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Abstract 
Most decision tree induction methods used for extracting 
knowledge in classification problems are unable to deal with 
uncertainties embedded within the data, associated with 
human thinking and perception.  This paper describes the 
development of a novel tree induction algorithm which 
improves the classification accuracy of decision tree 
induction in non-deterministic domains.  The research 
involved applies the principles of fuzzy theory to the 
CHAID (Chi-Square Automatic Interaction Detection) 
algorithm in order to soften the sharp decision boundaries 
which are inherent in traditional decision tree algorithms. 
CHAID is a decision tree induction algorithm with the main 
feature of significance testing at each level, leading to the 
production of trees which require no pruning. 
The application of fuzzy logic to CHAID decision trees can 
represent classification knowledge more naturally and in-
line with human thinking and are more robust when it comes 
to handling imprecise, missing or conflicting information.  
The results of applying fuzzy logic to CHAID induced 
decision trees are presented in this paper.  These have been 
obtained from sets of real world data, and show that the new 
fuzzy inference algorithm improves the accuracy over crisp  
CHAID trees.  The results show that the increase in 
performance is dependant upon the inference technique 
employed and the amount of fuzzification applied. 

Introduction   
Knowledge acquisition today represents a major knowledge 
engineering bottleneck. (Michalski 1986)  Attempts have 
been made to solve this problem by using computer 
programs to extract knowledge.  One popular method for 
decision making or classification is systems inducing 
symbolic decision trees where rules can be extracted from 
the tree and used in a rule-based decision system.  One 
such methodology which popularized the use of decision 
trees is the ID3 algorithm (Quinlan 1985).  The decision 
tree induction process consists of two major components.  
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Firstly a procedure to build the symbolic tree, and secondly 
an inference process for the actual decision making.  The 
decision trees explored within this paper are constructed 
using the CHAID (Kass 1979) algorithm. CHAID is a 
learning algorithm that constructs a set of induction rules, 
which are capable of classifying objects, by analysing a 
training set where the classification of objects have been 
previously established.  The original algorithm, proposed 
by Kass, is an offshoot of the Automatic Interaction 
Detection (AID) (Morgan 1963) technique designed for a 
categorized dependant variable.  Important modifications 
from AID to CHAID include built-in significance testing, 
resulting in the most significant attribute is chosen for 
splitting in contrary to the most explanatory, and the 
formation of multi-way splits as apposed to binary splits. 
The CHAID technique distinguishes itself from other 
decision tree induction techniques by its unique dynamic 
branching strategy.  This is to find the optimal number of 
branches by grouping attribute values that are not 
significantly different in a single group. This branching 
strategy provides the algorithm with an in-built pruning 
mechanism for building decision tree models in non-
deterministic domains, allowing it to effectively handle 
‘noisy’ data. 
The most apparent weakness of the CHAID algorithm is 
identified as the sharp decision boundaries that are created 
when an attribute is selected for splitting.  Such a strict 
decision threshold can result in cases being predicted 
incorrectly due to a number of reasons, such as human 
error or measurement inaccuracies. The purpose of the 
research described in this paper is to use fuzzy logic to 
relax these boundaries thus improving the overall 
performance of CHAID induced trees. The application of 
fuzzy logic to the CHAID algorithm is intended to develop 
a more natural language approach to decision making. 

The CHAID Algorithm 
The CHAID algorithm is a highly efficient statistical 
technique for segmentation, or tree growing.  Using as a 



criterion the significance of a statistical test, CHAID 
evaluates all of the values of a potential predictor variable.  
The statistical test used is the Chi-Square test, which 
reflects how similar or associated variables are. 
The algorithm merges values that are judged to be 
statistically homogeneous (similar) with respect to the 
target variable and maintains all other values that are 
heterogeneous (dissimilar).  The algorithm then goes on to 
select the best predictor variable to form the first branch in 
the decision tree, such that each node is made of a group of 
similar values of the selected variable.  The process 
continues recursively until the tree growth is complete. 
A description of how a CHAID induced decision tree is 
now described: 
 

1. For each predictor variable, X, find the pair of 
categories of X that is least significantly different 
(the greatest p-value), with respect to the target 
variable, Y.  The method used to calculate this p-
value depends upon the measurement level of Y. 

• If Y is continuous, use an F test. 
• If Y is nominal, form a two-way cross 

tabulation with categories of X as rows, 
and categories of Y as columns.  Use the 
Pearson chi-squared test or the likelihood 
ratio test. 

 
2. For the pair of categories of X with the largest p-

value, compare the p-value to a pre-specified 
alpha level, αmerge. 

• If the p-value is greater than αmerge, merge 
this pair into a single compound 
category.  As a result a new set of 
categories of X are formed, and the 
algorithm re-examines this predictor, 
proceeding from step 1 again. 

• If the p-value is less than αmerge, proceed 
on to step 3. 

 
3. Calculate the adjusted p-value using a proper 

Bonferroni multiplier (Hommel 1999). 
 

4. Select the predictor variable X that has the 
smallest adjusted p-value, i.e. the one which is 
most significant.  Compare this value to a pre-
specified alpha split level, αsplit. 

• If the p-value is less than or equal to αsplit, 
split the node based upon the set of 
categories of X. 

• If the p-value is greater than αsplit, then 
this is a terminal node, do not split. 

 
 

5. Continue the tree growing process until all 
stopping rules have been met. 

 
Mentioned in steps 1 and 2, is the use of a p-value, which is 
obtained from the Chi-Squared test of significance.  This 

test gives a numerical representation of how similar or 
associated the categories are, and is calculated from the 
contingency tables using equation 1. 
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The use of an F-Test is referred to in Step 1.  This test 
employs the F statistic, a ratio of two squares, to test 
various statistical hypotheses about the mean (or means) of 
the distributions from which a sample or a set of samples 
have been drawn. 
Step 3 adjusts the p-values by applying the Bonferroni 
multiplier.  This in effect is a process to determine the 
number of ways a predictor of any given type can be 
reduced to its most significant contingency table.  This is 
then used in the Bonferroni inequality to obtain a bound for 
the significance level.  The formula for calculating these 
multipliers, where a category predictor containing c 
categories is reduced to r groups, where (1< r ≤ c), can be 
derived from the binomial coefficient as described in 
equations 2 and 3. 
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Step 5 describes the tree being grown until the stopping 
conditions are met.  Tree growth will cease if any of the 
following conditions are met: 

• All cases in a node have identical values for all 
predictors. 

• The node becomes pure.  This means all cases in 
the node have the same target value. 

• If a depth has been specified, tree growth will stop 
when the depth of the tree has reached its limit. 

For experimentation, the values of αsplit and αmerge were both 
set at 0.05 giving a 95% significance level of the splits and 
the merged categories. 

Fuzzy Sets and Fuzzy Logic 
The concept of fuzzy sets has originated from Zadeh’s 
pioneering paper (Zadeh 1965), where he stated that 
probabilities were an insufficient form of representation for 
uncertainty in Artificial Intelligence.  By allowing certain 
amounts of imprecision to exist, Fuzzy Logic has played an 
important role in the management of uncertainty, especially 
in the field of Expert Systems. 
The transition of object classification in a crisp set with 
defined boundaries is abrupt, in comparison to a fuzzy set, 
where the transition of the classes between objects is 
gradual. 



Membership Functions 
A membership function is essentially a curve that defines 
how each point in an input space is mapped to a 
membership value between 0 and 1.  There are many 
different types of fuzzy membership functions which have 
been suggested and used in applying fuzzy logic (Kulkarni 
2001).  There is no definitive method suggested for the 
selection of a membership function, but there are 
experiments (Pedrycz 1998) which exist to help determine 
which is best to be used.  The selection of the experiment 
depends heavily upon the specifics of the application, in 
particular, the way in which the uncertainty is manifested 
and captured during the experiment. 
For the purpose of this paper linear membership functions 
have been used, however it should be noted that non-linear 
membership functions can also be used. 
Equation 4 describes a linear increasing membership 
function. 
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where 
 a is the lower bound of f, also generating the zero 
membership value 
 b is the upper bound of f, also generating the maximum 
membership value 
 x is the value being evaluated 

Inference Techniques 
Knowledge from decision trees is often represented as 
rules, which consist of two primary parts, an antecedent 
and a consequence.  Fuzzy rules are commonly described 
as: 

IF [V1 is v1] ^ [V2 is v2] THEN [Vc is vc]. 
 

The rules in a fuzzy relation are combined and an output 
can then be inferred.  Inference can be used as a tool for 
reasoning to deduce an outcome from a set of facts.  The 
inference technique combines the information obtained 
from firing a number of IF…THEN rules, and can be seen 
to consist of four main parts: 

• Combining the data from the antecedent of a 
particular rule 

• Applying the resultant value to the consequence of 
that particular rule 

• Combining the resultants from all the rules 
• Interpreting the outcome 

For fuzzy inference, the inputs must first be fuzzified, 
which is the process of determining the fuzzy sets used to 
describe the values of the linguistic variables.  The 
knowledge base must then be constructed, which is where 
the IF…THEN rules, consisting of fuzzy antecedents and 
consequents, are defined.  A fuzzy value outcome is then 

produced by combining the information obtained from 
firing the rules.  Finally a non-fuzzy value is produced by 
the defuzzification process that best describes the fuzzy 
value outcome. 
Within classical set theory, there are single definitions for 
the two set operators, intersection and union.  In fuzzy set 
theory, there are many different suggestions of alternative 
interpretations.  Classical set theory restricts outcome 
values to 0 and 1, whereas if the membership grades are 
between these boundaries, the results are different. 

Zadeh’s Original Fuzzy Operators 
In classical set theory, basic operations exist such as union, 
intersection and complement.  These operations can also be 
defined for fuzzy sets too.  As there could be an infinite 
number of membership values, infinitely many different 
interpretations can be assigned to these operations. 
Zadeh proposed the operators, min and max, for 
intersection and union respectively as extensions from the 
corresponding actions upon crisp sets.  These operators are 
the most commonly used and are special in that if the sets 
become restricted, the operators act in the same manner as 
those for crisp sets. 
As a brief summary, the intersection and union operators 
proposed by Zadeh are presented in Table 1. 

Weak and Strong Operators 
Strengths and weaknesses can be assigned to operators by 
using parameters.  The majority of operators are 
parameterised by using a weight w.  The result of 
introducing this parameter has a significant effect on the 
outcome produced by the function.  The significance of the 
selection of this parameter is discussed by Yager (Yager 
1997), where he suggests a methodology that has been used 
by many researchers in this field. 
Yager makes the min and max operators more adaptable by 
employing the use of a parameter, w, to soften the operator.  
A different fuzzy intersection or union is obtained by 
varying the parameter w, which lies in the range of [0… �@��
it can therefore be implied that w determines the strength of 
the operation. 
In natural language we generally use the AND conjunction 
to imply we strongly require more than one condition to be 
true.  Yager’s methodology implies that given a logical 
statement consisting of conditions and a resultant 
(IF… THEN statement), where the conditions implement 
the use of the AND operator, we regard the parameter, w as 
inversely proportional to the strength of the AND.  It can 
therefore be assumed that w is a measure of how strongly 
we require the conditions to be true.   
Yager’s Intersection and Union operators can be found 
within Table 1, as well as other well recognised sets of 
theoretical operators for fuzzy union and intersection, 
which have been employed in the Fuzzy CHAID Induction 
Algorithm (Fuzzy-CIA). 



The degree of the intersection operator is dependant on the 
value 1/w.  As w ��WKH�ORZHVW�PHPEHUVKLS�JUDGH�LQ�HDFK�
set dictates the degree of membership in their intersection. 
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Table 1. Fuzzy Inference Operators 

Mamdani Inference 
One type of Fuzzy Rule Based System (FRBS) was 
developed by Mamdani (Mamdani 1975), who was able to 
augment Zadeh’ s initial formulation in a way which 
allowed it to be applied to a fuzzy control system.  These 
types of fuzzy systems are commonly known as fuzzy logic 
controllers.  As before, fuzzification enables Mamdani-type 
FRBS’ s to handle crisp input values, mapping from crisp 
values to fuzzy sets defined in the universe of discourse of 
that input.  The inference system establishes a mapping 
between the fuzzy sets in the input domain and the fuzzy 
sets in the output domain.  The defuzzification interface 
transforms the fuzzy output from the fuzzy rule base into a 
non-fuzzy output.  The defuzzification interface has to 
aggregate the information provided by the output fuzzy sets 
and to obtain a crisp output value from them.  This can be 
done in two ways, Mode A-FATI (first aggregate, then 
infer) or Mode B-FITA (first infer, then aggregate).  
Recently the Mode B method has become more popular 
(Cordon, Herrera, Peregrin 1997), as real time applications 
require a faster response time. 
For Mode B-FITA the contribution from each fuzzy set is 
considered separately and the final crisp value is obtained 
by means of averaging the set of crisp values derived from 
each of the fuzzy sets.  The defuzzification interface 
aggregates the individual output fuzzy sets by means of the 
maximum fuzzy union: 

µ(y) = max {µB’ 1(y), µB’ 2(y), µB’ 3(y), µB’ n(y)} 

The most common choice for this is the centre of gravity 
(CG) weighted by the matching degree, whose value is 
calculated by equation 5 
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Where yi is the CG inferred from rule i and hi = µA(x0) being 
the matching between the system input x0 and the rule 
antecedent.  This approach reduces the computational 
burden of aggregating the rule outputs to the fuzzy set B’ , 
as used in Mode A-FATI. 

Fuzzy CHAID Induction Algorithm 
This paper has introduced a novel Fuzzy-CIA.  Firstly, a 
crisp CHAID tree must be induced, using the methodology 
described earlier, from a training set established from the 
cross-validation method (Stone 1978).  Tree growth was 
continued until all stopping criteria were met to produce 
the optimal tree.  The next stage is to introduce some 
fuzzification to these membership functions, allowing 
partial degrees of memberships in all branches throughout 
the tree.  To achieve this, a small area around the split 
threshold point must be defined.  One common statistical 
method of defining the spread of data is the Standard 
Deviation.  For each numeric attribute used within the data 
set, the standard deviation can be calculated from the 
training set.  Multiples of the standard deviation can be 
added or subtracted from the split value to derive a 
partition of the domain, which would have partial degrees 
of membership.  The aim of the fuzzification is to correctly 
classify records which are in or around the threshold 
splitting value.  For this reason small multiples of the 
standard deviation were experimented with, as excess 
amounts of fuzzification would generalize the tree too 
much, reducing classification accuracy.  For a dataset 
where the outcome is discrete, an inference technique 
described in Table 1 is selected.  The final classification of 
the record is determined by the leaf node which possesses 
the highest membership grade after union.   

Applying Mamdani To CHAID 
For the dataset where the outcome variable is numeric, the 
Mamdani inference technique is employed, using Mode-B 
FITA for defuzzification to obtain a final predicted value. 
In order to evaluate the performance of Fuzzy-CIA in 
numeric datasets, the Boston Housing Dataset was utilised.  
For this dataset the Mamdani methodology has been 
selected as the fuzzification inference technique, with some 
modification.  Typically the Mamdani inference technique 
is applied to datasets where the output variable is ordinal.  
For example, if we were to consider the quality of a 
product, the output fuzzy set would contain the members 
{bad quality, medium quality, good quality}.  However to 
describe a continuous output it is necessary to first 
discretise the output into groups.  Figure 1 shows the 



membership function of the output attribute Median Value 
split into 3 groups.  By increasing the number of groups it 
is possible to improve the performance of the aggregation 
phase of defuzzification. 
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Figure 1–Membership function for output variable median value. 

Evaluating Performance 
Two different methods are employed for evaluating the 
performance of the Fuzzy-CIA tree, and the selection of 
method is dependant upon the type of the target variable.  
When calculating the percentage accuracies for a dataset 
where the target variable is discrete, the number of correct 
classifications of each outcome will be determined 
separately and an overall measure of the performance can 
be obtained from finding the average of these values.  The 
performance of the tree can be obtained from equation 6. 
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Where  i = Class i,  n= Number of classes 
For the housing dataset, where the dependant variable is 
numeric, the performance of the tree is evaluated by 
measuring the error between the predicted Median Value of 
a house and the actual value.  Since this difference can be 
negative, the result is squared, and an average squared error 
is calculated for the complete data set as follows, with a 
lower error indicating the performance of a more efficient 
tree.  The calculation to obtain the performance of the tree 
is described in equation 7. 
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Where r = Number of records in the dataset 
The results presented in this paper use cross validation to 
obtain the average efficiency of the decision trees.  

Data Sets 
The Fuzzy CIA has been applied to four real world data 
sets.  These are Bankloan (Attar 2003), Diabetes, Boston 
Housing and the Vehicle dataset (Blake & Merz 1998).  
The Bankloan data set decides whether to accept or reject 
an application for a loan. The Diabetes data set is 
concerned whether a patient shows signs of diabetes.    The 

Vehicle data set is concerned with classifying a given 
silhouette as one of three type of vehicle. Finally, the 
Boston Housing dataset is concerned with the prediction of 
house value, and the outcome classification is numeric. 

Results 
Tables 2,3,4 and 5 show the average results obtained from 
applying fuzzification to CHAID induced decision trees for 
the data sets explored.  The tables show the performance of 
the crisp CHAID trees compared with the different 
inference techniques which have been investigated.  The 
first row in each table indicates the performance of a 
traditional crisp CHAID tree.  The percentage shown is the 
average classification accuracy and also stated is the 
amount of fuzzification applied to the decision trees and 
the parameter used for inference. 
 

Inference  
Technique 

Highest  
Performance 

Amount Of  
Fuzzification Parameter 

Crisp 69.52% N/A N/A 
Yager 76.02% 2 S.D w=10 

Hammacher 72.11% 0.5 S.D w=1 
Dubois/Prade 74.49% 1.5 S.D W=0.5 

Table 2 – Bankloan Dataset 

Inference  
Technique 

Highest  
Performance 

Amount Of  
Fuzzification Parameter 

Crisp 68.81% N/A N/A 
Zadeh 74.00% 5.0 S.D N/A 
Yager 76.58% 7.8 S.D W=10 

Hammacher 73.53% 2.0 S.D w=0.001 
Dubois/Prade 74.25% 5.2 S.D W=0.5 

Table 3 – Diabetes Dataset 

Inference  
Technique 

Highest  
Performance 

Amount Of  
Fuzzification Parameter 

Crisp 69.52% N/A N/A 

Zadeh 70.81% 2.5 S.D N/A 

Yager 76.32% 1.5 S.D w=10 

Hammacher 72.11% 0.5S.D w=1 

Dubois/Prade 74.49% 5.2 S.D w=0.5 

Table 4 – Vehicle Dataset 

Lowest Squared 
Mean Error 

Amount Of 
Fuzzification 

Number of  
Discretised Regions 

20.981 CRISP N/A 
21.072 0.4 SD 10 
20.650 0.5 SD 20 
20.105 0.4 SD 30 
20.241 0.6 SD 40 
20.163 0.6 SD 50 

Table 5 – Housing Dataset using Mamdani Inference 

 



Discussion 
The results obtained from the Fuzzy-CIA show a 
significant improvement in performance in comparison to 
the corresponding crisp CHAID tree.  For the datasets 
where a discrete target variable is used, the improvement 
can be seen over all the different inference techniques 
which were used.  The Zadeh min-max algorithm has a 
weakness in that there is no interaction between different 
variables, and the improvement achieved for this method is 
a result of the sharp decision boundaries being described as 
a series of fuzzy regions.  For the other inference 
techniques, classification accuracy has been achieved by 
carefully selecting Intersection and Union parameters, with 
the Yager inference method showing the highest increase in 
classification accuracy.  For the Bankloan dataset an 
improvement of 6.5% was achieved, the Diabetes dataset 
improved by 7.77% and the increase in performance from 
the Vehicle dataset was 6.8%. 
The Housing dataset, where a numeric outcome is 
predicted, also showed improvement over the crisp tree.  It 
was further shown that varying the number of output fuzzy 
sets affected the performance of the tree.  The best 
performance was achieved when 30 fuzzy output sets were 
used, reducing the error rate by 0.876.  The increase in the 
number of output fuzzy sets has allowed for improvement 
in the aggregation during the defuzzification process, as it 
is possible to include more fuzzy regions which are closer 
to the actual output variable, and not take into 
consideration other regions which are spread throughout 
the output domain. 

Conclusion 
A novel Fuzzy CHAID Induction Algorithm has been 
introduced in this paper which has improved the 
performance of decision trees induced using the CHAID 
algorithm.  This has been achieved by introducing fuzzy 
logic to soften the sharp decision boundaries which are 
apparent in traditional crisp decision trees. 
Five different inference techniques are explored and 
applied to three different real world datasets with discrete 
outcomes.  A modified approach to the Mamdani inference 
methodology has allowed for fuzzy logic to be applied to 
the Housing dataset, where the output variable is numeric.  
Each of the different inference techniques have all showed 
significant improvements with respect to their relative crisp 
trees, in terms of their average classification accuracy. 
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