
Physical Approximations for Urban Fire Spread Simulations

Daniel Bertinshaw and Hans W. Guesgen
Computer Science Department, University of Auckland

Private Bag 92019, Auckland, New Zealand
dber021@ec.auckland.ac.nz, hans@cs.auckland.ac.nz

Abstract

The issue of fire propagation in cities is of obvious
importance to Civil Authorities, but does present issues of
computational complexity. Our basic assumption is that
some event has occurred to disrupt the normal damage
prevention infrastructure, i.e. the Fire Department, so that
the fire spreads unhindered through the city.
For the most part, the spread of fire is stopped inside the
building by construction methods (fire glazing, fire proof
treatment of woods etc), and the internal sprinkler systems.
In many cities the sprinkler systems are fed by the
municipal water supply, so should that fail due to
catastrophic damage, buildings will burn uncontrolled. The
Fire Control Services are, of course, the next line of
defense, but, given our assumption, they are incapable of
dealing with the fire for some reason.
We then wish to find out how fire will spread in a disaster
situation, allowing the fire department and other civil
authorities to combat a scenario, armed with the knowledge
of what places are most prone to fire spread. To do this we
wish to have some representation of cities such that we can
measure the likelihood of fire spreading from one building
to the next. Therefore we must cover the physics of fire,
and then deduce a representation that facilitates the
calculation of the fire spread.
However, fire, by its nature, is difficult to simulate
accurately. As consulted experts agreed that fire spread is a
noisy value, due to a huge variety of factors changing the
shape of the fire within a building (e.g., the distribution of
fuel, heating duct, the shape of the internal structure),
applying high accuracy operations to the problem is
meaningless.
To do this we wish to have some representation of cities
such that we can measure the likelihood of fire spreading
from one building to the next. Therefore we must cover the
physics1of fire, and then deduce a representation that
facilitates the calculation of the fire spread

Introduction
Utilizing and harnessing fire has been one of the main
achievements of human kind. Fire provides light, cooks
our food, and warms our houses. However, it is also a
potential danger, as it can destroy buildings and
vegetation, and may cause deaths. To counter the adverse
effects of fire, almost all cities have put measures into
place to prevent this. Fire departments around the world
are trained to cope with fires that get out of control—at

Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

least on a limited scale. When it comes to disasters, like
earthquakes or volcanic eruptions, fire departments often
cannot cope adequately with the demands imposed on
them. In situations like that, it is there-fore important to
know how a fire spreads so that they can make the best use
of their available resources to fight the fire.
Three years after the 1995 earthquake in Kobe, Japan,
researchers initiated a program called the RoboCup-Rescue
Simulation Project (Kitano et al. 1999). The purpose of
this project is to simulate a disaster area and the effects that
fire outbreaks have on such an area. The latter is based on
an intuitive model of how fire spreads over a city and
lacks, at least up to now, a deeper understanding of the
physical foundation of such a spread. This paper describes
research on developing a computer model for the spread of
fire and is related to previous research on related problems
(Guesgen 2003).
The scenario that we have in mind for our model is the
following. Some event has occurred which has disrupted
the normal damage prevention infrastructure (i.e., the fire
department) so that the fire spreads unhindered through the
city. For the most part, the spread of fire is stopped inside
the building by construction methods (fire glazing, fire
proof treatment of woods, etc.), and the internal sprinkler
systems.
In many cities the sprinkler systems are fed by the
municipal water supply, so should that fail due to
catastrophic damage, buildings will burn uncontrolled. The
fire control services are, of course, the next line of defense.
However, our assumption is that they are incapable of
dealing with the fire for some reason (like it may happen in
an earthquake situation). The purpose of the model is to
find out how fire will spread in a disaster situation,
allowing the fire department and other civil authorities to
combat a scenario armed with the knowledge of what
places are most prone to fire spread.
To achieve this, the model requires a representation of
cities that can be used to measure the likelihood of fire
spreading from one building to the next. The model covers
the physics of fire and uses a representation that facilitates
the calculation of the fire spread.
Although we have conducted this research according to
New Zealand regulations and guidelines, we believe that
the results are applicable to almost every city around the
world.
Regulations and guidelines may differ from country to
country, but in essence they are very similar and share a

common goal: to prevent the disastrous destruction of the
urban environment by fire.

The Physics of Fire Propagation
The physics of fire spread has been well understood by

physicists and engineers for some time.
The basic physical property that causes ignition of a

building is the radiant heat of neighboring buildings. This
is governed by the laws of heat transfer. For two plane
radiators (or walls) the intensity (in kW/m2) on the cooler
surface is given as:

() ()[]44
1 273273 rer TTkI +−+Φ= εσ

1k is the “glazing factor.” For a building without fire-
proof glazing, it is assumed that the windows will fall out
and fire will project out through the openings. If the
building uses fire proof glazing, the windows will stay in
place approximately halving the fire output. It is common
to ignore flame projection (Buchanan, 2001).

ε is the emissivity, a dimensionless constant, 1.0 is a
conservative value.

σ is Stefan’s constant, ()4212 /107.56 KMkW−×

eT and are the temperatures of the emitting and
receiving surfaces.

rT

Φ is the configuration factor, this can be given exactly
as

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

++
+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++
=Φ −−

2
1

22
1

2 1
tan

11
tan

190
1

y

x

y

y

x

y

x

x

 where , and return degrees,
, are the width and height respectively of the

radiating surface, and

RHx r 2/= RWr 2/ 1tan−

rW rH
R is the distance between the two

radiators. However an approximation that is often used is

2R
HW rr

π
≈Φ

We will show later that this approximation leads us to a
simple method of calculating the configuration factor.

The temperature inside a building can be given by the
Standard Fire Curve (ISO 834)

oe TtT ++=)18log(345
where t is the duration of the fire, in minutes, and is the
initial temperature of the surface.

oT

Now we wish to estimate the duration of the fire(New
Zealand Fire Service, 2003). Since we are assuming that
the fire occurs in a disaster situation (no municipal water,
electricity, etc) then the duration of the fire can be found
by

()
()fuelfuel

fuelc
fire QA

MH
t

′′⋅

⋅∆
=

where cH∆ is the calorific heat value, which is generally
about 18MJ/kg, is the mass of the fuel in the

building (in kg), and
fuelM

fuelQ ′′ is the heat release values of the
fuel (in MW/m2) (New Zealand Fire Service, 2003). Some
typical values are:
0.5 retail
0.25 offices
1.0 warehouses

fuelA is the surface area of the fuel, this normally can be
considered to be a 1:1 ratio with the floor, except when
there is rack storage present, but since rack storage will
also be dependant on the floor area we can use a building
dependant variable to reflect this.

A building with no more fuel will cool as per Newtons
Law of Cooling. This of course states that a hot body
cools in proportion to the difference between its own heat
and the heat of the immediate environment. The cooling
rate can be estimated from expert experience by assuming
that a building that peaks at a temperature of 4000K and
cools over a period of 7 hours to 1% of its peak
temperature thus giving the parameters to solve the first
order

203980)(

40)420(,4000)0(),()('
0126.0 +=⇒

==−−=
− tety

yyTtkty

although it is not truly necessary to calculate cooling, since
the adjacent building only ignites if the incident intensity is
over a material dependant value, for cellulose based
material this is12.5 kW/m2, for plastics 10 kW/m2, and the
maximum intensity coincides with the maximum
temperature.

Typically the calculation of the heat intensity between
tow buildings relies on the calculation of vents, that is,
holes in the firecell here heat is emanating from. Since we
are working entirely from GIS data we may not have
access to this information. Conservatively we may assume
that there are no vents and so no projective flames
(Buchanan, 2001).

Representation of Buildings
Of course some method of representing building must be

chosen. This must include not only the geometry, but also
sufficient data on the nature of the building from the
perspective of fire physics.

At the most complex level, the geometry of a building is
a vertex set, or complete model. This, however, presents
two major issues: the computation time required to
perform the calculation and the prohibitive amount of data
to be gathered for such a representation to store an entire
city. Neither of these is an issue of impossibility, rather a
logistic issue.

For the sake of data gathering, it would be advantageous
to have a representation that fits easily into current GIS
systems, such as ARC info, or GRASS (which did not

support any form of urban representation at the time of
writing). As most GIS system implement a form of
polygon for regions and the footprint of buildings, it makes
sense to have buildings represented geometrically as a
polygon in a plane, with an associated height value. The
height value will then allow us to calculate internal volume
and the external area of the walls, for the radiation
calculations, as well as giving us an estimate of the number
of floors in the building, to be used in fuel calculations.

As for modeling fire we require some information
relevant to the simulation. Having described the physics
laws describing the rules, we know that some
representation of the amount of fuel will be required.
From the physics of fire duration, we can find a suitable
variable for this

()
() fuel

fuel

floor

c

fuelfuel

fuelc
fire Q

M
A

H
QA
MH

t
′′⋅

⋅
∆

=
′′⋅

⋅∆
=

ρ

therefore the building dependant variable to reflect the
amount of fuel is the ratio of the mass of the fuel, to the
ratio of floor area to fuel area times the peak output of the
fuel, in units of kgM2/MW. Why not just encode a burn
time altogether? This method allows us to make
assumptions based on GIS data, and no GIS data we know
of stores the estimated fire duration of every building in
the city. The floor area is the area of all floors within the
building, since we need height in meters for the geometric
calculations, we can find the floor area by dividing the
height of the building by 3 (i.e., 3 meters per floor) and
multiplying that by the area of the footprint, from the GIS
data.

Second, we need to know if a building will catch fire.
The existing notion of “fire hazard categories” comes to
our aid here. We can define a set of values to be assigned
to every building in the GIS. The choice that was taken
was five, based on the New Zealand fire code (New
Zealand Building Industry Authority, 2001): {NONE,
LOW, MEDIUM, HIGH, EXTREME}. Where NONE is
any structure that will not ignite (such as a concrete water
substation), and the others can be specified as energy per
unit area.

Also we need to know at which time a building began
burning, obviously if this is during the simulation, it is set
by the simulator. Additionally, we may wish to force it to
start burning at some specified time, to help us model a
particular kind of disaster.

This brings us to a method for representing a disaster.
First we wish to understand what kinds of disaster are
likely and how we might see these.

Some conceivable fire causing disaster situations are:
volcano, earthquake, bomb detonation or aerial
bombardment. Naturally, each of these will cause ignition
at a point, therefore, a list of “ignition points” is a simple
answer to this problem. If we then associate a time with
each point, it allows us to model “slow” disasters, such as
volcanic eruptions.

Spatio-Temporal Problems Encountered
Now we must cover some issues of spatial

representation before we come to our simulator.
First we need to calculate the fire duration. From the

fire physics we can use the given formula, altered to
reflect the choice of representation. For this system, we

chose to make
fuel

fuel

Q
M

′′⋅ρ
a building specific parameter, and

cH∆ a global parameter.
To calculate the intensity on a building, we need to

consider each polygon of the emitting building interacting
with each polygon of the receiving building (Fig. 1).

Therefore, we seek some method of approximating, or

an efficient method to calculate the configuration factor.

Figure 1. Calculating
each polygon

As we have the plane equation for heat intensity, we can
use the polygonal representation to create the “visually
apparent area” of a building from another. We can do this
by checking the radial separation of each vertex in a
building from the centroid of the viewing building. Note
that in projecting these points from Cartesian space to
Polar space, there is a special case if a polygon lies
partially above and partially below the horizontal line
defined by the Point of View. This can be fixed by
maximizing angles above the line and minimizing angles
below the line.

A quick analysis of this method shows that if the two
buildings are adjacent and facing at an angle of 0, the
visually apparent area will be exact to the radiating area
(Fig. 2). However, if the buildings are not flat facing or are
an odd shape, the approximation begins to lose its accuracy
(Fig. 3). Ultimately there is no way of calculating the
worse possible case of the approximation, given that
buildings may cover any real polygon.

Let us then consider adding some calculation that will

not increase the complexity. This can be done, since we
have the approximate value for the configuration factor

2R
HW rr

π
≈Φ

As radiant heat is a wave phenomenon, it obeys the rule
of superposition, allowing us to linearly add the intensities
of multiple radiant faces. We can then add the intensities
of all the faces.

The total incident heat is then
() ()[]

() ()[] ∑
∑

Φ⋅+−+=

+−+Φ=

i
ire

i
reir

TTk

TTkI

44
1

44
1

273273

273273

εσ

εσ

Thus we need to find the configuration factor of each
facing line segment between the maximally separated
points.

To do this, we look at our polygon, a set of indexed
points stored in a cycle. We find which of these is closer
to the Point of Vision, then traverse the polygon along that
route, till we reach the last point. For each face, we
calculate the configuration factor, and add it to a running
total. The calculated configuration factor can then be used
to find the incident intensity.

This has a complexity of O(n), and since this is
performed this immediately after finding the separation
angles, also O(n), it does not increased the complexity of
finding the radiant heat.

psuedocode to calculate the configuration factor:
Set configuration_factor = 0
Set current_point = point of minimum

separation
Set end_point = point of maximum separation
IF the next point after current_point is

closer than the point after it
 Set direction to positive
ELSE
 Set Direction to negative
END IF
WHILE current_point is not end_point
 Set next_point = the point following

current_point in direction
 ADD length of current_point to next_point

/ (pi* distance from the center of the
face to the other building) TO
configuration_factor

END WHILE
Use configuration_factor to calculate

radiant heat

However, this does not work if faces overlap (Fig. 4).

We then need to calculate which faces are facing the
receiving building. This can be done by examining the
angles between adjacent faces to find if the sectors they
describe overlap from the point of view of the receiving
building, and using a ray cast from the point of vision, and
using the remaining part of the face it intersects. Take the
minimum angle point, and find the next two point after it.
If the angles of the points to the monotonically increasing,
they do not overlap, if they are not monotonically
increasing, then cast a ray from the point of view to the
highest angled point of the three points being examined

figure 3.Bad
approximation for Φ

figure 2. Flat-facing
buildings

Figure 4. Simple
overlapping

Figure 5. Complicated
overlapping

But this is still insufficient for complicated overlapping
(Fig. 5). Then the common graphics method of Binary
Space Partition Trees (BSP-tree) (Krishnaswamy R, 1990),
modified slightly, can be utilized to calculate the
configuration factor.

Recall that a BSP-tree is constructed by splitting

polygons about a plane built from the point of view, and a
vertex in the dataset, chosen to create similar sized
polygon set. The two resulting polygon sets are further
broken down by building a binary partition, until there are
no vertices left with which to split the polygons. The top
polygon is then added as a leaf of the tree.

Figure 6. Split angle in
the plane

Figure 7. Configuration
factor at a leaf in the
BSP-tree

Furthermore, since the domain is actually two-
dimensional, the binary partitioning will be performed by
splitting the line segments across a ray from the point of
view (Fig. 6). The configuration factor is calculated by
recursively applying the binary partition to the two new
sets of line segments, and adding the two returned values
for the configuration factor.

For the configuration factor calculations, we do not need
to store the tree, so we can build a recursive algorithm to

find the configuration factor of the top line when a “leaf”
is reached (Fig. 7).

Pseudocode for a modified BSP tree to calculate the
configuration factor

IF there are only angles for all the
polygons

 Set current_line = any line segment
 Set top_line = any line segment
 FOR all polygons in the set
 IF current_line is closer to the

point of vision than top_line
 Set top_line = current_line
 END IF
 END FOR
 return the configuration factor of

top_line
ELSE
 select the median angle
 FOR each line
 IF an endpoint is on the ray
 continue
 ELSE
 IF the line intersects the ray
 break the line around the angle and

add the lines back to the list
 END IF
 END IF
 END FOR
 FOR each line
 IF the angles are both less than or

equal to the split angle
 add the line to the righthand list
 ELSE
 add the line to the lefthand list
 END IF
 END FOR
 Calculate the BSP-tree for the lefthand

list
 Calculate the BSP-tree for the

righthand list
 return the sum of the calculated

configuration factors
END IF

This provides us with a much more accurate method for

calculating the configuration factor of any building, and
naturally agrees with the approximation for the
configuration factor, given again below:

2R
Ar

π
=Φ

While this does add to the complexity, it will still be
lower than using every face as before, since the same cases
will have to be treated for each polygon interaction, if we
were to not use this approximation.

Now the treatment of some minor issues:
Whether or not a building is adjacent to another is also

required. To do this simply we can check if the centroid of
a building is within a certain distance of the centroid of
another building. To determine this distance, we can use
the size of the building, by taking the distance from its
centroid to the furthest point in its footprint from the

centroid, and taking the distance to check for as, say, three
times that.

Two other problems that arise from the representation,
and the calculation required are the need to find the area of
a building from its polygonal information to calculate the
burn time, and to find whether a point is inside an arbitrary
polygon, to model our ignition scheme.

To find if a point is inside an arbitrary polygon, we can
use the so-called “half ray algorithm”, which operates by
finding the number of arcs of a polygon that a ray from the
point intersect.

Pseudocode for the Half-Ray Algorithm:
Set intersection_count = 0
Cast a ray from POINT in any direction
FOR all arcs of POLYGON
 IF the arc intersects the ray from

POINT
 Increment intersection_count
END IF
END FOR
IF intersection_count is even
 POINT is outside POLYGON
ELSE
 POINT is inside POLYGON
END IF

We also need an efficient algorithm for the area of a

Polygon, for which we used the following alorithm
Pseudocode for finding the area of a polygon:
P is as set of n points cyclically
stored, representing a polygon
Set P_n+1 = P_0
Set total1 = 0
Set total2 = 0
FOR i = 0 to n+1
Increment total1 by x(P_i) *

y(P_i+1)
Increment total2 by y(P_i) *

x(P_i+1)
END FOR
Set area = (abs(total1-total2)) / 2

The Method of the Simulation
Now that we have a representation and can resolve the

spatial information needed to use the physics, we can thus
define our simulator:

We create two lists, one to hold all the unignited
buildings in the city, and one to hold the burning buildings.

We also create a list of ignition points and the
corresponding times.

We examine each unburnt building, and take its
immediate neighbours. Calculate the total heat intensity
incident on the building from all neighbouring buildings
that are burning, then check that it has not crossed the
threshold defined by the Fire Hazard Category. If it does,
add this building to the list of burning Buildings

There are no final conditions, other than an imposed
time limit or that all existing burning buildings have
burned out.

The basic simulation method:
The update cycle for the simulator is then:
Set time = 0;
FOR each unburnt Building
FOR each Building adjacent to it
IF the intensity falling on the

building is greater than the
tolerable amount OR the building is
on an ignition point when that point
fires

Move this building from the list of
buildings to the list of burning
buildings

END IF
END FOR
Increment time
END FOR

Future Possibilities
The expected deployment of this algorithm would be in

a decision support system for use in the field by human or
automated fire fighters, by providing short term estimation
of fire spread, i.e., which buildings adjacent to a current
blaze should be evacuated first etc. Our preliminary testing
has shown this to be a better use, as the simulation
becomes noisy and unreliable after some time.

A full statistical analysis of the burn rate might lead to a
relationship between the buildings parameters (mass and
geometry) and its cooling rate. While this is not strictly
necessary to the simulation, it would be useful to embed in
a decision support system for the use of the civil fire
authorities.

This is sufficient to produce a simulation and the
graphical representation of the fire as it spreads, but we
would like to have some analysis to actually discern useful
information about the fire. The method of testing checks
the percentage of the total floor area of the city that
remains unburnt at each time step, based on the
performance metric used in the RoboCup simulation
(Semi-Final Rule and Evaluation for 2001 RoboCup-
Rescue Simulation Leagues). This only gives information
about which ignition points are more volatile.

While this would prove useful to Civil Authorities, it is
also possible to find which parts of the domain have a high
propagation speed. This could be done by logging
information about when a building ignites, and how close
the building that caused ignition is. Although no method
for inference of the “danger zones” has been suggested so
far, it is reasonable to think that some form of statistical
analysis could be employed to detect close points of fast
propagation.

Acknowledgements
We would like to acknowledge the generous support

provided by the following people and groups:
• The New Zealand Fire Department

• Simon Davis, Auckland Regional Fire Engineer.
• Auckland University RocoCup Rescue Team
• Dr Mike Barley, Computer Science Department,

University of Auckland.
• The Association for Computing Machinery
• Delorie Software, www.delorie.com

References

Buchanan, A. H. 2001. Fire engineering design guide:
Centre for Advanced Engineering, University of
Canterbury
Guesgen, H. 2003. When regions start to move. In Proc.
FLAIRS-03, 465–469.

ISO 834-1. 1999.
Kitano, H.; Tadokoro, S.; Noda, I.; Matsubara, H.;
Takahashi, T.; Shinjoh, A.; and Shimada, S. 1999.
RoboCup Rescue: Search and rescue in large-scale
disasters as a domain for autonomous agents research. In
Proc. IEEE InternationalConference on Systems, Man and
Cybernetics, volume VI, 739–743.
Krishnaswamy, R; Alijani G; Su, S, 1990, On the
Construction of Binary Space Partition Trees, Proceedings
of the 1990 ACM annual conference on Cooperation

New Zealand Fire Service, 2003, Fire Fighting Code of
Practice

New Zealand Building Industry Authority, 2001, Building
Amendment Regulations Section C, Fire Safety

Semi-Final Rule and Evaluation for 2001 RoboCup-
Rescue Simulation Leagues, 2001

