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Abstract

In possibility theory, there are two kinds of possibilistic
causal networks depending if possibilistic conditioning
is based on the minimum or on the product operator.
Similarly there are also two kinds of possibilistic logic:
standard (min-based) possibilistic logic and quantita-
tive (product-based) possibilistic logic. Recently, sev-
eral equivalent transformations between standard possi-
bilistic logic and min-based causal networks have been
proposed. This paper goes one step further and shows
that product-based causal networks can be encoded in
product-based knowledge bases. The converse transfor-
mation is also provided.

Introduction
Generally, uncertain pieces of information or flexible con-
straints can be represented in different equivalent formats.
In possibility theory, possible formats can be:

• graphical-based representations, viewed as counterparts
of probabilistic Bayesian networks [11,12], and

• logical-based representations which are simple extensions
of classical logic.

In graphical representations [1,9,10], uncertain information
is encoded by means of possibilistic causal networks which
are composed of Directed Acyclic Graph (DAG) and condi-
tional possibility distributions.
In logical representations [7], uncertain information is en-
coded by means of possibilistic knowledge bases which are
sets of weighted formulas having the form (φi, αi) where φi

is a propositional formula and αi is a positive real number
belonging to the unit interval [0,1].
Each possibilistic causal network (resp. each possibilistic
knowledge base) induces a ranking between possible inter-
pretations of a language, called a possibility distribution.
The possibility degree associated with an interpretation is
obtained by combining the satisfaction degrees of this in-
terpretation with respect to each weighted formula of the
knowledge base, or with respect to each conditional possi-
bility degree of the causal network.
Two combination operators have been used [7]: minimum
operator and product operator. Therefore, there are two
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kinds of causal networks: min-based possibilistic networks
and product-based possibilistic networks.
Similarly, two kinds of possibilistic knowledge bases are de-
fined: min-based possibilistic logic (standard possibilistic
logic) and product-based possibilistic logic called also quan-
titative possibilistic logic.
In the rest of this paper, we only focus on product-based
possibilistic causal networks and on quantitative possibilis-
tic logic.
Even if graphical or logical representation can encode same
pieces of uncertain information, they in general use different
inference tools. For instance, some inference tools in pos-
sibilistic causal networks are simple adaptations of proba-
bilistic propagation algorithms [9,10]. In possibilistic logic,
the inference tools are based on SAT provers (satisfiability
test of propositional formulas). Hence, it is very important
to have equivalent transformations from one representation
format to another in order to take advantage of these differ-
ent inference tools.
Another need of these transformations is when we fuse un-
certain information given in different formats provided by
different sources. Indeed, existing fusion modes assume that
all information is represented in a same format, which is not
always the case in practice. Having transformations algo-
rithms between different representations allow the use of ex-
isting fusion modes even if the information is represented in
different formats.
In [2,5] equivalent transformations have been provided be-
tween min-based possibilistic knowledge bases and min-
based causal networks. This paper goes one step further. It
provides an encoding of product-based possibilistic causal
networks into quantitative possibilistic knowledge bases,
and conversely.
The rest of this paper is organised as follows. Next sec-
tion gives a background on possibilistic logic and posibilis-
tic causal networks. Section 3 studies the transformations
between product-based graphs and quantitative possibilistic
knowledge bases. Section 4 gives the converse transforma-
tion. Section 5 concludes the paper.

Backgrounds
This section only gives a very brief recalling on possibilistic
logic and possibilistic causal networks. See [7] for more



details on possibilistic logic, and [1,9,10] for more details
on possibilistic causal networks.

Possibilistic logic
Let L be a finite propositional language and Ω be the set
of all propositional interpretations. Let φ, ψ, . . . be propo-
sitional formulas. ω |= φ means that ω is a model of φ. A
possibility distribution [7] π is a mapping from a set of in-
terpretations Ω into a linearly-ordered scale, usually the unit
interval [0,1]. π(ω) represents the degree of compatibility
of the interpretation ω with available pieces of information.
By convention, π(ω) = 0 means that ω is impossible to be
the real world, π(ω) = 1 means that ω is totally possible
to be the real world, and π(ω) > π(ω′) means that ω is a
preferred candidate to ω′ for being the real world.
A possibility distribution is said to be normalized if there
exists ω such that: π(ω) = 1. In this paper, only normalized
distributions are considered.
Given a possibility distribution π, two dual measures are de-
fined:

• The possibility measure of a formula φ:

Π(φ) = max{π(ω) : ω |= φ},

which evaluates the extent to which φ is consistent with
the available beliefs expressed by π.

• The necessity measure of a formula φ:

N(φ) = 1 − Π(¬φ),

which evaluates the extent to which φ is entailed by the
available beliefs.

A possibilistic knowledge base Σ is a set of weighted for-
mulas:

Σ = {(φi, αi) : i = 1, ..., n},

where φi is a propositional formula and αi ∈ [0, 1] which
represents the certainty level of φi.
Each piece of information (φi, αi) of a possibilistic knowl-
edge base can be viewed as a constraint which restricts a set
of possible interpretations. If an interpretation ω satisfies
φi then its possibility degree is equal to 1 (ω is completely
compatible with the belief φi), otherwise it is equal to 1−αi.
(the more φi is certain, the less ω is possible). In particular,
if αi = 1, then any interpretation falsifying φi is equal to 0,
namely is impossible.
More formally, the possibility distribution associated with a
weighted formula (φi, αi) is [7] :

π(φi,αi)(ω) =

{

1 − αi if ω 6|= φi

1 otherwise (1)

More generally, the possibility distribution associated with
Σ is the result of combining possibility distributions associ-
ated with each weighted formula (φi, αi) of Σ, namely:

πΣ(ω) = ⊕{π(φi,αi)(ω) : (φi, αi) ∈ Σ}. (2)

where ⊕ is either equal to the minimum operator (in stan-
dard possibilistic logic), or the product operator (*) (in
product-based possibilistic logic).

In the rest of the paper, we only focus on the case where
⊕ = ∗, Σ is then called product-based possibilistic knowl-
edge base. Equation (2) can then be written as:

πΣ(ω) =

{

1 if ω satisfies Σ
∗
(φi,αi)∈Σ,ω 6|=φi

(1 − αi) otherwise (3)

Possibilistic causal networks
A possibilistic causal network [1, 9,10] is a graphical way
to represent uncertain information. Let V = {A1, A2, ..An}
be a set of variables. We denote by Di the domain associ-
ated with the variable Ai. The set of all interpretations is the
cartesian product of all domains of the variables in V. When
each variable is binary, we simply write Di = {ai,¬ai}.
In this paper, for sake of simplicity, only binary variables
are considered. A possibilistic graph, denoted by ΠG is a
Directed Acyclic Graph (DAG), where nodes represent vari-
ables (for example the temperature of a patient,..) and edges
encode the causal links between these variables.
When a link exists from the node Ai to the node Aj , Ai

is called a parent of Aj . The set of the parents of a node
Aj is denoted by Par(Aj). Uncertainty is represented on
each node by means of conditional possibility distributions
which express the strength of the links between variables.
Conditional possibility distributions are associated with the
DAG in the following way:

• For root nodes Ai, we specify the prior possibility distri-
butions Π(ai), Π(¬ai) with max(Π(ai),Π(ai)) = 1 (the
normalisation condition) .

• For other nodesAj , we specify conditional possibility dis-
tributions Π(aj | uj) with:

max(Π(aj | uj),Π(¬aj | uj)) = 1,

where aj is an instance of Aj and uj is an instance of
Par(Aj).

In possibilistic theory, two kinds of possibilistic condition-
ing are defined depending on whether the setting is qualita-
tive or quantitative (for a detailed discussion on possibilistic
conditioning see [5]):

• In ordinal setting, a min-based conditioning is defined as:

Π(ω | φ) =

{

1 if π(ω) = Π(φ) and ω |= φ
π(ω) π(ω) < Π(φ) and ω |= φ
0 otherwise

• In a numerical setting, a product-based conditioning is de-
fined as:

Π(ω | φ) =

{

π(φ)
Π(φ) ω |= φ

0 otherwise

In this paper, we only focus on product-based conditioning.
Each product-based possibilistic graph (DAG and local con-
ditional possibility distributions) induces a unique joint con-
ditional possibility distributions using a so-called chain rule



Figure 1: Example of a DAG

similar to the one used in probabilistic Bayesians networks.
Let ω = a1, a2, ....an, be an interpretation. We have:

πdag(ω) = ∗{Π(ai | ui) : ω |= ai ∧ ui, i = 1, .., n} (4)

where ai is an instance of Ai and ui is an instance of the
parents of Ai.

Example 1 Let us consider the product-based possibilistic
causal network presented by the DAG of Figure 1.
The local conditional possibility distributions are given in
Tables 1 and 2.

Table 1: Initial conditional possibility distributions
of Π(A | B ∧ C)

ABC Π(A | B ∧ C)
abc 1
ab¬c .6
a¬bc 1
a¬b¬c .2
¬abc .2
¬ab¬c 1
¬a¬bc .1
¬a¬b¬c 1

Table 2: Initial conditional possibility distributions
of Π(B), Π(C) and Π(D | A)

B Π(B) C Π(C) AD Π(D | A)
b 1 c 1 ad 1
¬b .3 ¬c .7 a¬d 0

¬ad .2
¬a¬d 1

Using the chain rule defined in (4), we obtain a joint possi-
bility distribution given in Table 3. For example:
π(ab¬cd) = Π(d | a) ∗ Π(a | b¬c) ∗ Π(b) ∗ Π(¬c) = .42

From Product-based graphs to a quantitative
possibilistic base

In order to make easy the transformation from a product-
based graph into a quantitative possibilistic base, a possi-
bilistic causal network will be represented by a set of triples:

ΠG = {(ai, ui, αi) : αi = Π(ai | ui) 6= 1},

Table 3: Joint distribution using product-based chain rule
ABCD π(ABCD) ABCD π(ABCD)
abcd 1 ¬abcd .04
abc¬d 0 ¬abc¬d .2
ab¬cd .42 ¬ab¬cd .14
ab¬c¬d 0 ¬ab¬c¬d .7
a¬bcd .3 ¬a¬bcd .006
a¬bc¬d 0 ¬a¬bc¬d .03
a¬b¬cd .042 ¬a¬b¬cd .042
a¬b¬c¬d 0 ¬a¬b¬c¬d .21

where ai is an instance of the variable Ai and ui is an ele-
ment of the cartesian product of the domain Dj of the vari-
ables Aj ∈ Par(Ai) .

Example 2 Let us consider again the DAG presented in
Figure 1 and Table 1-2. The codification is represented by:
ΠG = {(¬b, ∅, .3), (¬c, ∅, .7), (a, b¬c, .6), (a,¬b¬c, .2),
(¬a, bc, .2), (¬a,¬bc, .1), (d,¬a, .2), (¬d, a, 0)}.

The construction of a possibilistic knowledge base ΣDAG

associated with a DAG is obtained immediately. It sim-
ply consists in replacing each triple (a, u, α) of the di-
rected possibilistic graph ΠG by a possibilistic formula
(¬a∨¬u, 1−α). Intuitively, this transformation is obtained
by recalling first that (a, u, α) means that Π(a | u) = α.
Then, in the possibilistic base, the necessity measure is as-
sociated with conditional formulas where conditioning is
equivalent to a material implication. Therefore, by defini-
tion Π(a | u) = α is equivalent to N(¬a | u) = 1 − α. By
replacing the conditionning by the material implication, we
obtain: N(¬a ∨ ¬u) = 1 − α.
Formally, a possibilistic base ΣDAG associated with the
DAG is defined as follow:

ΣDAG = {(¬ai ∨ ui, 1 − αi) : (ai, ui, αi) ∈ ΠG}. (5)

Example 3 The possibilistic knowledge base associated
with ΠG of the example 2 is:
ΣDAG = {(b, .7), (c, .3), (¬a∨¬b∨ c, .4), (¬a∨ b∨ c, .8),
(a∨¬b∨¬c, .8), (a∨ b∨¬c, .9), (¬d∨ a, .8), (d∨¬a, 1)}.

Proposition 1 Let ΠG be a product-based possibilistic
causal network and let Σ be a possibilistic base associated
with ΠG using equation (5). We have:

∀ω ∈ Ω, πΣ(ω) = πdag(ω)

Where πΣ is obtained using equation (3) and πdag is ob-
tained from equation (4).

Example 4 We can check that the joint possibility distribu-
tion generated by the DAG of example 1 (Table 3) is the same
as the one generated by the possibilistic knowledge base of
example 3.
For instance, let ω1 = a ∧ b ∧ ¬c ∧ d.
From table 3, we have: πdag(ω1) = .42.
Let us consider the possibilistic base Σ defined in example
3. Using equation 3, we have:
πΣ(ω1) = (1 − .3) ∗ (1 − .4) = .7 ∗ .6 = .42.
So, πdag(ω1) = πΣ(ω1).



From quantitative possibilistic base to
product-based graph

The converse transformation from a quantitative possibilis-
tic base Σ into a product-based graph ΠG is less obvious.
Indeed, we first need to establish some lemmas.
First, we need to define the notion of equivalent possibilistic
knowledge bases:

Definition 1 Two quantitative possibilistic knowledge bases
Σ and Σ′ are said to be equivalent if they induce the same
possibility distributions, namely:

∀ω, πΣ(ω) = πΣ′(ω).

The first lemma indicates that tautologies can be removed
from quantitative possibilistic bases without changing pos-
sibility distributions.

Lemma 1 If (>, αi) ∈ Σ then Σ and Σ′ = Σ − {(>, αi)}
are equivalent.

The proof is immediate since only formulas which are fal-
sified by a given interpretation are taken into account dur-
ing the computation of possibility distributions. Removing
tautologies is important since it avoids fictitious dependence
relations between variables. For instance, the tautological
formula (a∨¬a∨b, 1) might induce a link between B and A.
Next lemma concerns the reduction of a possibilistic base.

Lemma 2 (reduction) Let Σ be a possibilistic base. Let
(x ∨ p, α) and (x ∨ ¬p, α) be two formulas from Σ. Let
Σ′ = Σ − {(x ∨ p, α), (x ∨ ¬p, α)} ∪ {(x, α)}. Then, Σ′

and Σ are equivalent.

Next lemma shows that replacing (x, α) by (x ∨ p, α), (x ∨
¬p, α) does not change the induced possibilistic distribution.

Lemma 3 (Extension) Let Σ be a possibilistic base. Let
(x, α) be a formula in Σ. Let Σ′ be defined as follows:
Σ′ = Σ − {(x, α)} ∪ {(x ∨ p, α), (x ∨ ¬p, α)}.
Then, Σ′ and Σ are equivalent.

Next lemma shows how to handle redundancies in a quanti-
tative possibilistic base.

Lemma 4 (Redundancies) If (x, α) ∈ Σ and (x, β) ∈ Σ,
then Σ and Σ−{(x, α), (x, β)} ∪ {(x, α+ β −α ∗ β)} are
equivalent.

With the help of the four previous lemmas, the construction
of a product-based causal network from a quantitative possi-
bilistic knowledge base can be obtained from the following
three steps:

• The first step consists in modifying the possibilistic base
by removing tautologies and using simplification given by
lemma 2.

• The second step constructs the graph by identifying the
parents of each variable.

• The last step computes the conditional possibilities asso-
ciated with the graph.

We will illustrate these steps by using the following quanti-
tative possibilistic knowledge base:

Example 5 Σ = {(a ∨ b ∨ c, .7), (a ∨ b ∨ ¬c, .7),
(¬a ∨ c ∨ ¬d, .7), (a ∨ c ∨ d, .9), (b ∨ c, .8),
(¬b ∨ e, .2), (¬d ∨ f, .5), (a ∨ b ∨ ¬a, 1)}.

Step 1 consists in applying Lemma 1.

Example 6 After applying step 1, the base of example 5 be-
comes:
Σ = {(a ∨ b, .7), (¬a ∨ c ∨ ¬d, .7), (a ∨ c ∨ d, .9),
(b ∨ c, .8), (¬b ∨ e, .2), (¬d ∨ f, .5)}.
It is obtained after removing the tautology (a ∨ b ∨ ¬a, 1)
and replacing the two formulas (a∨b∨c, .7), (a∨b∨¬c, .7)
by (a ∨ b, .7).

Step 2 consists in constructing the graph. We start with
an arbitrarily ordering of the variables X1, X2, ....Xn. In-
tuitively, we consider that parents of a variable Xi should
be among Xi+1...Xn (however, it can be empty). Then we
decompose successively Σ into ΣX1

∪ ΣX2
.... ∪ ΣXn

such
as:

• ΣX1
contains all the formulas of Σ which include an in-

stance of X1

• ΣX2
contains all the formulas of Σ − ΣX1

which include
an instance of X2, and more generally,

• ΣXi
contains all the formulas of Σ− (ΣX1

∪ ..∪ΣXi−1
)

which include an instance of Xi, for i = 2, ..., n.

The associated graph is such that nodes are the variables Xi

of Σ, and parents of a variable Xi are the variables which
are in ΣXi

. If ΣXi
= ∅ then the variable Xi is a root in the

constructed graph.

Example 7 Let us consider again the quantitative possi-
bilistic knowledge base of example 6, namely
Σ = {(a ∨ b, .7), (¬a ∨ c ∨ ¬d, .7), (a ∨ c ∨ d, .9),
(b ∨ c, .8), (¬b ∨ e, .2), (¬d ∨ f, .5)}.
Σ contains six variables arbitrarily ordered in the following
way: X1 = A,X2 = B,X3 = C,X4 = D,X5 = E,X6 =
F . Then,we have

• ΣA = {(a ∨ b, .7), (¬a ∨ c ∨ ¬d, .7), (a ∨ c ∨ d, .9)},
Par(A)={B,C,D}.

• ΣB = {(b ∨ c, .8), (¬b ∨ e, .2)} ; Par(B)={C,E}.
• ΣC = ∅ ; Par(C)= ∅.
• ΣD = {(¬d ∨ f, .5)} ; Par(D) ={F}.
• ΣE = ∅ ; Par(E)= ∅.
• ΣF = ∅ ; Par(F)= ∅.

So we obtain the graph given in Figure 2.

Proposition 2 Let G the graph obtained in the previous
step. Then G is a DAG.

Step 3 consists in computing conditional possibility distribu-
tion: Π(Xi | Par(Xi)) for each variable. The computation
of conditional possibility distributions from ΣXi

is obtained
in three tasks:

a. Application of lemma 3 which consists in extending
every formula (x, α) ∈ ΣXi

to all instances of Xj ∈
Par(Xi).

b. Application of lemma 4 which consists in replacing re-
dundancies.



Figure 2: DAG associated with the knowledge base
of example 5

c. Computation of conditional possibility degree for each
instance of Xi and for each instance of parents of Xi.

The example below, illustrates the tasks (a) and (b). Exam-
ple 9 illustrates task (c).

Example 8 Let us apply tasks (a)-(b) to the possibilistic
base Σ of example 6.

Treatment of node A:
For the node A, we have Par(A)={B,C,D}. The formu-
las (a ∨ b, .7), (¬a ∨ c ∨ ¬d, .7) and (a ∨ c ∨ d, .9) need
to be extended for different instances of the parents of the
variable A.

• The extension of the formula (a ∨ b, .7) results in
{(a ∨ b ∨ c ∨ d, .7), (a ∨ b ∨ ¬c ∨ d, .7), (a ∨ b ∨ c ∨
¬d, .7), (a ∨ b ∨ ¬c ∨ ¬d, .7)}.

• The extension of the formula (¬a ∨ c ∨ ¬d, .7) gives:
{(¬a ∨ b ∨ c ∨ ¬d, .7), (¬a ∨ ¬b ∨ c ∨ ¬d, .7)}.

• The extension of the formula (a ∨ c ∨ d, .9) gives:
{(a ∨ b ∨ c ∨ d, .9), (a ∨ ¬b ∨ c ∨ d, .9)}.

After applying task 1 to ΣA, we get:
ΣA = {(a∨ b∨ c∨d, .7), (a∨ b∨¬c∨d, .7), (a∨ b∨ c∨
¬d, .7), (a∨ b∨¬c∨¬d, .7), (¬a∨ b∨ c∨¬d, .7), (¬a∨
¬b∨ c∨¬d, .7), (a∨ b∨ c∨ d, .9), (a∨¬b∨ c∨ d, .9)}.
Now, we need to apply lemma 4 in order to remove redun-
dancies, and we obtain the final base ΣA :
ΣA = {(a∨b∨c∨d, .97), (a∨b∨¬c∨d, .7), (a∨b∨c∨
¬d, .7), (a∨ b∨¬c∨¬d, .7), (¬a∨ b∨ c∨¬d, .7), (¬a∨
¬b ∨ c ∨ ¬d, .7), (a ∨ ¬b ∨ c ∨ d, .9)}.

Treatment of node B:
For the node B, after applying Lemma 3 to the formulas
(b ∨ c, .8), (¬b ∨ e, .2), we get ΣB gives:
ΣB = {(b∨c∨e, .8), (b∨c∨¬e, .8), (¬b∨c∨e, .2), (¬b∨
¬c ∨ e, .2)}.

Treatment of node D:
ΣD = {(¬d ∨ f, .5)}.

The other nodes are roots so, their respective bases are
empties, ΣC = ΣE = ΣF = ∅.

After applying Lemma 3 (extension) and Lemma 4 (re-
dunduncies), the computation of conditional possibility de-
grees, for each instance of Xi and each instance of par-
ents of Xi, becomes immediate. More precisely, let Σ =
ΣX1

∪ ΣX2
∪ ....ΣXn

be the possibilistic knowledge base
obtained from tasks (a)-(b). Let Xi be a variable and

Par(Xi) = {Y1, Y2, ...Yn} be the set of its parents. Let
x an instance of the variableXi and u = y1∧y2∧ ...∧yn be
an instance of Par(Xi). The local conditional distributions
are defined as follow:

Π(x | u) =

{

1 − αi if (¬x ∨ ¬u, αi) ∈ ΣXi

1 otherwise (6)

Example 9 Let us continue example 8, the different bases
ΣXi

obtained are:

ΣA = {(a ∨ b ∨ c ∨ d, .63), (a ∨ b ∨ ¬c ∨ d, .7),
(a ∨ b ∨ c ∨ ¬d, .7), (a ∨ b ∨ ¬c ∨ ¬d, .7), (¬a ∨ b ∨ c ∨
¬d, .7), (¬a ∨ ¬b ∨ c ∨ ¬d, .7), (a ∨ ¬b ∨ c ∨ d, .9)}.

ΣB = {(b ∨ c ∨ e, .8), (b ∨ c ∨ ¬e, .8), (¬b ∨ c ∨ e, .2),
(¬b ∨ ¬c ∨ e, .2)}.

ΣD = {(¬d ∨ f, .5)}.

ΣC = ΣE = ΣF = ∅.

The application of equation (5) gives us the local conditional
possibility distributions, summarized in Tables 4-7:

Table 4: Final conditional possibility distributions
of Π(A | BCD)

A | BCD bcd bc¬d b¬cd b¬c¬d
a 1 1 .3 1
¬a 1 1 1 .1

A | BCD ¬bcd ¬bc¬d ¬b¬cd ¬b¬c¬d
a 1 1 1 1
¬a .3 .3 1 .03

Table 5: Final conditional possibility distributions
of Π(B | CE)

B | CE ce c¬e ¬ce ¬c¬e
b 1 .8 1 .8
¬b 1 1 .2 .2

Table 6: Final conditional possibility distributions
of Π(D | F )

D | F f ¬f
d 1 .5
¬d 1 1

Proposition 3 Let Σ be a quantitative possibilistic base.
Let ΠG be the DAG obtained from steps 1 to 3. Then,

∀ω, πΣ(ω) = πdag(ω).



Table 7: Final conditional possibility distributions
of Π(C), Π(E) and Π(F )

C Π(C) E Π(E) F Π(F )
c 1 e 1 f 1
¬c 1 ¬e 1 ¬f 1

Conclusion
This paper has proposed an equivalent transformation from a
product-based causal networks to product-based possibilis-
tic logic. The computational complexity of the transforma-
tion from a product-based causal network to a quantitative
base is linear.
This result is similar, in term of complexity, to the trans-
formation from a min-based causal network to a standard
possibilistic base [4]. The converse transformation from a
quantitative possibilistic base to a product-based causal net-
work depends of the maximum number of parents of each
variable. Thus, the cardinality of Par(Xi) can be used as a
criterion to rank order the variables. At each step, one can
select the variable which has the least number of the parents.
The transformation from a quantitative knowledge base to a
graph is more interesting, in term of computation, than the
transformation from a standard possibilistic base to a min-
based causal network given in [4]. Indeed, the transforma-
tion given in [4] requires additional steps in order to provide
the coherence of the min-based causal network. These dif-
ferent transformations presented in this paper will also allow
bridging the gap between product-based causal network and
penalty logic [8]. This link is possible given the narrow re-
lations which exist between quantitative possibilistic logic
and penalty logic[6,7].
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