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Abstract 
This paper presents a novel algorithm for 
computing similarity between very short texts of 
sentence length. It will introduce a method that 
takes account of not only semantic information 
but also word order information implied in the 
sentences. Firstly, semantic similarity between 
two sentences is derived from information from a 
structured lexical database and from corpus 
statistics. Secondly, word order similarity is 
computed from the position of word appearance in 
the sentence. Finally, sentence similarity is 
computed as a combination of semantic similarity 
and word order similarity. The proposed algorithm 
is applied to a real world domain of 
conversational agents. Experimental results 
demonstrated that the proposed algorithm reduces 
the scripter’s effort to devise rule base for 
conversational agent. 

1 Introduction 
Recent applications of natural language processing have a 
requirement for an effective method to compute similarity 
between very short texts (such as sentences). Traditionally, 
techniques for detecting similarity between long texts 
(documents) have centred on analysing shared words 
(Meadow, Boyce and Craft 2000). Such methods are 
usually sufficient for dealing with long texts, because they 
contain adequate co-occurring words that are sufficient for 
indicating the text similarity. However, for short texts, 
word co-occurrence may be rare or not present. This is 
because people tend to use different sentences to express 
very similar meanings (Bates 1986). Since such surface 
information in short texts is very limited, this problem 
poses a tough challenge for computational methods. The 
focus of this paper is on computing similarity between very 
short texts, primarily of sentence length.  
Sentence similarity has many interesting applications. 
Examples include conversational agent with script 
strategies (Allen 1995; Jurafsky and Martin, 2000) and the 
Internet. 
Although much research has been done on measuring long 
text similarity, the computation of sentence similarity is far 
from perfect(Burgess et al. 1998; Foltz et al. 1998; 

Hatzivassiloglou et al.1999, Landauer et al. 1997). Because 
of the growing demand from applications, this study is 
concerned with the development of a method by 
investigating the underlying information that contributes to 
the meaning of a sentence. We compute sentence similarity 
using semantic knowledge from a lexical database and 
statistical information from a corpus. The impact of 
syntactic information is also considered in the calculation 
of similarity. The proposed algorithm differs from existing 
methods in two aspects. Firstly, we strictly consider text in 
sentence units, so the surface information is very limited 
compared to that in document units. Secondly we 
investigate a method to incorporate word order information 
in the detection of syntactic similarity.  
The next section presents the proposed method for 
measuring sentence similarity. Section 3 carries out 
experiments with a conversational agent. Section 4 
concludes that the proposed method provides an efficient 
technique for knowledge representation and management. 

2 The Proposed Text Similarity Method 

The proposed method derives text similarity from semantic 
information and syntactic information that are contained in 
the compared texts. A text is considered to be a sequence 
of words each of which carries useful information. The 
words along with their combination structure give the text 
its specific meaning. Texts considered in this paper are 
assumed to be very short (of sentence length). The task is 
to establish a computational method that is able to measure 
the similarity between very short texts (sentences).  

2.1 Semantic Similarity between Sentences 
Sentences are made up of words, so it is reasonable to 
represent a sentence using the words in the sentence. The 
most relevant research area, to our task, is information 
retrieval. Classical information retrieval methods use a set 
of a pre-determined index terms (words or collocations) 
that are used to represent a document in the form of 
document-term vector. Vector similarity is then used to 
identify documents that are most related to the query. 



Because the index terms are pre-determined and in large 
numbers, this kind of strategy is inappropriate for 
computing sentence similarity. A sentence represented 
using such a large number of pre-determined terms will 
result in a very sparse vector, i.e., the vector has a very 
small number of non-zero elements. On the other hand, 
some important words in a sentence may be missed because 
of the limits of term set. Unlike classical methods our 
method dynamically forms the representing semantic 
vectors solely based on the compared sentences. Recent 
research achievements in semantic analysis are also 
adapted to accomplish an efficient semantic vector for a 
sentence. 

Given two sentences: 
}{
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where wij is the jth word of Ti (i=1, 2), mi is the number of 
words in Ti .  A joint-word set 21 TTT ∪=  is then formed 
from distinct words in T1 and T2: 

}{ 2121 mwwwTTT �=∪=  

that has m distinct words. It is obvious that 21 mmm +≤ , 
because there may be repeated words in a text or between 
texts.  
The joint word set T contains all distinct words in T1 and 
T2. Since inflectional morphology may make a word appear 
in a sentence with different form that conveys specific 
meaning for the specific context, we use word form as it 
appears in the sentence. For example, boy and boys, woman 
and women are considered as four distinct words and all 
included in the joint word set. Thus the joint word set for 
two sentences: 

T1: RAM keeps things being worked with. 
T2: The CPU uses RAM as a short-term 

memory storage. 
is: T = {RAM keeps things being worked with The 
CPU uses as a short-term memory storage} 

Since the joint word set is purely derived from the 
compared sentences, it is compact with no redundant 
information. This is similar to the index term set in 
classical information retrieval methods (Meadow, Boyce 
and Kraft 2000). The joint word set can be viewed as the 
semantic information for the compared sentences. Overall, 
the proposed method is derived based on the joint word set 
of T1 and T2. Each sentence is readily represented by the 
use of a joint word set as follows. The vector derived from 
the joint word set is called the lexical semantic vector, 
denoted by š. Each element in this vector corresponds to a 
word in the joint word set, so its dimension equals the 
number of words in the joint word set. The value of an 
element of the semantic vector, ši(i=1,2,...,m), is 
determined by the semantic similarity of the corresponding 
word to a word in the sentence. Take T1 as example: 

Case 1: If wi appears in T1, then ši is set to 1. 
Case 2: If wi is not contained in T1, a semantic 

similarity score is computed between wi and 

each word in the sentence T1, using the method 
presented in (Li, Bandar and McLean 2003), 
see section 2.2. Thus the most similar word in 
T1 to wi is that with the highest similarity score 
.  If  exceeds a preset threshold, then ši =� , 

otherwise ši = 0. 
The reason for the introduction of thresholds is two-fold. 
Firstly since we use the word similarity of unmatched 
words, the semantic vector may become noisy. This 
introduces unwanted information to š if the maximum 
similarity is very small. Secondly classical word match 
methods can be unified into the proposed method by simply 
setting the threshold to 1. Unlike classical methods, we also 
keep all function words (Meadow, Boyce and Kraft 2000). 
This is because function words carry syntactic information 
that cannot be ignored if a text is very short, e.g. of 
sentence length. Although function words are retained in a 
joint word set, they contribute less to the meaning of a 
sentence than other words. Furthermore each of the words 
contributes differently to the meaning of the sentence. Thus 
a scheme is needed to weight each word. We weight the 
significance of a word using its information content 
(Meadow, Boyce and Kraft 2000). 
It is commonly accepted that frequently used words are less 
informative than sparsely used ones. The information 
content of a word is derived from its probability in a corpus 
(Li, Bandar and McLean 2003). Each cell is weighted by 
the associated information )( iwI  and )~( iwI . Finally the 
value of an element of the semantic vector is: 

)~()(~
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where wi is a word in the joint word set, iw~  is its 
associated word in the sentence. The semantic similarity 
between two sentences is defined as a cosine coefficient 
between the two vectors: 
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2.2 Word Similarity  
Given two words: w1 and w2, we need to find the semantic 
similarity of sw(w1, w2) for these two words. In WordNet 
(Miller 1995) words are organised into synonym sets 
(synsets), with semantic and relation pointers to other 
synsets (arcs). We can find the first class in the hierarchical 
semantic network that subsumes the two synsets for the 
compared words and take the distance in arcs traversed. It 
is apparent that words at upper layers of the hierarchy have 
more general semantics and less similarity between them, 
while words at lower layers have more concrete semantics 
and more similarity and so the depth of word in the 
hierarchy is taken into account. A formula for word 
similarity was proposed (Li, Bandar and McLean 2003): 
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where l is the shortest path length between w1 and w2, h is 
the depth of subsumer in the hierarchy, ]1,0(],1,0[ ∈∈ βα  
are parameters scaling the contribution of shortest path 
length and depth, respectively. The optimal parameters for 
the proposed measure were found to be: α=0.2, β=0.45. 

2.3 Word Order Similarity between Sentences 
Let’s consider a particular case to illustrate the importance 
of word order. For example, for two sentences: 

T1: A quick brown dog jumps over the lazy fox. 
T2: A quick brown fox jumps over the lazy dog. 

These two sentences contain exactly the same words 
and most words appear in the same order. The only 
difference is that dog appears before fox in T1 and dog 
appears after fox in T2. Since these two sentences contain 
the same words, any methods based on “bag of word” give 
a decision that T1 and T2 are exactly the same. However it 
is clear for a human interpreter that T1 and T2 are only 
similar to some extent. The dissimilarity between T1 and T2 
is the result of the difference in word order. Therefore any 
efficient computational method for sentence similarity must 
take into account the impact of word order. 

Sentences containing the same words but in different 
orders may result in very different meanings. It is easy for 
humans to process word order information. However the 
incorporation of order information in to computational 
methods for understanding natural language is a difficult 
challenge. This may be the reason why most existing 
methods do not tackle this type of information. In this 
section we introduce a method that takes word order 
information into account when computing sentence 
similarity. 

Assume that for a pair of sentences, the joint word set is 
T. Recall the above two example sentences, their joint word 
set is: 

T = {A quick brown dog jumps over the lazy fox} 
For each word in T1 and T2, a unique index number has 

been assigned respectively. The index number is simply the 
order number that the word appears in the sentence. For 
example, the index number is 4 for dog and 6 for over in 
T1. In computing word order similarity, a word order vector 
r is formed for T1 and T2 respectively based on the joint 
word set T. For each word wi in T, we try to find the same 
or a similar word in T1 as follows: 

1. If T1 contains an occurrence of the same word, we 
fill the entry for this word in r1 with the 
corresponding index number in T1. Otherwise we try 
to find the most similar word iw~  in T1. 

2. If the similarity between wi and iw~  is greater than a 
pre-set threshold, the entry of wi in r1 is filled with 
the index number of iw~  in T1. 

3. If the above two searches fail, the entry of wi in r1 is 
null. 

Having applied the above procedure for T1 and T2, the word 
order vectors for are r1 and r2 respectively. For the example 
sentence pair, we have: 

r1 = {1  2  3  4  5  6  7  8  9}, 
r2 = {1  2  3  9  5  6  7  8  4} 

Thus a word order vector is the basic structural 
information carried by a sentence. The task of dealing with 
word order is then to measure how similar the word order 
in two sentences is. We propose a measure for measuring 
word order similarity of two sentences as: 
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That is, word order similarity is determined by the 
normalised difference of word order. The following 
analysis will demonstrate Sr as an efficient metric for 
indicating word order similarity. To simplify the analysis, 
only one word order difference is considered in the 
following example. 

Given two sentences: T1 and T2, both sentences have 
exactly the same words. The only difference between T1 
and T2 is that a pair of words in T1 appears in the reverse 
order in T2. The word order vectors are: 

}{ 11 mkjj aaaa ��� +=r  for T1. 

}{ 12 mkjj bbbb ��� +=r   for T2. 

aj and aj+k are the entries for the considered word pair in T1 
, bj and bj+k are the corresponding entries for the word pair 
in T2 , k is the number of words from wj to wj+k. From the 
above assumptions, we have: 

iba ii ==  for i=1, 2, …, m except kjji +≠ ,  

jba kjj == +  

kjba jkj +==+  

rrr == 21  

22
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We can also derive exactly the same formula for a sentence 
pair with only one different word, the kth entry. For more 
general cases with further differences in words and word 
order, the analytical form of the proposed metric becomes 
more complicated and we do not intend to present it in this 
paper. The following features of the proposed word order 
metric can be revealed: 

1. Sr can represent the words shared by two sentences. 
2. Sr can represent the order of a pair of same words in 

two sentences. It only indicates the word order, 



1. *child* bake *cake* 
2. *child* baked *cake* 
3. *child* baking *cake* 
4. *child* cake bake*  
5. *child* cake-bake*  
6. *kid* bake *cake*  
7. *kid* baked *cake*  
8. *kid* baking *cake*  
9. *kid* cake bake*  
10. *kid* cake-bake*  
11. *boys* bake *cake*  
12. *boys* baked *cake*  
13. *boys* baking *cake*  
14. *boys* cake bake*  
15. *boys* cake-bake*  
16. *boy’s* bake *cake*  
17. *boy’s* baked *cake*  
18. *boy’s* baking *cake*  
19. *boy’s* cake bake*  
20. *boy’s* cake-bake*  
 

21. *boy * bake *cake*  
22. *boy * baked *cake*  
23. *boy * baking *cake*  
24. *boy * cake bake*  
25. *boy * cake-bake*  
26. *girls* bake *cake*  
27. *girls* baked *cake*  
28. *girls* baking *cake*  
29. *girls* cake bake*  
30. *girls* cake-bake*  
31. *girl’s* bake *cake*  
32. *girl’s* baked *cake*  
33. *girl’s* baking *cake*  
34. *girl’s* cake bake*  
35. *girl’s* cake-bake*  
36. *girl * bake *cake*  
37. *girl * baked *cake*  
38. *girl * baking *cake*  
39. *girl * cake bake*  
40. *girl * cake-bake* 

 
41. *littl* bake *cake*  
42. *littl* baked *cake*  
43. *littl* baking *cake*  
44. *littl* cake bake*  
45. *littl* cake-bake*  
46. *young* bake *cake*  
47. *young* baked *cake*  
48. *young* baking *cake*  
49. *young* cake bake*  
50. *young* cake-bake*  
51. *cake* baked* by *child*  
52. *cake* baked* by *kid*  
53. *cake* baked* by *boy*  
54. *cake* baked* by *girl*  
55. *cake* baked* by *littl*  
56. *cake* baked* by *young*  

 

Fig. 1.  Patterns of a rule <kidback-0> in InfoChatTM. The ’*’ represents a wildcard that may match against characters, words 
or multiple words. 

while it is invariant regardless of the location of the 
word pair in an individual sentence. 

3. Sr is sensitive to the distance between the two words 
of the word pair. Its value decreases as the distance 
increases. 

4. For the same number of different words or the same 
number of word pairs in different orders, Sr is 
proportional to the sentence length (number of 
words), its value increases as the sentence length 
increases. This coincides with intuitive knowledge, 
i.e. given a fixed number of different words shared 
between two sentences, the number of identical 
words shared increases with the length of the 
sentence. 

Therefore the proposed metric is strong for indicating the 
word order in terms of word sequence and location in a 
sentence. 

2.4 Overall Sentence Similarity 
Semantic similarity represents the lexical similarity. On the 
other hand, word order similarity provides information 
about the relationship between words: which words appear 
in the sentence, and which words come before or after 
which other words. Both of these semantic and syntactic (in 
terms of word order) pieces of information play a role in 
comprehending the meaning of sentences. Thus the overall 
sentence similarity is defined as a combination of semantic 
similarity and word order similarity as: 
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where 1≤δ  decides how much semantic and how much 
word order information contribute to the overall similarity 
computation. Since syntax plays a subordinate role for 
semantic processing of text (Wiemer-Hastings 2000), δ 
should be with a value greater than 0.5, i.e., ]1,5.0(∈δ . 

Apart from the factor δ, there are two other parameters 
to set before the similarity can be calculated. These are, a 
threshold for deriving the semantic vector and a threshold 
for forming the word order vector. All parameters are 
empirically set in this paper, 0.4 for word order threshold, 
0.2 for semantic threshold and 0.85 for δ. 

In the following experiments, we derive semantic 
information using WordNet (Miller 1995) version 1.6 and 
word statistical information from the British National 
Corpus (British National Corpus home page). 

3 Applying sentence similarity to 
Conversational agents 

The original motivation for the development of our 
sentence similarity measure came from the design of a 
more efficient conversational agent.  Thus this section 
presents experiment results relating to the knowledge 
management for a conversational agent.  
A conversational agent is a system for carrying out a 
dialogue (usually in natural language) between a human 
user and a computer agent. The agent usually associates a 
knowledge base that contains a bank of rules. Computer 
responses to user’s utterances are governed by matching 
each user utterance with pattern-based rules embedded in 
the system. A working rule normally consists of a rule ID, a 
set of stimulus patterns, the rule's current status and a 
response-pattern. 
 



T1:  My little boy loves baking cakes. 
T2:  All girls like to bake cakes. 
T3:  Girls like going to cake-bakes. 
T4:  Some boys enjoy baking cakes. 
T5:  When I was a boy I occasionally baked cakes. 
T6:  This little baked cake is inedible. 
T7:  Skidding cars bake my cakes every time. 
T8:  On the little hill it was baking hot and the boy was 
caked in mud. 

Fig.2,  Some sentences that match patterns in Fig.1. 

 

Each rule has a unique rule identification to distinguish it 
from other rules and is assigned with an activation value to 
indicate its current status. A rule consists of a set of 
stimulus patterns as well as response patterns. 
In the compilation of a useful knowledge base, all possible 
stimulus patterns for a rule must be produced and included 
in the pattern set. Due to the flexibility of natural 
languages, the stimulus pattern sets are usually very long 
and frequently contain many omissions (of realistic user 
utterances, for which the response would be valid). Figure 
2 shows the stimulus pattern set for a rule describing the 
baking of cakes by children from InfoChatTM  (Michie 
2001). 
There are 56 patterns in the pattern set of this rule. 
Although the above pattern list is very long, it is clear that 
the list can be expanded with many more word patterns that 
have similar meaning to those presented. Thus, the 
compilation of a stimulus pattern set is a very time-
consuming and laborious process with no way of proving 
the completeness for a set. The requirement for such an 
exhaustive pattern set is because the conversational agent is 
using a simple pattern matching scheme, without 
comprehending the meaning of the user’s utterance.  
Moreover, using the pattern set of Fig.1, may cause some 
unintended firing of the rule. For example consider the 
following sentences: 

The author of rule <kidback-0> would expect sentences 
T1-4 to fire the rule, but not T5-8. Unfortunately all 
utterances T1-8 would match stimulus patterns in Fig.1, 
and fire the rule. As a result, unexpected sentences T5-8 
would cause unwanted matches and wrongly fire the rule. 
This is because the pattern matching scheme merely takes 
account of the surface information of word patterns 
appearing in possible user utterances. 
A solution for this problem is to equip conversational 
agents with a matching algorithm that is based on sentence 
meaning similarity. As presented in the previous sections, 
the proposed method for sentence similarity is built on the 

semantic information in the sentences. Unlike simple 
pattern matching schemes, it does not necessarily require 
sentences with the same meaning to contain the same 
words. For example, we may use a single constituent of 
‘child’ to represent child, kid, boy, girl and their 
inflectional forms. This would significantly reduce the size 
and complexity of the stimulus pattern set necessitating 
only a small number of example natural language 
sentences. This overcomes the problem of omissions in the 
stimulus patterns and massively reduces the workload on 
the human rule author as the need for suitably placed 
wildcards and permitted word permutations and 
substitutions become defunct. Therefore the experiment in 
this section is to investigate how the proposed sentence 
similarity method can be applied to conversational agent in 
the construction of a knowledge base using example human 
utterances directly. 
For sentences in Fig.2, rule authors (scripters) consider T1-
4 as expected sentences, while T4-8 are not. The similarity 
results between these sentenecs are listed in Table 1.  
It is observed that similarities in Table 1 can be clearly 
distinguished in two groups, one group is presented with a 
shaded background. Similarities between any two sentences 
in T1-4 have large values, while similarities from a 
sentence in T1-4 to a sentence in T5-8 are relatively small. 
By introducing a similarity threshold in the firing scheme, 
we can prevent the unwanted matches from T5-8. This 
indicates that it is possible to use a single sentence to 
represent T1-4. Thus we can reasonably use a sentence 
from T1-4 to replace the 56 patterns of Fig.1. 
Taking the above observations into account, we are 
incorporating the proposed similarity method into a 
conversational agent. The scripter devises one or only a 
few stimulus sentence(s) conveying the meaning of 
expected user utterances for each rule. The sentences are in 
the form of natural language and stored in the knowledge 

base. During the execution of the conversational agent, the 
user's utterance is received by the agent. The agent 
computes the similarity between the user's utterance and the 
stimulus sentences in the knowledge base, using the 
proposed sentence similarity algorithm. The similarity is 
further converted to a firing strength using a strategy as 
described in InfoChatTM (Michie 2001). The rule with the 
greatest firing strength is then fired.  
In comparison to simple pattern matching algorithms, the 
immediate benefits of incorporating sentence similarity is 
obvious, in that the rule is much shorter, more readable and 
hence far easier to maintain. However, this does not mean 

 T1 T2 T3 T4 T5 T6 T7 T8 

T1 1 0.894 0.892 0.822 0.508 0.444 0.620 0.496 

T2 0.894 1 0.948 0.848 0.519 0.465 0.591 0.543 

T3 0.892 0.948 1 0.863 0.542 0.234 0.529 0.581 

T4 0.822 0.848 0.863 1 0.514 0.429 0.637 0.474 
Table 1.  Similarity between sentences of  Fig. 2 



that it will completely remove the need for pattern 
matching schemes from conversational agents. Rather the 
proposed similarity method can form a complement to 
existing pattern matching schemes. Pattern matching 
schemes may be more reliable for irregular rules which 
match against grammatically incorrect (more similar to 
certain language) user utterances. Therefore, the agent’s 
knowledge base may contain two distinct sets of stimulus 
patterns, natural language sentences and (when 
appropriate)  word patterns with wildcards.  

4 Conclusion 
This paper presented a method for measuring sentence 
similarity. The method computes sentence similarity from 
semantic information and word order information shared by 
the concerned sentences. Firstly, semantic similarity is 
derived from a lexical knowledge base and corpus. A 
lexical database describes common human knowledge 
about words in a natural language, this knowledge is 
usually stable across a wide range of language application 
areas. The corpus represents the actual usage of language 
and words. Thus our semantic similarity not only captures 
common human knowledge, but is also able to adapt to a 
specific application. This adaptation is achieved by using 
information from an application specific corpus. Secondly, 
the proposed method considers the impact of word order in 
sentences. The derived word order similarity measure takes 
into account the number of different words as well as the 
number of word pairs in different order. The overall 
sentence similarity is then defined as a combination of 
semantic similarity and word order similarity. In 
accordance with the view that word order plays a 
subordinate role for interpreting sentences, we weight word 
order similarity less in defining the overall sentence 
similarity. To investigate the value of the proposed method 
in real applications, it was applied to a conversational agent 
to simplify the agent’s knowledge representation and 
processing. A strategy for incorporating a pattern matching 
scheme and sentence similarity was proposed. This results 
in a conversational agent knowledge base that is easier to 
compile, far shorter, more readable and much easier to 
maintain. 
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