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Abstract

In this paper, we study the local propagation method
used in Bayesian net for belief updating from a rela-
tional database perspective. We point out and prove that
the renowned local propagation method is in fact a (gen-
eralized) semi-join program used in relational database
for answering database queries. This interesting con-
nection implies and suggests that the task of belief up-
dating can be reconsidered as a database query problem.

1. Introduction
Bayesian nets has become so successful and popular in
the last decade as a tool for processing uncertainty using
probability theory. A Bayesian net consists of a graphical
component which is adirected acyclic graph(DAG) and
a corresponding set ofconditional probability distributions
(CPDs) whose product yields ajoint probability distribution
(JPD) over a problem domain (Pearl 1988). In other words,
Bayesian net provides a mechanism to graphically represent
a JPD as a factorization of a set of CPDs. The key problem
in Bayesian nets isbelief updating, also calledprobabilistic
inference, which simply means computing posterior prob-
ability p(X|e), whereX is a set of variables ande is the
evidence observed (Jensen 1996).

One of the major breakthroughs in the development of
Bayesian nets is the discovery of thelocal propagation
method for belief updating (Lauritzen & Spiegelhalter 1988)
in Bayesian nets. A Bayesian net is normallymoralized
and triangulatedso that a junction tree is constructed by
identifying all the maximal cliques in the triangulated graph
and properly arranging them as a tree. The local propaga-
tion method is then applied on the resulting junction tree
for belief updating; it is by far the dominant method for
belief updating and it has received wide acceptance in the
Bayesian net community. In fact, the local propagation
method has become the de facto standard for belief updat-
ing. Since then much effort has been spent on further im-
proving the efficiency of local propagation (Kjaerulff 1990;
1997; Madsen & Jensen 1998).

It is unequivocable that the local propagation technique
is vital to the success of belief updating in Bayesian nets.

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In this paper, we first review the technique of local propa-
gation. We then point out and prove that the local propa-
gation method is in essence asemi-joinprogram (Beeriet
al. 1983) which was developed in early 1980s for answer-
ing database queries. This seemingly striking connection
actually does not surprise us much because it has been no-
ticed in recent years that there exists an intriguing relation-
ship between Bayesian nets and relational databases (Wong
1997). This connection inspires us to revisit the problem of
belief updating from the relational database query process-
ing perspective, and it also implies that the task of belief
updating may be reconsidered as a database query problem.
The paper is organized as follows. In Sections 2 and 3, we
review the local propagation method in Bayesian nets and
semi-join programs in relational databases respectively.In
Section 4, we reveal and prove that the local propagation
technique currently employed in Bayesian nets is indeed a
generalized semi-join program in relational database theory.
In Section 5, we discuss implication of this connection and
conclude the paper.

2. Local Propagation in Bayesian nets
A Bayesian net(BN) defined over a setR = {a1, . . . , an}
of variables is a tuple(D, C), whereD is adirected acyclic
graph (DAG) andC = {p(ai|pa(ai)) | ai ∈ R} is a set
of CPDs, wherepa(ai) denotes the parents of nodeai in
D. The product of the CPDs inC defines the JPDp(R) as
follows:

p(R) = p(a1|pa(a1)) · . . . · p(an|pa(an)).

Although various methods exist for belief updating, one
of the most popular methods is based on a computational
scheme called local propagation (Lauritzen & Spiegelhal-
ter 1988; Jensen 1996). Local propagation isnot directly
performed on the DAG of a BN, but on a secondary struc-
ture, namely, thejunction tree. The DAG of a BN is nor-
mally transformed through moralization and triangulation
into a junction tree on which the local propagation proce-
dure is applied. After the local propagation procedure fin-
ishes its execution, a marginal distribution is computed for
each node and separator in the junction tree. In the follow-
ing, we briefly review how local propagation works using a
running example.
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Figure 1: (i) The Asia BND. (ii) The moral graphUD of D
in (i). (iii) The triangulation ofUD in (ii). (iv) The resulting
junction Tree of the BN in (i). (v) The hypertree representa-
tion of the junction tree in (iv).

Recall the Asia travel BN defined overR =
{a, b, c, d, e, f, g} from (Lauritzen & Spiegel-
halter 1988). Its DAG D is shown in Fig-
ure 1(i), the CPDs specified for each node inD
are {p(a),p(b), p(c|a), p(d|b), p(e|b), p(f |cd),
p(g|ef), p(h|f)}. The JPD defined by the above CPDs
is: p(R) = p(a) · p(b) · p(c|a) · p(d|b) · p(e|b) · p(f |cd) ·
p(g|ef) · p(h|f). The overall structure of the local propaga-
tion technique consists of the following 3 steps (Huang &
Darwiche 1996):

(1) Graphical transformation.The DAG, for instance, the
one in Figure 1 (i), is first transformed to itsmoral graph
denotedUD, by connecting all parents of each node inD
and dropping the directionality of all directed edges. The
resulting moral graphUD is shown in Figure 1 (ii). This
moral graphUD is then triangulated by connecting two
nonadjacent nodes in every cycle of length four or greater
in UD. In our example, one possible triangulation is to
connect nodesd and e, the resulting triangulated graph is
shown in Figure 1 (iii). Finally, the junction tree, shown
in Figure 1 (iv), is constructed by identifying all the (maxi-
mal) cliques in the triangulated graph in Figure 1 (iii) and
properly arranging them to satisfy the condition of junc-
tion tree. A more formal treatment on triangulation and
building junction trees can be found in (Kjaerulff 1990;
Huang & Darwiche 1996).

(2) Initialization. Every CPDp(ai|pa(ai)) of the BN will
be assigned to a unique node in the junction tree to form a
potential if the context of the node contains{ai} ∪ pa(ai).
If no CPDs can be assigned to a nodehi in the junction tree,
we form a unity potential forhi defined asφ(hi) = 1. In
our example, the following potentials will be constructed
with respect to the junction tree in Figure 1 (iv):φ(ac) =
p(a) · p(c|a), φ(bde) = p(b) · p(d|e) · p(e|b), φ(cdf) =
p(f |cd), φ(def) = 1, φ(fh) = p(h|f), φ(efg) = p(g|fe).
In the meantime, a unity potential is formed as well for
each separator of the junction tree in Figure 1 (iv) as fol-
lows: φS(c) = 1, φS(de) = 1, φS(df) = 1, φS(ef) = 1,
φS(f) = 1. The superscriptsS indicate that these potentials
are for the separators of junction tree, differentiating them
from those potentials for the nodes in the junction tree.

(3) Local propagation.The local propagation is a com-
putational scheme based on a primitive operation calledab-
sorption(or message passing) which we review below.

Definition 1 Consider two adjacent nodesRi, Rj , and their
intersectionSij in a junction tree with their respective po-
tentialsφ(Ri), φ(Rj), andφS(Sij). That Ri absorbsRj

(or a message passes fromRj to Ri) means performing
the following: (a) UpdatingφS(Sij) by settingφS(Sij) =∑

Rj−Sij
φ(Rj)

φS(Sij)
. (b) Updatingφ(Ri) by settingφ(Ri) =

φ(Ri) · φ
S(Sij).

The local propagation method is actually a coordinated
sequence of absorptions. It begins by picking any node in
the junction tree as root, and then perform a sequence of
absorptions divided into two passes, namely, theCollect-
Evidencepass, and theDistribute-Evidencepass. The over-
all control structure for the local propagation method is as
follows (Huang & Darwiche 1996):

PROCEDURE Local-Propagation
{

1: Choose a nodehi in the junction tree as root.
2: Unmark all nodes in the junction tree.

Call Collect-Evidence(hi).
3: Unmark all nodes in the junction tree.

Call Distribute-Evidence(hi).
}

During theCollect-Evidencepass, each node in the junc-
tion tree passes a message to its neighbor towards the root’s
direction, beginning with the node farthest from the root.
During theDistribute-Evidencepass, each node in the junc-
tion tree passes a message to its neighbor away from the
root’s direction, beginning with the root itself. TheCollect-
Evidencepass causesn−1 messages to be passed. Similarly,
theDistribute-Evidencepass causes anothern− 1 messages
to be passed. Altogether, there are exact2(n − 1) messages
to be passed (Huang & Darwiche 1996; Jensen 1996).
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Figure 2: The local propagation procedure applies to the
junction tree in Figure 1 (iv) withdef as root.

Consider the junction tree for the Asia BN in Figure 1
(iv). Assume the local propagation procedure is applied to
the junction tree with the nodedef picked as root. The ex-
ecution details of the local propagation procedure can be vi-
sualized and depicted in Figure 2. We deliberately draw the
junction tree as a rooted tree with rootdef on top. For sim-
plicity and clarity, we omit the drawing of the separators
between adjacent nodes in the junction tree. The local prop-
agation procedure is initiated at the rootdef with the call-
ing of Collect-Evidence, the solid small arrows with num-
bers attached indicate the sequence of absorptions occurring
during theCollect-Evidencepass; the dashed small arrows



with number attached indicate the sequence of absorptions
occurring during theDistribute-Evidencepass. Each arrow,
regardless of solid or dashed, indicates an absorption (or
message passing) taking place during the execution of local
propagation.

After the local propagation procedure finishes its execu-
tion, the initial potential attached to each node and separator
of the junction tree is now transformed into a marginal dis-
tribution. In other words, we obtain the marginalsp(ac),
p(cdf), p(bde), p(def), p(fh), p(efg) for each node in the
junction tree, and the marginalsp(c), p(df), p(de), p(f),
p(ef) for each separator of the junction tree. The junction
tree is now considered to be in aconsistentstate (Jensen
1996).

3. Semi-Join Programs in Relational
Databases

In this section, we review the notion of semi-join programs
in relational database theory. We begin the discussion by
introducing some pertinent notions. Readers are referred
to (Maier 1983) for more details of relational database the-
ory.

We define a database schemeto be a setD =
{R1, . . . , Rn} of sets of attributes where

⋃n

i=1 Ri = R.
EachRi is called arelation scheme. If r1, . . . , rn are rela-
tions over the relation schemesR1, . . . , Rn, respectively,
we then calld = {r1, . . . , rn} a databaseover D. We
sometimes writeri[Ri] to explicitly indicate that the rela-
tion ri is over the schemeRi. By RiRj , we meanRi ∪ Rj .
The relational operatorsπ and⊲⊳ are used in this paper in
their usual sense asprojectandnatural joinoperators.

A hypergraph is a pair(N,H), whereN is a finite set
of nodes (attributes) andH is a set of edges (hyperedges)
which are arbitrary subsets ofN (Beeriet al. 1983). If the
nodes are understood, we will useH to denote the hyper-
graph(N,H). We say an elementhi in a hypergraphH is
a twig if there exists another elementhj in H, distinct from
hi, such that(∪(H−{hi}))∩hi = hi∩hj . We call any such
hj a branchfor the twighi. A hypergraphH is ahypertree
if its elements can be ordered, sayh1, h2, ..., hn, so thathi

is a twig in {h1, h2, ..., hi}, for i = 2, ..., n − 1. We call
any such ordering ahypertree (tree) construction ordering
for H. It is noted for a given hypertree, there may exist mul-
tiple tree construction orderings. Given a tree construction
orderingh1, h2, ..., hn, we can choose, for eachi from 2 to
N , an integerj(i) such that1 ≤ j(i) ≤ i − 1 andhj(i) is
a branch forhi in {h1, h2, ..., hi}. We call a functionj(i)
that satisfies this condition abranchingfor the hypertreeH
with h1, h2, ..., hn being the tree construction ordering. For
a given tree construction ordering, there might exist multiple
choices of branching functions. Given a tree construction
orderingh1, h2, ..., hn for a hypertreeH and a branching
functionj(i) for this ordering, we can construct the follow-
ing multiset:L(H) = {hj(2)∩h2, hj(3)∩h3, ..., hj(n)∩hn}.
The multisetL(H) is the same for any tree construction or-
dering and branching function ofH (Beeriet al. 1983). We
callL(H) theseparator setof the hypertreeH.

A database schemeD can be naturally viewed as a hy-

1. r4 ← r4 ∝ r5,
2. r2 ← r2 ∝ r1,
3. r6 ← r6 ∝ r4,
4. r5 ← r5 ∝ r2.

Table 1: A SJP.

pergraph (Beeriet al. 1983), each of whose hyperedges is
a relation scheme inD. A database schemeD is acyclic if
its corresponding hypergraph is acyclic. Therefore, we use
D to denote both database scheme and its hypergraph repre-
sentation in the following unless otherwise specified.
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Figure 3: The hypergraph representation of the database
schemeD in (i) and one of its junction tree representation
in (ii).

Example 1 Consider the database schemeD = {R1 =
ac, R2 = cdf, R3 = bde, R4 = def, R5 = fh, R6 =
efg}. D can be viewed as a hypergraph shown in Figure 3
(i). It can be verified thatD is an acyclic database scheme.
It has been shown that an acyclic hypergraph may corre-
spond to multiple junction tree1 representations (Beeriet
al. 1983), for example, the one in Figure 3 (ii) is a junction
tree representation ofD with all the separators omitted for
clarity.

The following definition of semi-join is adapted from
(Beeriet al. 1983).

Definition 2 Let r1 and r2 be two relations over schemes
R1 andR2, respectively. Consider the following two state-
ments in sequence: (1)r

′

= πR1∩R2
(r2), (2) r1 = r1 ⊲⊳ r

′

.
The semi-join(SJ) of r1 and r2, denotedr1 ∝ r2, is de-
fined as the resulting relationr1 in statement (2). That is,
r1 ∝ r2 = r1 ⊲⊳ πR1∩R2

(r2).

Example 2 Consider a databased = {r1, . . . , r6} over
the database schemeD in Example 1. The SJ ofr4 ∝ r6

can be obtained by: (1) computer
′

= πef (r6), whereef =

R4 ∩ R6, and (2) computer4 = r4 ⊲⊳ r
′

.

Definition 3 (Maier 1983) Letd = {r1, . . . , rn} be a
database. Asemi-join program(SJP) ford is a sequence
of assignment statements of the formri ← ri ∝ rj .

Example 3 Consider the databased in Example 2. The se-
quence of SJs shown in Table 1 is a SJP. By applying the SJP
in Table 1 to the databased, updated relationsr4, r2, r6 and
r5 will be obtained.

1A junction tree is also called a join tree in database theory.



Consider a databased = {r1, . . . , rn} over the database
schemeD = {R1, . . . , Rn} such that the natural join of
r1[R1], . . . , rn[Rn] yieldsr[R], that is:

r[R] = r1[R1] ⊲⊳ . . . ⊲⊳ rn[Rn]. (1)

The database community has dealt with the following prob-
lem in the study of answering database queries.

“Can the projections ofr[R] on R1, . . . , Rn, i.e.,
πR1

(r), . . ., πRn
(r) be computedwithout obtaining

r[R] from Eq. (1) in the first place?

The answer to the above problem isyes if the database
schemeD is acyclic. A special SJP, called afull reducer
was developed to obtain eachπRi

(r) from Eq. (1) without
obtainingr[R] in advance. Furthermore,r[R] = πR1

(r) ⊲⊳
. . . ⊲⊳ πRn

(r).

Definition 4 Let d = {r1, . . . , rn} be a database over
D = {R1, . . . , Rn} andSP be a SJP. LetSP (ri, d) de-
note the result onri after applyingSP to d. We callSP a
full reducerfor d if SP (ri, d) = πRi

(r) for each1 ≤ i ≤ n,
wherer = r1 ⊲⊳ . . . ⊲⊳ rn.

It is well known in the database community that a full
reducer doesnotalways exist for an arbitrary database but it
doesexist for a database if and only if the database scheme
is acyclic (Beeriet al. 1983). Moreover, the full reducer
for an acyclic database can be constructed systematically as
described below.

Let d = {r1, . . . , rn} be a database over an acyclic
database schemeD = {R1, . . . , Rn}. Let JT denote a
junction tree forD. We can pick anyRi of D as the root
of JT and consider theJT as an oriented tree with root
Ri. Perform apostorder traversalof JT . Whenever a node
Rj of JT is visited, a SJ of the relationrk[Rk], whereRk

is a parent ofRj in JT , with the relationrj [Rj ] for the
nodeRj , i.e., rk ← rk ∝ rj , is added to a SJP denoted
SP+. Let SP− be the SJP obtained fromSP+ by revers-
ing the order of the steps and changing eachri ← ri ∝ rj

to rj ← rj ∝ ri. Finally, letSP denote the SJP that equals
to SP+ followed bySP−. The following Theorem is well
established in database theory.

Theorem 1 (Maier 1983) Let d = {r1, . . . , rn}
be a database over an acyclic database schemeD =
{R1, . . . , Rn}. Let JT be a junction tree representation
of D. The SJPSP obtained as described above is a full
reducer ofd. Moreover,SP has2n − 2 SJ statements.

SP+ SP−

1. r4 ← r4 ∝ r3, 6. r6 ← r6 ∝ r4,
2. r2 ← r2 ∝ r1, 7. r2 ← r2 ∝ r4,

SP= 3. r2 ← r2 ∝ r5, 8. r5 ← r5 ∝ r2,
4. r4 ← r4 ∝ r2, 9. r1 ← r1 ∝ r2,
5. r4 ← r4 ∝ r6, 10.r3 ← r3 ∝ r4.

Table 2: The SJPSP = SP+, SP−.

Example 4 Consider the database schemeD in Example 1
as shown in Figure 3 and a databased overD. SinceD is
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Figure 4: The junction tree withR4 as root. The numbers
on the edge correspond to the statements in the semi-join
programSP in Table 2.

acyclic, we can construct a semi-join program that is a full
reducer. Consider the junction tree in Figure 3 (ii), we pick,
sayR4, as the root and redraw the junction tree as an ori-
ented tree rooted atR4 in Figure 4. The SJPSP+ is shown
in the left column of Table 2, the SJPSP− is in the right
column of Table 2. The complete SJPSP is SP+ followed
by SP−, i.e. the 10 SJ statements in Table 2. ApplyingSP
to d, we obtainri = πRi

(r) for 1 ≤ i ≤ 6.

One may immediately recognize the similarity between
the diagrams in Figure 4 and in Figure 2. This similarity sug-
gests that there exists some intriguing relationship between
the semi-join program and the local propagation procedure.

4. Local Propagation is a Generalized
Semi-Join Program

In this section, we reveal and prove that local propagation
is in fact a generalized semi-join program. We begin the
exposition by introducing some notation.

Let x be an instantiation ofX. The value ofA ∈ X in
x, denoted byA↓x, is theprojectionof x ontoA. Similarly,
we can define the projection ofx onto a subsetZ ⊆ X. An
instantiationz is the projection ofx onto Z, denotedz =
Z↓x, if for eachA ∈ Z, its value inZ is identical to that ofx.
Let φ(R) be a potential andX ⊆ R. Themarginalof φ(R)
onX, denotedφ(X), is a potential onX such thatφ(X) =∑

R−X φ(R). Let φ(X) andφ(Y ) be two potentials. Their
product is a potentialφ(W ), written asφ(W ) = φ(X) ·
φ(Y ), whereW = XY , such that for each valuew of W ,
φ(w) = φ(X↓w) · φ(Y ↓w). We define theinversefunction
of φ(X), denotedφ−1(X) by settingφ−1(x) = 1/φ(x) if
φ(x) 6= 0, andφ−1(x) = φ(x) otherwise, for each valuex
of X. Obviously,φ−1(X) is also a potential.

A1 A2 ...... Am fφR

t11 t12 ...... t1m φR(t1)
t21 t22 ...... t2m φR(t2)

rΦ(R) = . . . . .
. . . . .
. . . . .
ts1 ts2 ...... tsm φR(ts)

Table 3: The relationrΦ(R) represents a functionφR on
R = {A1, A2, ..., Am}.



Note that each potentialφ(R) overR = {A1, . . . , Am}
can be represented as a relation (Wong 1997) denotedrΦ(R)
as shown in Table 3. Each row inrΦ(R) represents an in-
stantiation ofR. The functionφ(R) defines the values of
the attributefφR

in relationrΦ(R). The inverse function of
φ(R), namely,φ−1(R) can also be represented as a relation
denotedrΦ−1(R). One may regard that the relation repre-
sentation of a potential is synonymous with the potential it-
self. For instance,rΦ(R) is synonymous with the potential
φ(R). We will adopt this relational view of potentials when
discussing the local propagation procedure.

We introduce notations for two relational operators corre-
sponding to marginal and product of two potentials (Wong
1997). LetX be a subset ofR. The operator ofmarginal
is denoted by the symbolΠ. The marginal ofφ(R) on X,
denotedφ(X), is itself a potential and can be represented
by a relation denotedΠX(rΦ(R)), which is synonymous
with the marginalφ(X) (Wong 1997). Consider potentials
φ(X), φ(Y ) andφ(W ) such thatφ(W ) = φ(X) ·φ(Y ). Let
their respective relation representations berΦ(X), rΦ(Y ),
and rΦ(W ). The operator ofproduct join is denoted by
the symbol×. The expressionφ(W ) = φ(X) · φ(Y ) can
be conveniently expressed using the product join symbol as
rΦ(W ) = rΦ(X) × rΦ(Y ). The relationrΦ(W ) is synony-
mous with the potentialφ(W ) (Wong 1997).

We now show that the local propagation method is a gen-
eralized semi-join program. Consider a BN defined overR
with its DAG D. SupposeD is transformed into a junction
treeJT = {R1, . . . , Rm}. Recall the initialization step in
the local propagation method, in which a potential is formed
for each node and separator ofJT . The JPDp(R) can be
expressed as follows:

p(R) = φ(R1) · φ(R2) · . . . · φ(Rm), (2)

which meansp(R) is the product ofφ(Ri). Sincep(R),
φ(Ri) in Eq. (2) can be represented as relationsrp(R),
rΦ(Ri), i = 1, . . . ,m, synonymously, we thus can repre-
sent Eq. (2) using the product join operator as follows:

rp(R) = rΦ(R1) × rΦ(R2) × . . . × rΦ(Rm). (3)

The above equation indicates that one can considerd =
{rΦ(R1), . . . , rΦ(Rm)} as a database over the database
schemeJT = {R1, . . . , Rm}. We further calld a proba-
bilistic databaseof the BN with respect to the junction tree
JT .

The Bayesian net community has dealt with the following
problem in the study of belief updating.

Can the marginals ofp(R) on R1, . . ., Rn, i.e.,
p(R1), . . ., p(Rm), be computedwithout obtaining
p(R) from Eq. (2) in the first place? Or equivalently,
can the marginals ofrp(R) on R1, . . . , Rm, i.e.,
ΠR1

(rp(R)), . . ., ΠRm
(rp(R)) be computedwithout

obtainingrp(R) from Eq. (3) in the first place?

The question imposed above is similar to the question
imposed in the preceding section for answering database
queries which was solved by SJP. The answer to the above
problem is alsoyes. The dominant technique used in the
Bayesian net community for solving the above problem is

the so-called local propagation procedure which seemingly
has nothing to do with SJP. However, in the following, we
will reveal and prove that the renowned local propagation
method is indeed a generalized SJP.

The local propagation procedure is a computational
scheme based on the primitive operationabsorption. We
first recall the notion of “absorption” (ormessage passing)
in local propagation. Consider two adjacent nodesRi, Rj ,
and their intersectionSij in a junction tree with their respec-
tive potentialsφ(Ri), φ(Rj), andφS(Sij). ThenRi absorbs
Rj by performing the following: (a) updatingφS(Sij) by

settingφS(Sij) =

∑
Rj−Sij

φ(Rj)

φS(Sij)
; (b) updatingφ(Ri) by

settingφ(Ri) = φ(Ri) · φ
S(Sij).

Analogous to the definition of semi-join in databases, we
define the notion ofgeneralized semi-join.

Definition 5 Let rφ(Ri), rφ(Rj), andrφ(Sij) be three rela-
tions representing potentialsφ(Ri), φ(Rj), andφ(Sij), re-
spectively, whereSij = Ri ∩ Rj . Consider the following
two statements in sequence: (1)rφ(Sij) = ΠSij

(rφ(Rj))×
rφ−1(Sij), (2) rφ(Ri) = rφ(Ri) × rφ(Sij). The gen-
eralized semi-join(GSJ) of rφ(Ri) and rφ(Rj), denoted
rφ(Ri) ∝ rφ(Rj) is defined as the resulting relationrφ(Ri)
in statement (2) above. That isrφ(Ri) ∝ rφ(Rj) =
rφ(Ri) × (ΠSij

(rφ(Rj)) × rφ−1(Sij)).
In the above definition, statement (1) corresponds to step

(a) of absorption; statement (2) corresponds to step (b) of ab-
sorption. Therefore, the notion of GSJ corresponds exactly
to the notion of absorption. If in the definition, we initially
set the potentialφ(Sij) = 1 (thusφ−1(Sij) = 1 as well),
then the notions of GSJ and SJ are isomorphic.

Similarly, we define the notion of generalized semi-join
program.

Definition 6 Let d = {rΦ(R1), . . . , rΦ(Rm)} be a
probabilistic database of a BN with respect to aJT =
{R1, R2, . . . , Rm}. A generalized semi-join program
(GSJP) ford is a sequence of assignment statements of the
form rΦ(Ri) ← rΦ(Ri) ∝ rΦ(Rj) where1 ≤ i 6= j ≤ m.

Definition 7 Let d = {rΦ(R1), . . . , rΦ(Rm)} be a prob-
abilistic database of a BN with respect to a junction tree
JT = {R1, . . . , Rm} such thatrp(R) = rΦ(R1) ×
rΦ(R2) × . . . × rΦ(Rm). Let GSP be a GSJP and
GSP (rΦ(Ri),d) denote the result onrΦ(Ri) after apply-
ing GSP to d. We call aGSP a generalized full reducer
for d if GSP (rΦ(Ri),d) = rp(Ri) for each1 ≤ i ≤ n.

Theorem 2 The local propagation procedure is a general-
ized semi-join programGSP . Moreover, theGSP is a gen-
eralized full reducer which has2n − 2 GSJ statements.

Proof: Let JT = {R1, . . . , Rn} denote a junction tree
transformed from a BN. Letd = {rΦ(R1), . . . , rΦ(Rm)}
be a probabilistic database with respect toJT . The local
propagation procedure consists of two rounds of coordinated
absorptions (message passings) calledCollect-Evidenceand
Distribute-Evidence(Jensen 1996). The procedure begins
by picking any node, sayRi in JT as a root, calling the rou-
tineCollect−Evidence with the rootRi as input, followed



by calling the routineDistribute−Evidence with the root
Ri as input argument as well.

During the execution ofCollect−Evidence(Ri), a node
Rj absorbs a nodeRk only if Rk has absorbed all its de-
scendants, otherwise, the recursive callCollect−Evidence
on Rk is invoked until the nodeRk has no descendants, at
which time the recursive call returns andRk’s parent ab-
sorbsRk. This sequence of absorptions is equivalent to a
postorder traversal of the rootedJT (with Ri as root) such
that whenever a nodeRj of JT is visited in the postorder
traversal, a GSJ ofrΦ[Rk] ← rΦ[Rk] ∝ rΦ[Rj ], whereRk

is a parent ofRj in the rootedJT , is executed. We collect
all the GSJs in sequence and put them in a GSJP denoted
GSP+. There are altogethern − 1 absorptions each corre-
sponding to a node except the rootRi.

After the routineCollect − Evidence is finished, or
equivalently, after all the GSJ statements inGSP+ have
been executed, the local propagation procedure calls the rou-
tineDistribute−Evidence with the rootRi as input. The
children ofRi in the rooted junction tree absorbRi respec-
tively. Then the recursive callDistribute − Evidence is
invoked on each ofRi’s child until this recursive calling
reaches the leaf node in the rooted junction tree. This se-
quence of absorptions is equivalent to a setGSP− of GSJ
statements obtained fromGSP+ by reversing the order of
the steps and changing eachrΦ[Ri] ← rΦ[Ri] ∝ rΦ[Rj ] to
rΦ[Rj ] ← rΦ[Rj ] ∝ rΦ[Ri]. There are altogethern − 1
absorptions inGSP−.

Finally, let GSP denote the GSJP that equals toGSP+

followed byGSP−. TheGSP contains2n − 2 GSJ state-
ments each corresponding to an absorption in the exact order
that the absorption occurred during the two rounds of mes-
sage passings in local propagation. In other words, the local
propagation procedure is actually theGSP . The GSP is
a generalized full reducer ofd since the local propagation
producesp(Ri) after its two rounds of message passings.

5. Conclusion
Without realizing the connection revealed in this paper,
in the late 1980s and the early 1990s, researchers in the
Bayesian net community independently developed and ma-
tured the local propagation technique based on which belief
updating in BNs are conducted (Huang & Darwiche 1996).
However, our study shows that the local propagation method
used in Bayesian nets is in fact a generalized semi-join pro-
gram in relational databases. This connection has several
implications to the current conduct of belief updating in
BNs. (1) The development of semi-join program in rela-
tional databases was originally for the purpose of answering
database queries. Since local propagation can be considered
as a (generalized) semi-join program, this connection im-
plies that we may reconsider the task of belief updating, i.e.,
computing the posterior probabilities, from a database per-
spective. Some initial effort has been reported. In (Wong,
Wu, & Butz 2003), a method which was originally used
in relational database for answering database queries has
been successfully adapted for belief updating in Bayesian
nets so that repetitive applications of the local propagation
procedure can be avoided. (2) Various efforts have been

spent on improving the efficiency of using local propagation
for belief updating (Kjaerulff 1990; Jensen & Jensen 1994;
Kjaerulff 1997; Madsen & Jensen 1998; Olesen & Madsen
2002). Because of the connection between local propagation
and semi-join program, one may look into the literature of
database theory and take advantages of query optimization
techniques used in relational database theory to further im-
prove the efficiency of belief updating in BNs. (3) The fact
that the local propagation is indeed a semi-join program fur-
ther confirms the intriguing relationship between BNs and
relational databases.
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