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Abstract
This  linguistically  motivated  work  addresses  issues  in
reasoning intelligently  over spatial descriptions of simple,
static scenes to produce plausible graphical interpretations.
It  uses a combined representation that couples a semantic
network for explicit  knowledge with a knowledge base of
frames  for  implicit  knowledge.   The  knowledge  base
contains generalized rules for interpreting what objects are
and how they should and should not  be interpreted alone
and in spatial interrelationships.  The linguistic emphasis is
on  the  semantics  and  pragmatics  of  underspecification,
vagueness,  uncertainty,  and  context  in  reasoning  over
spatial language and knowledge.

Introduction 

Given a simple English description of a real-world scene,
for  instance,  a dog is in front of  a cat  and near a tree,
anyone can easily formulate a corresponding mental image
or model.  The description itself explicitly contributes only
a tiny fraction of the details that such an image contains.
In  fact,  most  of  the  details  come  from  an  implicit,
commonsense  understanding  of  the  objects  in  the  scene
and how they can and cannot be realistically depicted in
three-dimensional space (among other things).

Limited spatial reasoning of this type is the goal of this
work, which uses a simple representation of a description
in conjunction with a relatively simple knowledge base of
relevant  details  to  define  the  form  of  a  valid  solution.
From this form,  a  basic constraint  satisfaction algorithm
generates  any  number  of  corresponding  interpretations
with plausible  positions  and  orientations  for  the  objects.
Such solutions can directly support many applications that
use  or  could  benefit  from  natural  language  like  text
understanding,  machine  translation,  question-and-answer
systems,  query  interfaces  to  databases,  search  engines,
user-friendly tools for graphics and animation, and so on
(Srihari 1994).

Spatial  reasoning,  like  most  intelligent  processes,  is  a
difficult computational task to emulate despite its apparent
simplicity  and  straightforward  nature.   As  Herskovits
(1986)  concludes,  “[a]  computational  treatment  … will
require  much  greater  sophistication  than  naive
representation  theory  would  lead  us  to  expect.”   What
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makes  the  problem  especially  troublesome  is  that
computers lack the vast storehouse of intricate knowledge
that  humans possess and the amazing  abilities to reason
intelligently  over  it.   This  work  addresses  the  primary,
relevant  aspects  of  these  issues  in  terms  of  what  to
represent, how to represent it, and when and how to use it.

Background
The knowledge representation for the explicit and implicit
details  of  a  description  in  this  linguistically  motivated
work addresses shared issues in language and the spatial
world.  Language plays a key role in such research because
it closely reflects human perception and understanding of
the spatial world (Johnson-Laird 1983,  Langacker 1987).
In  particular,  four  major  issues  are  the  focus.   First,
underspecification,  or  the  lack  of  complete  details  in  a
description,  requires  background  or  so-called  world
knowledge to fill in the gaps in its interpretation.  Second,
vagueness, or the imprecise nature of descriptions, requires
knowledge that defines a range of possible interpretations.
Third,  uncertainty,  or  the  lack  of  commitment  to  a
particular interpretation, requires knowledge of tendencies
or preferences over this range.  And fourth, context, or the
different interpretation of objects in certain combinations
with  each  other,  requires  knowledge  to  identify  such
patterns and define the differences.

These linguistic issues map to the primary spatial issue
of interest:  the valid and preferred spatial behaviors of the
objects in a description,  specifically  the interpretation of
their  positions  and  orientations  with  respect  to  three
contextually  determined  frames  of  reference  (Herskovits
1986,  Claus  et  al.  1988,  Olivier  and  Tsujii  1994).   The
intrinsic  (or  object-centered)  frame  generally  applies  to
objects that have a canonical front; e.g., in front of the dog
means some position in line outward from its face.  The
extrinsic (or environment-centered) frame and the deictic
(or viewer-centered) frame are generally the opposite case
for objects without a canonical front; e.g.,  in front of the
tree means in line outward from it to another position in
the world that establishes a virtual front.  In the extrinsic
frame, this reference position is arbitrary; e.g.,  in front of
the tree as seen from the lake.  In the deictic frame, which
is a specialized case of the extrinsic frame, it is the (usually
implicit) position of the viewer; e.g., in front of the tree (as



seen by the viewer in the north looking south).  For space
reasons, this paper discusses only the implicit and deictic
frames.

Table 1 shows the 25 relations for the spatial behaviors
of interest.  Each is of the binary form xRy, where x and y
are  objects  and  R is  a  relation  of  position,  distance,  or
orientation.  Most static, spatial prepositions in English fall
into these classes (Freeman 1975, Bennet 1975, Herskovits
1986, Hill 1982, Talmy 1983, and Hawkins 1984).  This
research  addresses  through  the  same  formalisms  an
additional 19 in several other classes that are beyond the
scope of this paper.

Class Relations

Position

in-front-of in-front-left-of
in-back-of in-front-right-of
left-of in-back-left-of
right-of in-back-right-of
north-of northeast-of
south-of northwest-of
east-of southeast-of
west-of southwest-of

Distance

inside
outside
adjacent-to
near
midrange-from
far-from
at-fringe-of

Orientation facing
facing-away-from

Table 1:  Spatial Relations

The  underspecified,  vague,  uncertain  nature  of  typical
descriptions  lacks  the  preciseness  that  a  quantitative  or
absolute,  numerical  approach  to  spatial  reasoning  would
require (Kuipers 1978); e.g., the cat is 3.0 meters bearing
45.0  degrees  from  the  dog  that  is  located  at  world
coordinate  20,10.   This  work,  like  most  linguistically
motivated work, adopts a qualitative approach that reasons
in  terms  of  more  natural,  relative  constraints  (Mukerjee
1998);  e.g.,  the  cat  is  northeast  of  and  near  the  dog.
Specifically, it employs a  geometric approach to intersect
two-dimensional regions that are similar to Venn diagrams.
The end-to-end processing of a description decomposes it
into  its  components  to  determine  the  contextually
appropriate, individual geometric constraints that, together,
declaratively  specify  to  the  spatial  reasoning  engine  the
form  of  valid  and  preferred  interpretations  to  generate.
These  descriptions--in  fact,  generally  most  descriptions--
do  not  require  the  significantly  more  complex
expressiveness  of  true  three-dimensional  reasoning  (Xu,
Stewart, and Fiume 2002).

Despite  the  potential  of  such  research,  very  few
contemporary  systems  exist  (Wahlster  1996).   CarSim
(Dupuy et al. 2001) focuses on graphically rendering the
results  of  vehicle  collisions  based  on  accident  reports.
WordsEye  (Coyne  and  Sproat  2001),  the  closest  to  this

work,  focuses  on  depicting  appropriate  static  poses  for
actions.   Although  both  address  text  understanding  and
employ various degrees of knowledge representation, they
focus more on producing the graphical results and less on
investigating  the  underlying  linguistic  and  knowledge
issues.  In fact, most systems that do spatial layout take a
purely geometric approach and do not rely on knowledge
at all (Xu, Stewart, and Fiume 2002, Yamada 1993).

Knowledge Representation
A description  in  this work  consists of  nouns,  adjectives,
prepositions,  and  various  glue  words  like  determiners,
conjunctions, and the copular verb is.  This paper does not
address the adjectives, which play a related spatial role in
the  contextually  appropriate  determination  of  size.   The
nouns  must  refer  to  concrete,  physical  objects  that  are
customarily  present within the scenario of a zoo.  Aside
from the obvious visual appeal, animals and plants exhibit
a variety of interesting spatial behaviors across their shape,
size, capabilities, etc.  The prepositions are the relations in
Table 1 with determiners and conjunctions for readability
and without the hyphens; e.g.,  in front and left of and  at
the fringe of.

As in most related systems (except Dupuy et  al. 2001),
descriptions are manually fabricated rather than acquired
from existing sources  to  eliminate troublesome issues  in
parsing that are outside the scope of investigation.  They
must also refer to static scenes only, which is a common
limitation  due  to  the  complexities  of  verb  interpretation,
movement,  time  dependencies,  the  frame  problem,  etc.
(Adorni,  Di  Manzo,  and  Giunchiglia  1984,  Sowa  1991,
Srihari 1994, Coyne and Sproat 2001).

Explicit Knowledge
The  representation  of  the  explicit  knowledge  in  a
description  uses  a  straightforward  semantic  network  of
object nodes, attribute nodes, and relation arcs, which map
closely  to  its  nouns,  adjectives,  and  prepositions,
respectively (Sowa 1991).   Each object  node refers  to a
single object in the description.  Each directed arc specifies
a  binary  relation  that  refers  to  both  a  constraint  and  a
context from its source object to its target object.  Figure 1
depicts  the  semantic  network  for  the  example  to  carry
throughout the remainder  of this paper:   the rabbit  is in
front of, near, and facing the giraffe.

Implicit Knowledge
The explicit knowledge in the semantic network supplies
only  the  syntactic  framework  for  its  interpretation.
Nothing in it defines the context-independent semantics of
what the rabbit and the giraffe are or the context-dependent
pragmatics of what it means for one to be in front of the

Figure 1:  Semantic Network
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other,  and  so  on.   For  humans,  this  implicit knowledge
comes from an acquired understanding of the world.

The  knowledge  base  is  an  inheritance  hierarchy  of
frames that provide background details on how to interpret
the object nodes and relation arcs in various contexts.  This
formalism  is  advantageous  because  it  independently
encapsulates  declarative,  prototypical  definitions  or
concepts for each object that may appear in a description
(Sowa 1991).

An inheritance hierarchy is analogous to a taxonomy of
the  plant  and  animal  kingdom,  which  organizes  its
concepts according to similar morphology and physiology.
Each concept shares the definitions of all its ancestors but
extends  or  refines  them  somehow  to  become  a  more
specific  subconcept;  e.g.,  a  dog  is  a  canine,  which  is  a
carnivore, which is a mammal, which is a vertebrate, and
so  on.   As  this  work  uses  various  animals  for
representative  concepts,  a  natural  organization  for  the
knowledge base mirrors this real-world taxonomy.

1
  It also

deflects a common criticism of knowledge-based systems
that ad hoc structures have no realistic connection with the
real world (Mahesh 1996).

The underlying  zoological hierarchy does not take into
account  spatial  behavior,  which  has  a  significantly
different  and  remarkably  simpler  organization.   For
example, horses, zebras, camels, and llamas all belong to
different branches of this hierarchy, but they actually share
the same spatial behaviors in terms of their general  size,
shape,  presence  of  a  canonical  front,  and  so  on.   To
capitalize on this observation,  a separate hierarchy maps
17  spatial  concepts  onto the 79 animals currently  in the
zoological hierarchy.  Figure 2 illustrates the notion of this
shared hierarchy.  The solid nodes define animals, and the
dashed nodes define spatial behaviors.

Concepts  may  have  more  than  one  parent  from  each
hierarchy; e.g., A2 inherits from A1 as well as from S2 and
S3.   This  multiple  inheritance  further  simplifies  the
organization  through  unrestricted  sharing  and  combining
of  concepts  (Mahesh  1996).   Such  flexibility  does

1 It  omits  many  irrelevant  distinctions,  however;  e.g.,
phylum, class, order, etc.  Also, its concepts define no
zoological information.

introduce the possibility of conflicts between contradictory
or  incompatible  definitions,  but  the  shallowness  of  the
spatial  hierarchy  and  the  relatively  disjoint  nature  of  its
concepts seem to mitigate this problem.

Combined Representation
The  knowledge  base  addresses  the  problem  of
underspecification  by  augmenting  the  explicit  syntactic
knowledge of the semantic network with implicit semantic
knowledge.  The mechanism is simple:  each object node
in the semantic network links to its corresponding concept
node in the knowledge base as Figure 3 demonstrates.

This combined representation is useful because each object
node  has  access  to  the  implicit  spatial  definitions  of  its
concept node, which includes all the inherited definitions
as well.  The basis of the linked representation in this work
derives from previous work on the Mikrokosmos project
for knowledge-based machine translation (Mahesh 1996).
It  used  a  similar  structure  as  a  rich,  interconnected  text
meaning  representation  for  semantic  and  pragmatic
analysis. 

Contextual Interpretation
The knowledge base addresses the problem of context by
conditionally  applying  definitions  for  default  and  non-
default  interpretations.   A  default  interpretation  occurs
when an object node is either not part of a relationship or
no  other  objects  in  any  of  its  relationships  affect  its
prototypical,  spatial  behavior.   For  example,  there  is  a
hippo instantiates  a  particular  hippo that  has  no
justification to differ from a standard, “generic”  hippo.
Similarly, the hippo is in the zoo states an inert relationship
that  generally  imparts  no  different  interpretation  on  this
hippo than  it  would  on  any  other.   In  other  words,  a
default interpretation is independent of context and reflects
the semantics of a concept.

A non-default interpretation is the complementary case.
For  example,  the  hippo  is  in  the  corral implies  that  its
body is on the surface of world; whereas the hippo is in the
lake implies that it is below the surface.  The appropriate

Figure 3:  Semantic Network Linked to Knowledge Base
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vertical interpretation is critical and certainly not arbitrary
or interchangeable for a hippo!  On the other hand, either
is acceptable for the duck is in the lake.  In other words, a
non-default  interpretation  is  dependent  on  context  and
reflects the pragmatics of a concept.

This  work  employs  two  mechanisms  to  identify  such
contextual  patterns  for  any  concept.   The  first  is  by
association, which triggers on specific target concepts in a
relationship.   The  specification  can  be  extensional  by
exhaustively  listing  all  the  concepts  that  have  the  same
spatial  effect  on  the  source  concept;  e.g.,  lake,  pond,
and  pool.   It  can also be intensional  by  indicating  the
branch  of  the  hierarchy  that  subsumes  the  individual
concepts; e.g.,  body-of-water.   This form eliminates
the need to enumerate all concepts that are equivalent in a
certain  respect.   It  also  simplifies  maintenance  and
expansion of the knowledge base because the list does not
require updating if new, equivalent concepts are added to
the knowledge base; e.g., river, stream.

The  second mechanism is by  conditional  dependency,
which triggers on specific properties inside the definitions
of  other  concepts  in  a  relationship.   The  frame-based
formalism  of  definitions  uses  a  traditional  slot-filler
structure  to  associate  values  with  properties  arbitrarily
(Sowa 1991).   The  most  common  is  the  boolean  has-
canonical-front,  which  helps  resolve  issues  with
frame of reference.  For example, the interpretation of x in
front  of  y depends  on  whether  y indicates  that  it  has  a
canonical front.

Spatial Reasoning by Constraint Satisfaction
The goal  of  contextual  interpretation  over  the combined
representation  of  explicit  and  implicit  knowledge  in  a
description  is  to  build  a  collection  of  spatial  constraints
that limit the valid, contextually appropriate positions and
orientations  for  the  graphical  rendering  of  the  objects.
Satisfying  these  constraints  thus  inherently  produces  a
valid  interpretation,  which  is  a  common  approach  for
spatial reasoning (Mukerjee 1998).

Field Constraints
The unified formalism for constraints in this work is a top-
view,  polar  projection  of  two-dimensional,  geometric
fields that surround every object.  It is similar in form to
potential  fields  in other  work  (Yamada  et  al.  1992,
Yamada 1993,  Gapp 1994,  Olivier  and Tsujii 1994).   It
differs  primarily  in  the  two complementary  levels  of  its
definition and in its contextual interpretation with concepts
and relations.  

The  first  half  of  a  field  definition  addresses  the
geometry,  which  constrains  where  others  object  must
appear  with  respect  to  the  relation  that  uses  it.   For
example, Figure 4a shows a geometry for a  front field,
to  which  the  position  relation  in-front-of and
orientation  relation  facing typically  bind.   Similarly,
Figure  4b  shows a  near field  for  the  distance  relation
near.    Although  any  combination  of  cells  on  the

projection is available,  this work finds that all 44 of the
relations it  currently  defines  bind to minor variations on
wedges and rings only.  

The  second  half  of  a  field  definition  addresses  the
topography, which overlays a probability distribution onto
the geometry.  Figure 5 shows which positions in Figure 4
are  more  consistent  with  an  interpretation.   This  level
reflects  the  “scruffy”  nature  of  spatial  relations  due  to
vagueness  and  uncertainty:   positions  in  the  center  of
perceptual  focus  are  more  probable  than  those  at  the
periphery (Mukerjee 1998, Johnson-Laird 1983).  In terms
of spatial inferences, the geometry of a field sanctions the
positions that are legal, and the topography recommends a
subset that are contextually preferred (Davis, Shrobe, and
Szolovits 1993).

The relations in most descriptions interact to constrain
the  interpretation  of  objects  further  (Herskovits  1986).
Fields  easily  accommodate  such  compositional  behavior
through  simultaneous intersection over  the geometry and
topography.  Figure 6 illustrates for the front and near
fields the intersection that corresponds to the prepositional
phrase in front of and near.

Two  important  factors  play  a  role  in  the  contextual
application of fields.  The first is frame of reference.  For
any concept  with a canonical  front,  the default  frame of
reference is intrinsic; i.e., anything in front of it is in line
with the direction it is facing.  A field reflects this spatial

Figure 4:  Geometry of Wedge and Ring Fields

Figure 5:  Topography on Wedge and Ring Fields

Figure 6:  Intersection of front and near Fields
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behavior by rotating itself so that its arrow aligns with the
orientation of the object at its center (or vice versa).  Thus,
its  front field aligns with this direction, and its  back,
left,  and  right fields respectively align 180 degrees,
90  degrees  counterclockwise,  and  90  degrees  clockwise
from it.   On the  other  hand,  for  any  concept  without  a
canonical front, the default reference frame is deictic; i.e.,
anything  in  front  of  it  is  in  line  between  itself  and  the
viewer.  In this case, the arrow aligns to the position of the
viewer.   Finally,  all concepts support  compass directions
for  relations  like  north-of,  south-of,  etc.   In  this
case, the arrow always aligns to north, or top dead center.  

The  second  factor  is  scale.   It  receives  only  brief
mention here because it relies on the size of objects, which
this  paper  does  not  address.   In  general,  the  contextual
interpretation  of  distance  depends  on  the  size  of  the
reference object at the center of a field (Olivier and Tsujii
1994).  In other words, what is near for a giraffe is far for
a rabbit.   The diameter of fields reflects this behavior as
Figure 7 shows.

Constraint Satisfaction
The  constraint  propagator  finds  valid  solutions  for  the
various spatial behaviors that fields define.  It does so by
calculating discrete values for the position and orientation
of every object in the semantic network such that all their
values  simultaneously  satisfy  all  their  field  constraints.
This  process  uses  randomization  over  the  probability
distributions in the field topographies.  As such, it does not
produce the same result for  multiple runs over  the same
description.   This  nondeterministic  behavior  addresses
uncertainty because there are an infinite number of valid
interpretations  for  any  description  (Srihari  1994).   The
geographies guarantee that any solution is valid,  and the
topographies attempt to bias them toward more likely (or
less controversial) interpretations.

The  constraint  propagator  is  a  modular  component  of
this work.   Its  implementation  is  by no means the most
appropriate or efficient, and a better version could replace
it  easily.   The  justification  for  this  rather  brute-force
approach  is  two-fold.   First,  this  work  “intelligently”
addresses  all  its  stated issues of  spatial  reasoning  in  the
preceding  stages;  now  it  just  mechanically  fills  in  the
blanks,  so  to  speak.   Second,  most  descriptions  are
relatively simple in their number of objects and relations
because  the  human  mind  has  limitations  (Johnson-Laird
1983).

The objects  in a description  form a semantic  network
according to their relation arcs.  This network is inherently
a dependency graph that defines how the objects constrain
each other.  Objects that are neither directly nor indirectly
interconnected  form  separate  semantic  networks  that
cannot interfere with each other;

2
 e.g.,  the dog is near the

cat  and  the  giraffe  is  facing  the  lake.   The  constraint

2 Except  if  objects  violate  the  global  noninterpenetration
constraint by invalidly embedding in each other.  It is valid to
embed in a container object like a corral but not in a giraffe!

propagator  can  solve  these  constraints  independently.
Thus,  at  the  top-level,  it  employs  a  divide-and-conquer
strategy over one or more disjoint semantic networks.

The next level involves a greedy strategy to solve the
constraints  for  all  objects  in  the  current  network.   It
recursively  processes  every  pair  of  objects  that  form  a
relationship.   It  employs  the  following  (oversimplified)
heuristics based on whether their position and orientation
are set:

1. If neither object is set, solve the one with the most
constraints first, then the other.

2. If one is set, solve the other.
3. If both are set and satisfy all constraints between

them, then they are done.
4. If  both  are  set  and  violate  a  constraint  between

them, unset them and start over at an earlier pair.

The restart  mechanism uses backtracking.   In  Rule 4,  it
would re-solve the previous pair first then return to the pair
that failed.   If  this pair failed again, it  would repeat this
process  on  it  an  arbitrary  number  of  times  before
abandoning it for the previous pair of its previous pair, and
so on.

Discussion and Summary
Figure 7 shows a representative solution for the rabbit (R)
is  in  front  of,  near,  and  facing  the  giraffe  (G).   This
structure feeds directly into the graphical rendering engine
that  produces  a  corresponding  three-dimensional  virtual
world (minus the projection details).

The  geometries  of  the  field  constraints  ensure  that  a
solution is always correct, so there is no question about the
effectiveness of this approach to spatial reasoning over this
restricted domain of animals.  The quality of the results in
terms of their consistency with the real world is high as
well.  The true value of this work, however, is not in its
results but in the mechanisms that contribute to them.  This
approach provides a powerful and flexible framework that
successfully addresses the stated issues of interest:

• Underspecification:  the knowledge base provides an
expressive  structure  to  represent  varied  knowledge
of objects and relations.

Figure 7:  Rabbit and Giraffe

R

G



• Context:   the  conditional  manipulation  of  the
knowledge  in  the  knowledge  base  applies
appropriate  definitions  for  default  and  non-default
interpretations.

• Vagueness:   the  unified  formalism  of  fields
accommodates a wide range of valid interpretations.

• Uncertainty:   the  nondeterministic  nature  of  the
constraint  propagator  uses  the  probabilistic
definitions of fields to favor certain interpretations.

The future direction of this work will address these four
issues  in  terms  of  scalability  and  extensibility.   For  the
former, it will add more concepts and relations of the same
or similar classes to improve the overall coverage within
this domain.  For the latter, it will add new concepts and
relations from other domains to investigate how well this
approach  can  solve  issues  in  other  areas  of  spatial
reasoning.
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