecting
search-spaces. In the original SP after the split, X1

can assign only values 1 or 2 (see LHS of Figure 4).
The search on the original SP is continued from the
same state it was in before the split. Agents X2 and
X3 continue the search using their current domains to
assign the original CPA. Therefore the domain of X2

does not contain values 1 and 2 which were eliminated
in earlier steps since they were not consistent with X1’s
assignment (1). In the newly generated search space,
X1 has the values 3, 4 in its domain. Agent X1 assigns
3 to its variable and the other agents that receive the
CPA check the new assignment against all there (full)
domain values (RHS of figure 4).

Correctness of ConcBT
A central fact that can be established immediately is
that agents send forward only consistent partial assign-
ments. This fact can be seen at lines 1, 2 and 7 of pro-
cedure assign CPA. This implies that agents process,
in procedures receive CPA and assign CPA, only con-
sistent CPAs. Since the processing of CPAs in these
procedures are the only means for extending partial as-
signments, the following lemma holds:
Lemma 1 ConcBT extends only consistent partial as-
signments. The partial assignments are received via a
CPA and extended and sent forward by the receiving
agent.
The correctness of ConcBT includes soundness and
completeness. The soundness of ConcBT follows im-
mediately from Lemma 1. The only lines of the algo-
rithm that report a solution are lines 3, 4 of procedure
assign CPA. These lines follow a consistent extension
of the partial assignment on a received CPA. It fol-
lows that a solution is reported iff a CPA includes a
complete and consistent assignment.

The completeness proof for ConcBT will only be out-
lined here. The main points of the proof are the follow-



ing:

• Completeness for the case of a single CPA, is equiva-
lent to the proof of completeness for centralized back-
track by Kondrak and vanBeek (Kondrak and van-
Beek1997).

• For several CPAs generated by the IA, where the
only difference from the 1−CPA case is in the data
structures of the IA.

• Finally, it is shown that a dynamic split operation
does not interfere with the correctness of the algo-
rithm.

The reader is encouraged to look up the full version of
the paper (Zivan and Meisels2003) for the full com-
pleteness proof.

Experimental Evaluation
The network of constraints, in each of the experiments,
is generated randomly by selecting the probability p1 of
a constraint among any pair of variables and the prob-
ability p2, for the occurrence of a violation among two
assignments of values to a constrained pair of variables.
Such uniform random constraints networks of n vari-
ables, k values in each domain, a constraints density of
p1 and tightness p2 are commonly used in experimen-
tal evaluations of CSP algorithms (cf. (Prosser1996;
Smith1996)). Experiments were conducted on networks
with 10 variables (n = 10) and 10 values (k = 10). In
all of our experiments p1 = 0.7 and the value of the
tightness p2 is varied between 0.1 and 0.9, to cover all
ranges of problem difficulty.

The common approach in evaluating the performance
of distributed algorithms is to compare two independent
measures of performance: computation effort, in the
form of steps of computation (Yokoo2000), and com-
munication load, in the form of the total number of
messages sent (Lynch1997).

Evaluation of concurrency
To investigate the effect of concurrent computation in
the ConcBT algorithm one needs to run the algorithm
with different number of CPAs, and compare the search
effort for finding a solution. The larger the number of
CPAs, the greater amount of concurrent exploration of
the search space is expected. On the other hand, since
the number of search processes operating at a certain
time is bounded by the number of agents, a large num-
ber of CPAs might increase the time a CPA is waiting
at one of the agents message queues.

The ConcBT algorithm was run in a 1-CPA version,
5-CPA version and a 5-CPA version with dynamic re-
splitting, using a step limit of 20. The 1-CPA version
is completely sequential and serves as the base line for
comparing the concurrent versions.

Figure 5 shows the computational effort in number of
steps for all three cases. It is easy to see that the differ-
ence between versions with a constant number of CPAs
(1-CPA and 5-CPA) is small. Substantial improvement

Figure 5: Number of steps in different versions of Con-
cBT, either 1-CPA, 5-CPAs, or dynamic number of
CPAs

is achieved by the use of dynamic re-splitting. For
the hardest problem instances (p2=0.5) dynamic re-
splitting lowers the computational cost by a factor of
2.5.

Comparing to Asynchronous Backtracking
The performance of ConcBT can be compared to an
asynchronous algorithm for solving DisCSPs, Asyn-
chronous BackTracking (ABT ) (Yokoo2000). In the
ABT algorithm agents assign their variables asyn-
chronously, and send their assignments in ok? messages
to other agents to check against constraints. A fixed
priority order among agents is used to break conflicts.
Agents inform higher priority agents of their inconsis-
tent assignment by sending them the inconsistent par-
tial assignment in a Nogood message. In our implemen-
tation of ABT , the Nogoods are resolved and stored
according to the method presented in (Bessiere et. al.
2001). Based on Yokoo’s suggestions (Yokoo2000) the
agents read, in every step, all messages in their mailbox
before performing computation.

Figure 6: Steps performed by ConcBT and ABT on
systems with different patterns of message delays

Figure 6 presents the comparison of ConcBT to
ABT , on the same set of DisCSPs with different forms



Figure 7: Number of messages sent by ConcBT and
ABT on systems with different patterns of message de-
lay

of communication. ConcBT performs fewer steps than
ABT even on systems with no message delay. When
message delivery is not instantaneous, as in real world
systems, the performance of distributed search algo-
rithms is changed (Fernandez et. al.2002). When the
experiments are performed in a realistic scenario with
random message delays, the improvement of ConcBT
on the harder instances is by a factor of 5. With re-
spect to the number of messages sent, figure 7 shows
that ConcBT outperforms ABT by an even larger fac-
tor.

Discussion

A concurrent backtrack search algorithm (ConcBT)
with dynamic splitting has been presented. Dynamic
splits are triggered by a simple heuristic that counts
unsuccessful search steps and splits the search space
when a limit is reached. An agent that created a CPA
restarts the count each time the CPA returns to it (i.e.
backtracks). This policy has the effect of only split-
ting SPs which delay the search procedure. The ex-
periments in the previous section demonstrate that this
simple heuristic is very effective in load balancing. It
improves dramatically the efficiency of ConcBT with a
fixed number of CPAs.

Concurrent BT is a distributed search algorithm that
uses a very different mechanism than asynchronous
search. A comparison of ConcBT with ABT, on ran-
domly generated DisCSPs produces clear results: Con-
current BT with dynamic re-splitting outperforms asyn-
chronous search. The degree of improvement, in com-
putational effort, of ConcBT over ABT depends on
message delay. When message delays are random the
factor of improvement for hard instances of problems is
close to 5.

Concurrent backtracking, as proposed in the present
paper, may seem similar to former approaches of paral-
lelism. Splitting the search space at the first agent and
running several search processes for each of the values
of the first agents’ domain is part of interleaved search
in (Hamadi2001). There is, however, a major difference

between ConcBT and IDIBT (Hamadi2002). The inter-
leaved parallel search algorithm runs multiple processes
of an asynchronous search algorithm (Hamadi2002).
ConcBT runs concurrent backtrack search processes and
its protocol enables it to perform dynamic splitting
of the search space. Our experimental study shows
that dynamic splitting of the search space improves the
search by a meaningful factor, in contrast to IDIBT ,
where performance deteriorates for splits larger than
2 (Hamadi2002).
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