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Abstract 

The issue of fire propagation in cities is of obvious 
importance to Civil Authorities, but does present issues of 
computational complexity. Our basic assumption is that 
some event has occurred to disrupt the normal damage 
prevention infrastructure, i.e. the Fire Department, so that 
the fire spreads unhindered through the city. 
For the most part, the spread of fire is stopped inside the 
building by construction methods (fire glazing, fire proof 
treatment of woods etc), and the internal sprinkler systems.  
In many cities the sprinkler systems are fed by the 
municipal water supply, so should that fail due to 
catastrophic damage, buildings will burn uncontrolled.  The 
Fire Control Services are, of course, the next line of 
defense, but, given our assumption, they are incapable of 
dealing with the fire for some reason. 
We then wish to find out how fire will spread in a disaster 
situation, allowing the fire department and other civil 
authorities to combat a scenario, armed with the knowledge 
of what places are most prone to fire spread. To do this we 
wish to have some representation of cities such that we can 
measure the likelihood of fire spreading from one building 
to the next.  Therefore we must cover the physics of fire, 
and then deduce a representation that facilitates the 
calculation of the fire spread. 
However, fire, by its nature, is difficult to simulate 
accurately.  As consulted experts agreed that fire spread is a 
noisy value, due to a huge variety of factors changing the 
shape of the fire within a building (e.g., the distribution of 
fuel, heating duct, the shape of the internal structure), 
applying high accuracy operations to the problem is 
meaningless. 
To do this we wish to have some representation of cities 
such that we can measure the likelihood of fire spreading 
from one building to the next.  Therefore we must cover the 
physics1of fire, and then deduce a representation that 
facilitates the calculation of the fire spread 

Introduction 
Utilizing and harnessing fire has been one of the main 
achievements of human kind. Fire provides light, cooks 
our food, and warms our houses. However, it is also a 
potential danger, as it can destroy buildings and 
vegetation, and may cause deaths. To counter the adverse 
effects of fire, almost all cities have put measures into 
place to prevent this. Fire departments around the world 
are trained to cope with fires that get out of control—at 
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least on a limited scale. When it comes to disasters, like 
earthquakes or volcanic eruptions, fire departments often 
cannot cope adequately with the demands imposed on 
them. In situations like that, it is there-fore important to 
know how a fire spreads so that they can make the best use 
of their available resources to fight the fire. 
Three years after the 1995 earthquake in Kobe, Japan, 
researchers initiated a program called the RoboCup-Rescue 
Simulation Project (Kitano et al. 1999). The purpose of 
this project is to simulate a disaster area and the effects that 
fire outbreaks have on such an area. The latter is based on 
an intuitive model of how fire spreads over a city and 
lacks, at least up to now, a deeper understanding of the 
physical foundation of such a spread. This paper describes 
research on developing a computer model for the spread of 
fire and is related to previous research on related problems 
(Guesgen 2003). 
The scenario that we have in mind for our model is the 
following. Some event has occurred which has disrupted 
the normal damage prevention infrastructure (i.e., the fire 
department) so that the fire spreads unhindered through the 
city. For the most part, the spread of fire is stopped inside 
the building by construction methods (fire glazing, fire 
proof treatment of woods, etc.), and the internal sprinkler 
systems. 
In many cities the sprinkler systems are fed by the 
municipal water supply, so should that fail due to 
catastrophic damage, buildings will burn uncontrolled. The 
fire control services are, of course, the next line of defense. 
However, our assumption is that they are incapable of 
dealing with the fire for some reason (like it may happen in 
an earthquake situation). The purpose of the model is to 
find out how fire will spread in a disaster situation, 
allowing the fire department and other civil authorities to 
combat a scenario armed with the knowledge of what 
places are most prone to fire spread. 
To achieve this, the model requires a representation of 
cities that can be used to measure the likelihood of fire 
spreading from one building to the next. The model covers 
the physics of fire and uses a representation that facilitates 
the calculation of the fire spread. 
Although we have conducted this research according to 
New Zealand regulations and guidelines, we believe that 
the results are applicable to almost every city around the 
world. 
Regulations and guidelines may differ from country to 
country, but in essence they are very similar and share a 



common goal: to prevent the disastrous destruction of the 
urban environment by fire. 

The Physics of Fire Propagation 
The physics of fire spread has been well understood by 

physicists and engineers for some time. 
The basic physical property that causes ignition of a 

building is the radiant heat of neighboring buildings.  This 
is governed by the laws of heat transfer. For two plane 
radiators (or walls) the intensity (in kW/m2) on the cooler 
surface is given as: 

( ) ( )[ ]44
1 273273 rer TTkI +−+Φ= εσ  

1k is the “glazing factor.” For a building without fire-
proof glazing, it is assumed that the windows will fall out 
and fire will project out through the openings.  If the 
building uses fire proof glazing, the windows will stay in 
place approximately halving the fire output.  It is common 
to ignore flame projection (Buchanan, 2001). 

ε  is the emissivity, a dimensionless constant, 1.0 is a 
conservative value. 

σ  is Stefan’s constant, ( )4212 /107.56 KMkW−×  

eT and are the temperatures of the emitting and 
receiving surfaces. 

rT

Φ  is the configuration factor, this can be given exactly 
as 
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 where ,  and return degrees, 
, are the width and height respectively of the 

radiating surface, and 

RHx r 2/= RWr 2/ 1tan−

rW rH
R is the distance between the two 

radiators.  However an approximation that is often used is 

2R
HW rr

π
≈Φ  

We will show later that this approximation leads us to a 
simple method of calculating the configuration factor. 

The temperature inside a building can be given by the 
Standard Fire Curve (ISO 834)

oe TtT ++= )18log(345  
where t is the duration of the fire, in minutes, and is the 
initial temperature of the surface.  

oT

Now we wish to estimate the duration of the fire(New 
Zealand Fire Service, 2003). Since we are assuming that 
the fire occurs in a disaster situation (no municipal water, 
electricity, etc) then the duration of the fire can be found 
by  
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where cH∆ is the calorific heat value, which is generally 
about 18MJ/kg, is the mass of the fuel in the 

building (in kg), and 
fuelM

fuelQ ′′ is the heat release values of the 
fuel (in MW/m2) (New Zealand Fire Service, 2003). Some 
typical values are: 
0.5 retail 
0.25 offices 
1.0 warehouses 

fuelA is the surface area of the fuel, this normally can be 
considered to be a 1:1 ratio with the floor, except when 
there is rack storage present, but since rack storage will 
also be dependant on the floor area we can use a building 
dependant variable to reflect this. 

A building with no more fuel will cool as per Newtons 
Law of Cooling.  This of course states that a hot body 
cools in proportion to the difference between its own heat 
and the heat of the immediate environment.  The cooling 
rate can be estimated from expert experience by assuming 
that a building that peaks at a temperature of 4000K and 
cools over a period of 7 hours to 1% of its peak 
temperature thus giving the parameters to solve the first 
order  
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although it is not truly necessary to calculate cooling, since 
the adjacent building only ignites if the incident intensity is 
over a material dependant value, for cellulose based 
material this is12.5 kW/m2, for plastics 10 kW/m2, and the 
maximum intensity coincides with the maximum 
temperature. 

Typically the calculation of the heat intensity between 
tow buildings relies on the calculation of vents, that is, 
holes in the firecell here heat is emanating from.  Since we 
are working entirely from GIS data we may not have 
access to this information.  Conservatively we may assume 
that there are no vents and so no projective flames 
(Buchanan, 2001). 

Representation of Buildings 
Of course some method of representing building must be 

chosen.  This must include not only the geometry, but also 
sufficient data on the nature of the building from the 
perspective of fire physics. 

At the most complex level, the geometry of a building is 
a vertex set, or complete model. This, however, presents 
two major issues: the computation time required to 
perform the calculation and the prohibitive amount of data 
to be gathered for such a representation to store an entire 
city.  Neither of these is an issue of impossibility, rather a 
logistic issue. 

For the sake of data gathering, it would be advantageous 
to have a representation that fits easily into current GIS 
systems, such as ARC info, or GRASS (which did not 



support any form of urban representation at the time of 
writing).  As most GIS system implement a form of 
polygon for regions and the footprint of buildings, it makes 
sense to have buildings represented geometrically as a 
polygon in a plane, with an associated height value.  The 
height value will then allow us to calculate internal volume 
and the external area of the walls, for the radiation 
calculations, as well as giving us an estimate of the number 
of floors in the building, to be used in fuel calculations. 

As for modeling fire we require some information 
relevant to the simulation. Having described the physics 
laws describing the rules, we know that some 
representation of the amount of fuel will be required.  
From the physics of fire duration, we can find a suitable 
variable for this 
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therefore the building dependant variable to reflect the 
amount of fuel is the ratio of the mass of the fuel, to the 
ratio of floor area to fuel area times the peak output of the 
fuel, in units of kgM2/MW.  Why not just encode a burn 
time altogether?  This method allows us to make 
assumptions based on GIS data, and no GIS data we know 
of stores the estimated fire duration of every building in 
the city.  The floor area is the area of all floors within the 
building, since we need height in meters for the geometric 
calculations, we can find the floor area by dividing the 
height of the building by 3 (i.e., 3 meters per floor) and 
multiplying that by the area of the footprint, from the GIS 
data. 

Second, we need to know if a building will catch fire.  
The existing notion of “fire hazard categories” comes to 
our aid here.  We can define a set of values to be assigned 
to every building in the GIS.  The choice that was taken 
was five, based on the New Zealand fire code (New 
Zealand Building Industry Authority, 2001): {NONE, 
LOW, MEDIUM, HIGH, EXTREME}. Where NONE is 
any structure that will not ignite (such as a concrete water 
substation), and the others can be specified as energy per 
unit area. 

Also we need to know at which time a building began 
burning, obviously if this is during the simulation, it is set 
by the simulator.  Additionally, we may wish to force it to 
start burning at some specified time, to help us model a 
particular kind of disaster. 

This brings us to a method for representing a disaster.  
First we wish to understand what kinds of disaster are 
likely and how we might see these. 

Some conceivable fire causing disaster situations are: 
volcano, earthquake, bomb detonation or aerial 
bombardment.  Naturally, each of these will cause ignition 
at a point, therefore, a list of “ignition points” is a simple 
answer to this problem.  If we then associate a time with 
each point, it allows us to model “slow” disasters, such as 
volcanic eruptions. 

Spatio-Temporal Problems Encountered 
Now we must cover some issues of spatial 

representation before we come to our simulator. 
First we need to calculate the fire duration.  From the 

fire physics we can use the given formula, altered to  
reflect the choice of representation. For this system, we 

chose to make 
fuel

fuel

Q
M

′′⋅ρ
a building specific parameter, and 

cH∆ a global parameter. 
To calculate the intensity on a building, we need to 

consider each polygon of the emitting building interacting 
with each polygon of the receiving building (Fig. 1). 

 
Therefore, we seek some method of approximating, or 

an efficient method to calculate the configuration factor. 

 
Figure 1.  Calculating 
each polygon 

As we have the plane equation for heat intensity, we can 
use the polygonal representation to create the “visually 
apparent area” of a building from another.  We can do this 
by checking the radial separation of each vertex in a 
building from the centroid of the viewing building.   Note 
that in projecting these points from Cartesian space to 
Polar space, there is a special case if a polygon lies 
partially above and partially below the horizontal line 
defined by the Point of View.  This can be fixed by 
maximizing angles above the line and minimizing angles 
below the line. 

A quick analysis of this method shows that if the two 
buildings are adjacent and facing at an angle of 0, the 
visually apparent area will be exact to the radiating area 
(Fig. 2). However, if the buildings are not flat facing or are 
an odd shape, the approximation begins to lose its accuracy 
(Fig. 3). Ultimately there is no way of calculating the 
worse possible case of the approximation, given that 
buildings may cover any real polygon. 



 
Let us then consider adding some calculation that will 

not increase the complexity.  This can be done, since we 
have the approximate value for the configuration factor 
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As radiant heat is a wave phenomenon, it obeys the rule 
of superposition, allowing us to linearly add the intensities 
of multiple radiant faces.  We can then add the intensities 
of all the faces. 

The total incident heat is then 
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Thus we need to find the configuration factor of each 
facing line segment between the maximally separated 
points. 

To do this, we look at our polygon, a set of indexed 
points stored in a cycle.  We find which of these is closer 
to the Point of Vision, then traverse the polygon along that 
route, till we reach the last point.  For each face, we 
calculate the configuration factor, and add it to a running 
total. The calculated configuration factor can then be used 
to find the incident intensity. 

This has a complexity of O(n), and since this is 
performed this immediately after finding the separation 
angles, also O(n), it does not increased the complexity of 
finding the radiant heat. 

psuedocode to calculate the configuration factor: 
Set configuration_factor = 0 
Set current_point = point of minimum 

separation 
Set end_point = point of maximum separation 
IF the next point after current_point is 

closer than the point after it 
 Set direction to positive 
ELSE 
 Set Direction to negative 
END IF 
WHILE current_point is not end_point 
 Set next_point = the point following 

current_point in direction 
 ADD length of current_point to next_point 

/ (pi* distance from the center of the 
face to the other building) TO 
configuration_factor 

END WHILE 
Use configuration_factor to calculate 

radiant heat 

 
However, this does not work if faces overlap (Fig. 4).  

We then need to calculate which faces are facing the 
receiving building. This can be done by examining the 
angles between adjacent faces to find if the sectors they 
describe overlap from the point of view of the receiving 
building, and using a ray cast from the point of vision, and 
using the remaining part of the face it intersects. Take the 
minimum angle point, and find the next two point after it. 
If the angles of the points to the monotonically increasing, 
they do not overlap, if they are not monotonically 
increasing, then cast a ray from the point of view to the 
highest angled point of the three points being examined 

   
figure 3.Bad 
approximation for Φ 

   
figure 2. Flat-facing 
buildings 

 
Figure 4. Simple 
overlapping 

Figure 5. Complicated 
overlapping 

But this is still insufficient for complicated overlapping 
(Fig. 5).  Then the common graphics method of Binary 
Space Partition Trees (BSP-tree) (Krishnaswamy R, 1990), 
modified slightly, can be utilized to calculate the 
configuration factor. 

 
Recall that a BSP-tree is constructed by splitting 

polygons about a plane built from the point of view, and a 
vertex in the dataset, chosen to create similar sized 
polygon set. The two resulting polygon sets are further 
broken down by building a binary partition, until there are 
no vertices left with which to split the polygons.  The top 
polygon is then added as a leaf of the tree. 

Figure 6.  Split angle in 
the plane 

Figure 7. Configuration 
factor at a leaf in the 
BSP-tree 

Furthermore, since the domain is actually two-
dimensional, the binary partitioning will be performed by 
splitting the line segments across a ray from the point of 
view (Fig. 6).  The configuration factor is calculated by 
recursively applying the binary partition to the two new 
sets of line segments, and adding the two returned values 
for the configuration factor. 

For the configuration factor calculations, we do not need 
to store the tree, so we can build a recursive algorithm to 



find the configuration factor of the top line when a “leaf” 
is reached (Fig. 7). 

Pseudocode for a modified BSP tree to calculate the 
configuration factor 

IF there are only angles for all the 
polygons 

 Set current_line = any line segment 
 Set top_line = any line segment 
 FOR all polygons in the set 
  IF current_line is closer to the  

point of vision than top_line 
   Set top_line = current_line 
  END IF 
 END FOR 
 return the configuration factor of 

top_line 
ELSE 
 select the median angle 
 FOR each line 
  IF an endpoint is on the ray 
   continue 
  ELSE 
   IF the line intersects the ray 
    break the line around the angle and     

add the lines back to the list 
   END IF 
  END IF 
 END FOR 
 FOR each line 
  IF the angles are both less than or  

equal to the split angle 
    add the line to the righthand list 
  ELSE 
   add the line to the lefthand list 
  END IF 
 END FOR 
 Calculate the BSP-tree for the lefthand 

list 
 Calculate the BSP-tree for the 

righthand list 
 return the sum of the calculated 

configuration factors 
END IF 
 
This provides us with a much more accurate method for 

calculating the configuration factor of any building, and 
naturally agrees with the approximation for the 
configuration factor, given again below: 
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While this does add to the complexity, it will still be 
lower than using every face as before, since the same cases 
will have to be treated for each polygon interaction, if we 
were to not use this approximation. 

Now the treatment of some minor issues: 
Whether or not a building is adjacent to another is also 

required.  To do this simply we can check if the centroid of 
a building is within a certain distance of the centroid of 
another building.  To determine this distance, we can use 
the size of the building, by taking the distance from its 
centroid to the furthest point in its footprint from the 

centroid, and taking the distance to check for as, say, three 
times that. 

Two other problems that arise from the representation, 
and the calculation required are the need to find the area of 
a building from its polygonal information to calculate the 
burn time, and to find whether a point is inside an arbitrary 
polygon, to model our ignition scheme. 

To find if a point is inside an arbitrary polygon, we can 
use the so-called “half ray algorithm”, which operates by 
finding the number of arcs of a polygon that a ray from the 
point intersect. 

Pseudocode for the Half-Ray Algorithm: 
Set intersection_count = 0 
Cast a ray from POINT in any direction 
FOR all arcs of POLYGON 
 IF the arc intersects the ray from 

POINT 
  Increment intersection_count 
END IF 
END FOR 
IF intersection_count is even 
 POINT is outside POLYGON 
ELSE 
 POINT is inside POLYGON 
END IF 

 
We also need an efficient algorithm for the area of a 

Polygon, for which we used the following alorithm 
Pseudocode for finding the area of a polygon: 
P is as set of n points cyclically 
stored, representing a polygon 
Set P_n+1 = P_0 
Set total1 = 0 
Set total2 = 0 
FOR i = 0 to n+1 
Increment total1 by x(P_i) * 

y(P_i+1) 
Increment total2 by y(P_i) * 

x(P_i+1) 
END FOR 
Set area = (abs(total1-total2)) / 2 

The Method of the Simulation 
Now that we have a representation and can resolve the 

spatial information needed to use the physics, we can thus 
define our simulator: 

We create two lists, one to hold all the unignited 
buildings in the city, and one to hold the burning buildings. 

We also create a list of ignition points and the 
corresponding times. 

We examine each unburnt building, and take its 
immediate neighbours.  Calculate the total heat intensity 
incident on the building from all neighbouring buildings 
that are burning, then check that it has not crossed the 
threshold defined by the Fire Hazard Category. If it does, 
add this building to the list of burning Buildings 

There are no final conditions, other than an imposed 
time limit or that all existing burning buildings have 
burned out. 



The basic simulation method: 
The update cycle for the simulator is then: 
Set time = 0; 
FOR each unburnt Building 
FOR each Building adjacent to it 
IF the intensity falling on the 

building is greater than the 
tolerable amount OR the building is 
on an ignition point when that point 
fires 

Move this building from the list of 
buildings to the list of burning 
buildings 

END IF 
END FOR 
Increment time 
END FOR 

Future Possibilities 
The expected deployment of this algorithm would be in 

a decision support system for use in the field by human or 
automated fire fighters, by providing short term estimation 
of fire spread, i.e., which buildings adjacent to a current 
blaze should be evacuated first etc. Our preliminary testing 
has shown this to be a better use, as the simulation 
becomes noisy and unreliable after some time.   

A full statistical analysis of the burn rate might lead to a 
relationship between the buildings parameters (mass and 
geometry) and its cooling rate.  While this is not strictly 
necessary to the simulation, it would be useful to embed in 
a decision support system for the use of the civil fire 
authorities. 

This is sufficient to produce a simulation and the 
graphical representation of the fire as it spreads, but we 
would like to have some analysis to actually discern useful 
information about the fire.  The method of testing checks 
the percentage of the total floor area of the city that 
remains unburnt at each time step, based on the 
performance metric used in the RoboCup simulation 
(Semi-Final Rule and Evaluation for 2001 RoboCup-
Rescue Simulation Leagues).  This only gives information 
about which ignition points are more volatile. 

While this would prove useful to Civil Authorities, it is 
also possible to find which parts of the domain have a high 
propagation speed.  This could be done by logging 
information about when a building ignites, and how close 
the building that caused ignition is.  Although no method 
for inference of the “danger zones” has been suggested so 
far, it is reasonable to think that some form of statistical 
analysis could be employed to detect close points of fast 
propagation. 
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