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Abstract 
We present a decision tree evaluation method integrated 
with a common framework for analyzing multi-attribute 
decisions under risk, where information is numerically 
imprecise. The approach extends the use of additive and 
multiplicative utility functions for supporting evaluation of 
imprecise statements, relaxing requirements for precise 
estimates of decision parameters. Information is modeled in 
convex sets of utility and probability measures restricted by 
closed intervals. Evaluation is done relative to a set of rules, 
generalizing the concept of admissibility, computationally 
handled through optimization of aggregated utility 
functions. Pros and cons of two approaches, and tradeoffs in 
selecting a utility function, are discussed. 

Introduction 
In classic decision theory the different alternatives are 
merely objects of choice, and it is assumed that a decision 
maker can assign precise numerical values corresponding 
to the true value of each consequence, as well as precise 
numerical probabilities when uncertainty prevails. This is, 
however, seldom the case when dealing with decisions 
involving a set of different stakeholders with conflicting 
interests. Thus, the ordering of alternatives is a delicate 
matter and an equitable mathematical representation is 
crucial. 

A variety of approaches for aggregating utility functions 
have been suggested for evaluations of decision problems 
involving multiple objectives. A number of techniques 
used in multi-attribute utility theory (MAUT) have been 
implemented in software such as SMART (Edwards 1977) 
and EXPERT CHOICE, the latter being based on the AHP 
method (Saaty 1980). However, most of these approaches 
require numerically precise data when analyzing and 
evaluating decision problems, a requirement that is often 
considered unrealistic in real-life situations. PRIME, 
described in (Salo and Hämäläinen 1995, 2001), is another 
approach to model and evaluate decision situations 
involving multiple attributes, supporting impreciseness of  
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the input parameters. PRIME features a useful elicitation 
tour, where the decision maker makes interval-valued ratio 
estimates for value differences (Gustafsson et al. 2001). In 
the discrimination of alternatives, PRIME calculates value 
investigations of the problem when the value intervals are 
overlapping, although it is still possible to employ conven-
tional decision rules such as maximax (Hurwicz 1951), 
maximin (Wald 1950), and minimax-regret (Savage 1951). 
Thus, PRIME in its current form is more concerned with 
the elicitation process of the input parameters, and to a less 
extent on evaluation techniques of imprecise data and 
comparisons between different courses of action. The 
system ARIADNE (Sage and White 1984) allows for the 
usage of imprecise input parameters, but does not discrimi-
nate between alternatives when these are evaluated into 
overlapping intervals.  

The purpose of this paper is to present a method, 
integrated into a common framework, for multi-attribute 
evaluation under risk generalized to support the use of 
vague and numerically imprecise data. The work herein 
originates from earlier work on evaluating probabilistic 
decision situations involving a finite number of alternatives 
and consequences. Impreciseness is modeled in the form of 
interval utilities, probabilities, and weights, as well as 
comparisons, derived from sets of utility and probability 
measures. By doing so, the work conforms to classical 
statistical decision theory, avoiding problems with set 
membership functions emerging with the use of, e.g., fuzzy 
sets. We focus on extending the use of the simple additive 
utility function, often referred to as the weighted sum, and 
on the multiplicative utility function defined in MAUT.  

Analyses with Multiple Attributes 
Standard utility theory as well as multi-attribute utility 
theory has two important fundamentals, the first being that 
the preference relation ≥p (�preferred to�) is transitive, and 
the second is that there cannot be any incomparability 
between two different courses of action, i.e., ≥p must be a 
weak order. It is important to be aware of that indifference 
is not the same as incomparability. When a ~p b is 



concluded, a comparison must have been made resulting in 
that a and b belong to the same equivalence class in terms 
of preference. 

Additive Weighting 
A number of approaches to aggregate utility functions 
under a variety of attributes have been suggested, such as 
(Keeney and Raiffa 1976), (Saaty 1980), and (von 
Winterfeldt and Edwards 1986), where the simplest 
method is the additive utility function, sometimes referred 
to as the weighted sum. 

An aggregated utility function must obey the assumption 
of preferential independence, i.e., when a subset of 
alternatives differ only on a subset Gi ⊂  G of the set of 
attributes, then preferences between the alternatives must 
not depend on the common performance levels G \ Gi. 
When employing the additive utility function, the condition 
of additive independence must hold, meaning that changes 
in lotteries in one attribute will not affect preferences for 
lotteries in other attributes.   

To express the relative importance of the attributes, 
weights are used as input parameters restricted by a 
normalization constraint ∑wj = 1, where wj denotes the 
weight of attribute Gj. A global utility function U using the 
additive utility function is then expressed as 
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where wi is the weight representing the relative importance 
of attribute Gi, and ui: Xi → [0,1] is the increasing 
individual utility function for attribute Gi. Xi is the state 
space for attribute Gi. It is assumed that the ui map to zero 
for the worst possible state regarding the attribute i, and 
map to one for the best. There are several different 
techniques for assessing the weights, e.g., pricing out 
(Keeney and Raiffa 1976), swing weighting (von 
Winterfeldt and Edwards 1986), and the reference lottery 
approach (Keeney and Raiffa 1976). In the reference 
lottery, the decision maker has two fictitious alternatives to 
choose from. The first alternative being a lottery, with one 
outcome having the best value for all attributes, and the 
other outcome having the worst value for all attributes. The 
probability pi of ending up with the best value for all 
attributes, where the decision maker is indifferent between 
the lottery and the alternative of having the best value for 
attribute Gi and the worst value for all other attributes for 
sure, then equals wi. Thus 
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where ui
+ is the best utility for attribute Gi and uj

- the worst 
utility for attribute Gj. If the weights are assessed in this 
manner but the decision maker cannot agree with assigning 
the weights consistent with ∑wj = 1, the multiplicative 
model found in MAUT is more appropriate. As will be 
shown later, though, this has computational implications. 

Multi-Attribute Utility Theory (MAUT) 
The simple additive utility function ignores an important 
characteristic of decision problems involving multiple 
objectives, viz. the fact that two attributes may to some 
extent be substitutes or complements for one another. 
Therefore, the multiplicative utility function is introduced 
in (Keeney and Raiffa 1976). The independence axiom is 
introduced, meaning that preferences between two 
alternatives should not depend on the introduction of a 
third alternative. Further, every attribute must be mutually 
utility independent of all other attributes, which means that 
changes in sure levels of one attribute do not affect 
preferences for lotteries in the other attributes. In contrast 
to additive independence, utility independence allows the 
decision maker to consider two attributes to be substitutes 
or complements of each other. (1) is extended into a 
multiplicative form and the global utility function is 
usually expressed as 
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where ui: Xi → [0,1] is the increasing individual utility 
function for attribute Gi, and Xi  is the state space for 
attribute Gi. As for the additive function, ui map to zero for 
the worst possible state regarding attribute i, and map to 
one for the best. The constant K is the nonzero solution to 
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where the ki represent scaling constants, similar in their 
meaning to weights, but without the normalization 
requirement. Further, ki is regarded as the utility of a global 
outcome having the best impact on attribute Gi, and the 
worst on all other. The assessment of the scaling constants 
can be done through the reference lottery approach, such 
that 
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where ui
+ is the best utility for attribute Gi and uj

- the worst 
utility for attribute Gj. In the case of two attributes with 
scaling constants k1 and k2, such that k1 + k2 < 1, it can be 
said that they complement each other. If k1 + k2 > 1, then 
the attributes can be considered as substitutes of each 
other. 

Imprecise Domains 
The Bayesian decision theory is widely employed in 
applications where agents choose a course of action under 
uncertainty involving trade-offs between multiple 
objectives. Because of the impracticality of the 
requirement for precise estimates and accurate measures of 
utilities, probabilities and weights, there is a strong need 
for models that can handle and evaluate imprecise 
information. 



A requirement for the Bayesian framework is that there 
is a probability distribution P(S) over a set of states Si,  
i = {1, �, n}, which summarizes the beliefs of an agent 
about which state Si obtains. The theory has been 
motivated by various axiom systems over the last five 
decades, and it usually boils down to two central results: a 
≥p b ⇔ EU(a) ≥ EU(b) and a ~p b ⇔ EU(a) = EU(b), 
where EU(x) denotes the expected utility of x.  

The requirement to provide numerically precise 
information within this framework has often been 
considered too strong in practice, see, e.g., (Fischhoff et al. 
1983), (Walley 1997), (Danielson and Ekenberg 1998), and 
(Ekenberg and Thorbiörnson 2001). In particular, even if 
there is a substantial amount of empirical data, finding one 
single true utility function (modulo linear mappings) is not 
an easy task and yet it is important for usable evaluation 
results. However, relaxing the Bayesian requirements and 
supporting evaluation of imprecise statements can 
circumvent these disadvantages.  

Definition: Let Xi be the state space for attribute Gi, and 
let Li be a set of mappings Li = {ui : Xi → [0,1]} where all 
ui are increasing. Given a subset Ui ⊂  Li, such that 
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The imprecise probabilities in this evaluation model are 
represented in terms of feasible interval probabilities 
(Weichselberger 1999), obtained through convex hull 
calculations on the input parameters. 

Definition: Given n attributes, let Xi be the state space for 
attribute Gi, and let Ω ⊆  Ξ = X1 × X2 ×�× Xn be the 
sample space. Given a σ-field Γ of random events in Ω 
and an interval valued set function P(.) on Γ, then the 
probability of state A = (x1, �, xn) given the decision 
maker�s strategy J, is 
 P(A |J ) = [L(A|J), U(A|J)], 
          0 ≤ L(A|J) ≤ U(A|J) ≤ 1, 
          U(A|J) = 1 � L(¬A|J).  

It is a feasible interval probability in the sense that there 
exists a single probability distribution with probabilities at 
one of the bounds of each interval, consistent with the (1-3) 
Kolmogorov axioms, for all A∈Ω .  

The Additive Utility Function 
For assessing the weights, let xi

+ be the best state with 
respect to attribute i. Further, let ui

min+ denote the lower 
bound of the utility interval corresponding to xi

+. Similar to 
this, let xi

- be the worst state of the i:th attribute and let 
ui

max- denote the upper bound of the utility interval 
corresponding to xi

-. ui
max+ and ui

min- are then defined as 
follows. 
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From this, wi
max and wi

min are defined as 
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from which wi
max ≥ wi

min follows. Further,   
wi

max + ∑j≠iwj 
min = 1. 

The Multiplicative Utility Function 
Allowing interval-valued utilities, this has implications on 
the procedure of assessing the scaling constants suggested 
in (3). Let ui

min-, ui
max+, ui

min-, and ui
max+ be defined 

according to (6). From this, ki
max and ki

min are defined as 
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from which ki
max ≥ ki

min follows. The interval-valued 
utilities then allow imprecision in the scaling constants ki 
in terms of the intervals [ki

min, ki
max]. We find the two 

nonzero solutions to (4) by using ki
min and ki

max to obtain 
Kmax and Kmin respectively, where Kmin ≤ Kmax. Thus, 
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Definition: Given two attributes Gi and Gj, and if ki
max + 

kj
max < 1, then they are strong complements of each other.  

If ki
min + kj

min > 1, then they are strong substitutes of each 
other. 

Thus, in the case of strong complements � the maximum of 
the scaling constants ki

max + kj
max representing the global 

utility where attribute Gi is the best and Gj is the worst for 
ki

max and vice versa for kj
max � an increase in both utilities 

will impose a significantly higher increase in global utility 
than an increase in one utility independent of the other, 
even when we consider the upper bounds for all utility 
intervals. The implication of this is that these two attributes 
are always complementary. Similarly, when two attributes 
are strong substitutes, by considering the lower utility 
bounds and when they are substitutes in these extreme 
points, these two attributes are always substitutes of each 
other. 

Modeling Decision Situations 
One problem with interval statements is that the utilities 
may overlap. A consequence may even be ranked as being 
both the best and the worst for one attribute. Thus, we need 
to evaluate the data according to different evaluation 
techniques beside the pointwise maximization of the 



expected utility. For this, the framework presented in 
(Danielson and Ekenberg 1998, 1999) is suggested.  

In this framework, given a decision tree T, a decision 
node D can be considered a set S = {S1, �, Sr} of 
strategies, i.e., the directed edges from D leading to Si:s. 
Two collections of variable assignments and constraints 
(bases) are associated with D, one containing the 
probabilities of the edges from each Si (probability base), 
and one containing the utility variables corresponding to 
possible consequence nodes (leaves) emanating from each 
Si (utility base). The probability and utility bases then 
comprise the local decision frame corresponding to D and 
attribute G, 〈PG(D), VG(D), T〉 . The user (human / machine) 
may give probability and utility assessments with respect 
to the tree, so that the probability and utility bases are local 
to each attribute. 

The decision maker�s probability and utility measures 
are represented by linear constraints in these variables. 
Interval statements are translated into inequality pairs, e.g., 
P(A) ∈  [L(A), U(A)] is turned into the pair P(A) ≥ L(A) and 
P(A) ≤ U(A), and comparative statements are translated 
into inequalities such as ui(A) > ui(B). Using this structure, 
numerically imprecise assessments can be represented and 
evaluated. The inequalities containing utility variables are 
included in a utility base V(D), and inequalities containing 
probability variables are included in a probability base 
P(D). 

 
Figure 1: A decision tree with two strategies. 

Definition: Given a decision tree, a sequence of edges 
[S1,�,Sr] is a strategy if for all elements in the set, Si-1 is 
a directed edge from a decision node to a chance node  
Ci-1, and there is a directed edge from Ci-1 to a decision 
node from which Si is a directed edge. 

Without loss of generality, assume in the following 
definition that the tree contains at most one decision node 
(labeled with the highest index) in each alternative 
(consequence set) having si number of consequences. 

Definition: Given an attribute G, a decision tree 
associated with G, and a strategy [S1,�,Sr], where each Si 
is an alternative { ciated with 
chance node Ci. The expected utility of [S1,...,Sr] with 
respect to attribute G, E

1 (,..., , }
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denotes the individual utility of the consequence cij, and 
pij denotes the probability of the consequence cij (or Dij), 
with respect to the attribute G. 
Definition: Given a set of attributes {G1,...,Gn}, n 
decision trees (each associated with exactly one attribute) 
and a strategy [S1,...,Sr], the additive expected utility of 
[S1,...,Sr], UA(S1,...,Sr), is: 

1 1( ,..., ) ( ,..., )iG
A r r

i n
U S S E S S w

≤
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where wi is the weight of attribute Gi. Further, the 
multiplicative global expected utility of [S1,...,Sr],  
UM (S1,...,Sr), is defined as: 

1
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where K and ki are scaling constants as defined in (4) and 
(5).  

By applying (11) and using the intervals [Kmin, Kmax], and 
[ki

min, ki
max], 1 ≤ i ≤ n, together with V(D) and P(D), the 

computational framework presented in (Danielson and 
Ekenberg 1998) can be employed for the evaluation of 
different strategies by converting the statements into linear 
constraints represented in a system of inequalities. 

Evaluation of Decision Situations 
When allowing intervals for all decision parameters, it is 
not clear how to employ the principle of maximizing the 
expected utility as decision criteria. Furthermore, when 
dependencies between strategies are present, e.g., as 
variable identities or comparative statements, pairwise 
comparisons must be performed. For example, two 
strategies may alone show similar expected utilities, 
however a pairwise comparison may reveal that due to 
dependencies one strategy may be strictly preferred. 

Hull Cut  
The selection problem is easy under circumstances where 
min(U(S11,...,S1r) � U(S21,...,S2s)) > 0 holds, however this is 



not always the case. A way to refine the analysis is 
therefore to investigate how much the different interval 
widths can be decreased before an expression such as 
U(S11,...,S1r) � U(S21,...,S2s) > 0 ceases to be consistent. For 
this purpose, the hull cut is introduced in the framework. 
The hull cut can be seen as generalized sensitivity analyses 
to be carried out to determine the stability of the relation 
between the consequence sets under consideration. The 
hull cut avoids the complexity in combinatorial analyses, 
but it is still possible to study the stability of a result by 
gaining a better understanding of how important the 
interval boundary points are. 

 

 

Figure 2: Graphical illustration of a pairwise comparison 
using DecideIT (Danielson et al. 2003). The upper line 
depicts max(U(S11,...,S1r) � U(S21,...,S2s)), the lower line is 
min(U(S11,...,S1r) � U(S21,...,S2s)), the middle line is the 
average of the upper and lower values. Along the 
horizontal axis is the level of hull cut (�contraction�). 
By co-varying the cutting of an arbitrary set of intervals, it 
is possible to gain much better insight into the influence of 
the structure of the information frame on the solutions. 
Intuitively, these hull cuts are based on values closer to the 
center of the interval being more reliable than boundary 
points, i.e., there is an underlying assumption that the 
second-order belief distributions over the intervals have a 
mass concentrated to the center. These concepts are more 
thoroughly described in (Danielson and Ekenberg 1998), 
(Danielson et al. 2003), and (Ekenberg and Thorbiörnson 
2001). 

Evaluation 
The computational evaluation of the decision problem 
requires optimization of expressions such as 
max(U(Si1,...,Sir) � U(Sj1,...,Sjs)). This puts differing 
demands on the computational procedure depending on the 

utility function employed. The difference has two sources, 
variable identity and multi-linearity. 

The variable identity in the evaluation derives from the 
identity of the weights and scaling constants.  

Proposition: Let max(Aδij) = max(UA(Si1,...,Sir) � 
UA(Sj1,...,Sjs)) denote the maximized difference in additive 
global expected utility for strategy [Si1,...,Sir] over 
strategy [Sj1,...,Sjs]. Then, max(Aδij) is correctly calculated 
only if the variable identity of the weights is taken into 
account. 

max(Aδij) is max(UA(Si1,...,Sir) � UA(Sj1,...,Sjs)), thus it can 
be written:  
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This shows the importance of the variable identity. Without 
considering it, the same weight (being a variable) could 
obtain differing numerical values in the calculation of 
UA(Si1,...,Sir) and UA(Sj1,...,Sjs). Similarly, let max(Mδij) = 
max(UM (Si1,...,Sir) � UM (Sj1,...,Sjs)) denote the maximized 
difference in multiplicative global expected utility for 
strategy [Si1,...,Sir] over strategy [Sj1,...,Sjs]. Analogous 
reasoning yields the variable identity of the scaling 
constants. 

Without these identities, the optimization procedure of 
finding max(Aδij) and max(Mδij) would yield incorrect 
evaluation results. The sub-results from calculating 
U(Si1,...,Sir) and U(Sj1,...,Sjs) would be incomparable since 
they derive from different solution vectors in the solution 
space. This is due to the necessary pairwise comparisons of 
strategies, where the imprecision otherwise will allow for 
the same weights to assume different values. Thus, variable 
identity is a necessity when calculating maximum 
differences in global expected utilities, and it is also 
required when using other decision rules based on such 
differences, e.g., minimax-regret. 

Optimization 
Optimization algorithms are required to find the maximum 
and minimum differences in global expected utility 
between two alternatives.  

Proposition: Finding the max of the multiplicative utility 
function max(Mδij) = max(UM (Si1,...,Sir) � UM (Sj1,...,Sjs)) 
requires multi-linear optimization. 

To see this, max(Mδij) can be written as 
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which cannot be transformed into a bilinear form. This 
makes it less desirable than the additive approach from a 



computational viewpoint. Max(Mδij) can only be found with 
non-linear programming algorithms, which are too slow 
and timewise unpredictable for real-time interactive use. 
Further, such algorithms only guarantee a local optimum, 
which is not appropriate for decision evaluation. Using the 
additive utility function, as can be seen from (12) the 
problem can be reduced into a bilinear problem, rendering 
it possible to directly employ the LP based algorithms 
suggested in (Danielson and Ekenberg 1998) to find each 
max(Aδij). LP algorithms such as Simplex are fast and 
predictable. The solution is global, i.e. the appropriate 
result is always obtained. This enables the inclusion of 
decision algorithms in interactive applications. 

Concluding Remarks 
We have presented a method for multi-attribute decision 
evaluation, integrated into a common framework for 
analyzing decision under risk where the information is 
vague and numerically imprecise. The use of decision trees 
as a component in the decision model makes it appealing 
from a user perspective. Using such a framework, we have 
demonstrated how decision problems can be modeled and 
evaluated taking into account the attributes/criteria, 
weights, probabilities and utilities involved. We have also 
pointed out that the optimization procedure must be 
extended to support variable identities for obtaining 
accurate and reliable evaluation results when performing 
pairwise comparisons between strategies, which are 
necessary for correct results. Furthermore, employing the 
multiplicative utility function found in MAUT requires 
multi-linear optimization, while employing the additive 
utility function only requires optimization of bilinear 
expressions. The latter can be performed using LP 
methods. Thus, there is an inherent trade-off between 
computational aspects (the additive approach) and power 
of expression (the multiplicative approach). 
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