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Abstract In this paper, we first review the technique of local propa-

gation. We then point out and prove that the local propa-
gation method is in essencesami-joinprogram (Beeriet

al. 1983) which was developed in early 1980s for answer-
ing database queries. This seemingly striking connection

In this paper, we study the local propagation method
used in Bayesian net for belief updating from a rela-
tional database perspective. We point out and prove that
the renowned local propagation method is in fact a (gen-

eralized) semi-join program used in relational database actually does not surprise us much because it has been no-
for answering database queries. This interesting con- ticed in recent years that there exists an intriguing retati
nection implies and suggests that the task of belief up- ship between Bayesian nets and relational databases (Wong
dating can be reconsidered as a database query problem. 1997). This connection inspires us to revisit the problem of

belief updating from the relational database query precess
. ing perspective, and it also implies that the task of belief

_ 1. Introduction ~ updating may be reconsidered as a database query problem.
Bayesian nets has become so successful and popular inThe paper is organized as follows. In Sections 2 and 3, we
the last decade as a tool for processing uncertainty using review the local propagation method in Bayesian nets and
probability theory. A Bayesian net consists of a graphical semi-join programs in relational databases respectiviely.

component which is alirected acyclic graph(DAG) and Section 4, we reveal and prove that the local propagation
a corresponding set @onditional probability distributions  technique currently employed in Bayesian nets is indeed a
(CPDs) whose product yieldgaint probability distribution generalized semi-join program in relational databasertheo

(JPD) over a problem domain (Pearl 1988). In other words, In Section 5, we discuss implication of this connection and
Bayesian net provides a mechanism to graphically represent conclude the paper.
a JPD as a factorization of a set of CPDs. The key problem

!n Bayesian nets ibelief updatingalso Cglleoprobabilistic 2. Local Propagation in Bayesian nets

inference which simply means computing posterior prob-

ability p(X|e), where X is a set of variables anelis the A Bayesian netBN) defined over a se® = {a1, ..., an}

evidence observed (Jensen 1996). of variables is a tupléD, ('), whereD is adirected acyclic
One of the major breakthroughs in the development of graph (DAG) andC' = {p(as;|pa(a;)) | a; € R} is a set

Bayesian nets is the discovery of thecal propagation of CPDs, wherepa(a;) denotes the parents of node in

method for belief updating (Lauritzen & Spiegelhalter 1988 D. The product of the CPDs i@’ defines the JPR(R) as

in Bayesian nets. A Bayesian net is normathoralized follows:

and triangulated so that a junction tree is constructed by

identifying all the maximal cliques in the triangulated jina p(R) = p(ailpa(ar)) - ... - p(an|palan)).

and properly arranging them as a tree. The local propaga-
tion method is then applied on the resulting junction tree
for belief updating; it is by far the dominant method for
belief updating and it has received wide acceptance in the
Bayesian net community. In fact, the local propagation
method has become the de facto standard for belief updat-
ing. Since then much effort has been spent on further im-
proving the efficiency of local propagation (Kjaerulff 1990
1997; Madsen & Jensen 1998).

It is unequivocable that the local propagation technique
is vital to the success of belief updating in Bayesian nets.

Although various methods exist for belief updating, one
of the most popular methods is based on a computational
scheme called local propagation (Lauritzen & Spiegelhal-
ter 1988; Jensen 1996). Local propagatiomas directly
performed on the DAG of a BN, but on a secondary struc-
ture, namely, thgunction tree The DAG of a BN is nor-
mally transformed through moralization and triangulation
into a junction tree on which the local propagation proce-
dure is applied. After the local propagation procedure fin-
ishes its execution, a marginal distribution is computed fo
each node and separator in the junction tree. In the follow-
Copyright © 2004, American Association for Artificial Intelli-  ing, we briefly review how local propagation works using a
gence (www.aaai.org). All rights reserved. running example.
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Figure 1: (i) The Asia BND. (ii) The moral grapli/p of D

in (i). (iii) The triangulation oft/p in (ii). (iv) The resulting
junction Tree of the BN in (i). (v) The hypertree representa-
tion of the junction tree in (iv).

Recall the Asia travel BN defined oveR
{a, b, ¢, d, e, f, g} from (Lauritzen & Spiegel-
halter 1988). Its DAG D is shown in Fig-
ure 1(i), the CPDs specified for each node M
are {p(a)p(b), plcla), p(db), plelp), p(fled),
p(glef), p(h|f)}. The JPD defined by the above CPDs
is: p(R) = p(a) - p(b) - p(c|a) - p(db) - p(e[b) - p(flcd) -
p(glef) - p(h|f). The overall structure of the local propaga-
tion technique consists of the following 3 steps (Huang &
Darwiche 1996):

(1) Graphical transformationThe DAG, for instance, the
one in Figure 1 (i), is first transformed to itsoral graph
denoted/{p, by connecting all parents of each nodeZin
and dropping the directionality of all directed edges. The
resulting moral grapli/p is shown in Figure 1 (ii). This
moral graphi{p is thentriangulated by connecting two
nonadjacent nodes in every cycle of length four or greater
in Up. In our example, one possible triangulation is to
connect nodeg ande, the resulting triangulated graph is
shown in Figure 1 (iii). Finally, the junction tree, shown
in Figure 1 (iv), is constructed by identifying all the (maxi
mal) cliques in the triangulated graph in Figure 1 (iii) and
properly arranging them to satisfy the condition of junc-
tion tree. A more formal treatment on triangulation and
building junction trees can be found in (Kjaerulff 1990;
Huang & Darwiche 1996).

(2) Initialization. Every CPDp(a;|pa(a;)) of the BN will
be assigned to a unique node in the junction tree to form a
potential if the context of the node contaifis;} U pa(a;).

If no CPDs can be assigned to a ndden the junction tree,

we form a unity potential foh; defined asy(h;) = 1. In

our example, the following potentials will be constructed
with respect to the junction tree in Figure 1 (iw{ac)
p(a) - plcla), ¢(bde) = p(b) - p(dle) - p(e|b), dledf) =
p(fled), o(def) = 1, 6(fh) = p(h|f), dlefg) = plg|fe).

In the meantime, a unity potential is formed as well for
each separator of the junction tree in Figure 1 (iv) as fol-
lows: ¢°(c) = 1, ¢%(de) = 1, 6°(df) = 1, 5 (ef) = 1,
#°(f) = 1. The superscripts indicate that these potentials
are for the separators of junction tree, differentiatingnth
from those potentials for the nodes in the junction tree.

(3) Local propagation. The local propagation is a com-
putational scheme based on a primitive operation calted
sorption(or message passihgvhich we review below.

Definition 1 Consider two adjacent nodés, R;, and their
intersectionS;; in a junction tree with their respective po-
tentials p(R;), #(R;), and¢(S;;). That R; absorbsR;
(or a message passes froRy to R;) means performing
the following: (a) Updatings®(S;;) by setting¢®(S;;) =
Yo s O(R) . .

ey (b) Updatingo(R;) by setting(R;) =
O(R;) - 5(Siy)-

The local propagation method is actually a coordinated
sequence of absorptions. It begins by picking any node in
the junction tree as root, and then perform a sequence of
absorptions divided into two passes, namely, @wlect-
Evidencepass, and thBistribute-Evidencgpass. The over-
all control structure for the local propagation method is as
follows (Huang & Darwiche 1996):

PROCEDURE Local-Propagation

1: Choose a nodg; in the junction tree as root.
2: Unmark all nodes in the junction tree.
Call Collect-Evidencgr;).
3: Unmark all nodes in the junction tree.
Call Distribute-Evidencér;).
}

During the Collect-Evidencepass, each node in the junc-
tion tree passes a message to its neighbor towards the root’s
direction, beginning with the node farthest from the root.
During theDistribute-Evidencgass, each node in the junc-
tion tree passes a message to its neighbor away from the
root’s direction, beginning with the root itself. Ti@ollect-
Evidencepass causes—1 messages to be passed. Similarly,
theDistribute-Evidencepass causes another- 1 messages

to be passed. Altogether, there are exdet— 1) messages

to be passed (Huang & Darwiche 1996; Jensen 1996).
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Figure 2: The local propagation procedure applies to the
junction tree in Figure 1 (iv) witlle f as root.

Consider the junction tree for the Asia BN in Figure 1
(iv). Assume the local propagation procedure is applied to
the junction tree with the nodée f picked as root. The ex-
ecution details of the local propagation procedure canbe vi
sualized and depicted in Figure 2. We deliberately draw the
junction tree as a rooted tree with raftf on top. For sim-
plicity and clarity, we omit the drawing of the separators
between adjacent nodes in the junction tree. The local prop-
agation procedure is initiated at the rabtf with the call-
ing of Collect-Evidencethe solid small arrows with num-
bers attached indicate the sequence of absorptions aogurri
during theCollect-Evidencepass; the dashed small arrows



with number attached indicate the sequence of absorptions
occurring during théistribute-Evidenceass. Each arrow,
regardless of solid or dashed, indicates an absorption (or
message passing) taking place during the execution of local
propagation.

After the local propagation procedure finishes its execu-
tion, the initial potential attached to each node and seépara
of the junction tree is now transformed into a marginal dis-
tribution. In other words, we obtain the marginalgc),
p(cdf), p(bde), p(def), p(fh), p(efg) for each node in the
junction tree, and the marginaigc), p(df), p(de), p(f),
p(ef) for each separator of the junction tree. The junction
tree is now considered to be incansistentstate (Jensen
1996).

3. Semi-Join Programs in Relational
Databases

In this section, we review the notion of semi-join programs
in relational database theory. We begin the discussion by
introducing some pertinent notions. Readers are referred
to (Maier 1983) for more details of relational database the-
ory.

We define adatabase scheméo be a setD
{Ry, ..., Ry} of sets of attributes whetg;"_; R, = R.
EachR; is called arelation schemelf 1, ..., r, are rela-
tions over the relation schemé, ..., R,, respectively,
we then calld = {ry, ..., r,} adatabaseover D. We
sometimes write;[R;] to explicitly indicate that the rela-
tion r; is over the schem®&,;. By R;R;, we meanR; U R;.
The relational operators andr< are used in this paper in
their usual sense gsojectandnatural join operators.

A hypergraph is a paifN,H), whereN is a finite set
of nodes (attributes) an#{ is a set of edges (hyperedges)
which are arbitrary subsets df (Beeriet al. 1983). If the
nodes are understood, we will ugeto denote the hyper-
graph(N, H). We say an elemerit; in a hypergraph is
atwig if there exists another elemeht in 7, distinct from
hi, suchthafU(H —{h;}))Nh; = h;Nh;. We call any such
h; abranchfor the twigh;. A hypergrapt? is ahypertree
if its elements can be ordered, say, hs, ..., h,, SO thath;
is a twig in{hy, ha,...,h;}, fori = 2,...,n — 1. We call
any such ordering aypertree (tree) construction ordering
for H. Itis noted for a given hypertree, there may exist mul-
tiple tree construction orderings. Given a tree constoncti
orderinghy, ho, ..., h,, we can choose, for ea¢hfrom 2 to
N, an integer;j(i) such thatl < j(i) < i —1andh; is
a branch forh; in {hy, ha, ..., h;}. We call a functionj()
that satisfies this conditionlaranchingfor the hypertreé+
with hq, ho, ..., h,, being the tree construction ordering. For
a given tree construction ordering, there might exist mldti
choices of branching functions. Given a tree construction
ordering hq, ho, ..., h,, for a hypertree{ and a branching
functionj(7) for this ordering, we can construct the follow-
ing multiset:E(H) = {hj(g)ﬁhg, hj(g) Nhs, ..., hj(n) ﬂhn}.
The multisetC(H) is the same for any tree construction or-
dering and branching function &f (Beeriet al. 1983). We
call L(H) theseparator sebf the hypertreé+.

A database schemP can be naturally viewed as a hy-

Tqg < Tqg XT5,
To < To9 X T,
Te < T'e X T4,
s < TI's X T9.

e

Table 1: A SJP.

pergraph (Beeréet al. 1983), each of whose hyperedges is

a relation scheme ib. A database schem® is acyclicif

its corresponding hypergraph is acyclic. Therefore, we use
D to denote both database scheme and its hypergraph repre-
sentation in the following unless otherwise specified.

Figure 3: The hypergraph representation of the database
schemeD in (i) and one of its junction tree representation

in (ii).

Example 1 Consider the database schetbe= {R;
ac, Ry = cdf, R3 = bde, Ry = def, Rs = fh, Rg =
efg}. D can be viewed as a hypergraph shown in Figure 3
(). It can be verified thaD is an acyclic database scheme.
It has been shown that an acyclic hypergraph may corre-
spond to multiple junction treé representations (Beeeit

al. 1983), for example, the one in Figure 3 (ii) is a junction
tree representation dd with all the separators omitted for
clarity.

The following definition of semi-joinis adapted from
(Beeriet al. 1983).
Definition 2 Let r; andr, be two relations over schemes
R, and Ry, respectively. Consider the following two state-
ments in sequence: (1) = 7, ng, (r2), (2) 71 = r1 7.
The semi-join(SJ) ofr; andr,, denotedr; o« rs, is de-
fined as the resulting relation in statement (2). That is,
r1 X rg =171 X TRy AR, (T2)-
Example 2 Consider a databasé = {ry, ..., r¢} over
the database scheni2 in Example 1. The SJ of, « ¢
can be obtained by: (1) compute= Tes(rs), Whereef =
R4 N Rg, and (2) computes = 74 > r .
Definition 3 (Maier 1983) Letd = {ry, ..., r,} be a
database. Asemi-join program(SJP) ford is a sequence
of assignment statements of the forn— r; o r;.

Example 3 Consider the databaskin Example 2. The se-
guence of SJs shown in Table 1 is a SJP. By applying the SJP
in Table 1 to the databageupdated relations,, r,, r¢ and

r5 Will be obtained.

A junction tree is also called a join tree in database theory.



Consider a databagke= {rq, ..., r,} over the database
schemeD = {R;, ..., R,} such that the natural join of
ri[R1], ..., rn[Ry] yieldsr[R], thatis:

r[R] 1)

The database community has dealt with the following prob-
lem in the study of answering database queries.

“Can the projections of[R] on Ry, ..., Ry, i.e.,
7R, (1), ..., mr, (r) be computedwithout obtaining
r[R] from Eq. (1) in the first place?

The answer to the above problemyissif the database
schemeD is acyclic. A special SJP, calledfall reducer
was developed to obtain eaef, () from Eq. (1) without
obtainingr[R] in advance. Furthermore[R] = mg, (1)
. XITR, (7’)

Definiton 4 Letd = {ry, ..., r,} be a database over
D ={Ry, ..., R,} andSP be a SJIP. Leb P(r;,d) de-
note the result om; after applyingSP tod. We callSP a
full reducerfor d if SP(r;,d) = g, (r) foreachl <i < n,
wherer = r; ... X17,.

Tl[Rﬂ > Tn[Rn]

It is well known in the database community that a full
reducer doemotalways exist for an arbitrary database but it
doesexist for a database if and only if the database scheme
is acyclic (Beeriet al. 1983). Moreover, the full reducer
for an acyclic database can be constructed systematically a
described below.

Letd = {r, ..., r,} be a database over an acyclic
database schem® = {R;, ..., R,}. LetJT denote a
junction tree forD. We can pick anyR; of D as the root
of JT and consider the/T as an oriented tree with root
R;. Perform gpostorder traversabf J7'. Whenever a node
R; of JT is visited, a SJ of the relation, [Ry], whereRy,
is a parent ofR; in JT, with the relationr;[R;] for the
nodeR;, i.e.,r, < 7, o 14, iIs added to a SJP denoted
SP*. Let SP~ be the SJP obtained fro$P+ by revers-
ing the order of the steps and changing each- r; o r;
tor; « r; oc r;. Finally, let.SP denote the SJP that equals
to SP* followed by SP~. The following Theorem is well
established in database theory.

Theorem1 (Maier 1983) Letd {ri, ..., ra}

be a database over an acyclic database sch&me=
{R1, ..., R,}. LetJT be a junction tree representation
of D. The SJPSP obtained as described above is a full
reducer ofd. Moreover,SP has2n — 2 SJ statements.

SpPt
l.ry «—r4y xrs,
2.7'2 — T X T,
3.7y — 19 X T3,
4.7y «— 14 X719,
5.r4 «— ry xrg,

SP~
6.7 < rg X T4,
T.79 < 19 X T4,
8.75 «— r5 X T2,
9.7r1 «— r1 X719,
10.7'3 — T3 XTry4.

SP=

Table 2: The SIBP = SP+, SP~.

Example 4 Consider the database schemén Example 1
as shown in Figure 3 and a databasever D. SinceD is

(def R,
2N =
e
3 Rg

Figure 4: The junction tree witl, as root. The numbers
on the edge correspond to the statements in the semi-join
programSP in Table 2.

acyclic, we can construct a semi-join program that is a full
reducer. Consider the junction tree in Figure 3 (ii), we pick
say Ry, as the root and redraw the junction tree as an ori-
ented tree rooted dt, in Figure 4. The SIB P is shown

in the left column of Table 2, the SIPP~ is in the right
column of Table 2. The complete S3® is SP™ followed

by SP—,i.e. the 10 SJ statements in Table 2. Apply#g

to d, we obtainr; = g, (r) for 1 <i <6.

One may immediately recognize the similarity between
the diagrams in Figure 4 and in Figure 2. This similarity sug-
gests that there exists some intriguing relationship betwe
the semi-join program and the local propagation procedure.

4. Local Propagation is a Generalized
Semi-Join Program

In this section, we reveal and prove that local propagation
is in fact a generalized semi-join program. We begin the
exposition by introducing some notation.

Let z be an instantiation oX. The value ofA € X in
x, denoted by4!®, is theprojectionof = onto A. Similarly,
we can define the projection afonto a subsef C X. An
instantiationz is the projection ofr onto Z, denotedz =
zZ'= ifforeachA € Z, its value inZ is identical to that of.
Let ¢(R) be a potential an& C R. Themarginalof ¢(R)
on X, denoted)(X), is a potential onX such thaip(X) =
Y r_x ®(R). Leto(X) andp(Y') be two potentials. Their
productis a potentialp(1V), written as¢(W) = ¢(X) -
o(Y), whereW = XY, such that for each value of W,
d(w) = ¢(X'*) - p(Y'*). We define thenversefunction
of ¢(X), denotedp—!(X) by settingg~t(z) = 1/¢(x) if
#(x) # 0, andgp~1(z) = ¢(z) otherwise, for each value
of X. Obviously,p~1(X) is also a potential.

AT A, A fon
t11 tio eeens t1im (bR(tl)
tor  toz ... tom  @Or(t2)
ro(R) = )
ts1 tsa  aeeens tsm ¢R(ts)

Table 3: The relatiors(R) represents a functiopr on
R={A,As, ..., An}.



Note that each potentigi(R) overR = {A;, ..., Ay}
can be represented as a relation (Wong 1997) dengtefd)
as shown in Table 3. Each row iz (R) represents an in-
stantiation of R. The functiong(R) defines the values of
the attributef,,, in relationrs (R). The inverse function of
#(R), namely,»~1(R) can also be represented as a relation
denotedrs-: (R). One may regard that the relation repre-
sentation of a potential is synonymous with the potential it
self. For instancers(R) is synonymous with the potential
¢(R). We will adopt this relational view of potentials when
discussing the local propagation procedure.

We introduce notations for two relational operators corre-
sponding to marginal and product of two potentials (Wong
1997). LetX be a subset of:. The operator ofarginal
is denoted by the symbdl. The marginal ofp(R) on X,
denotedy(X), is itself a potential and can be represented
by a relation denotedIx (re(R)), Which is synonymous
with the marginaky)(X) (Wong 1997). Consider potentials
d(X), o(Y) andp(WW) such thap(W) = ¢(X) - o(Y). Let
their respective relation representationsrhé¢ X ), re(Y),
andrg(W). The operator oproduct joinis denoted by
the symbolx. The expressiop(W) = ¢(X) - ¢(Y) can
be conveniently expressed using the product join symbol as
re(W) =re(X) x re(Y). The relationes (W) is synony-
mous with the potentiap(WW) (Wong 1997).

We now show that the local propagation method is a gen-
eralized semi-join program. Consider a BN defined dker
with its DAG D. SupposeD is transformed into a junction
treeJT = {Ry, ..., R, }. Recall the initialization step in
the local propagation method, in which a potential is formed
for each node and separator .61. The JPDp(R) can be
expressed as follows:

which meansp(R) is the product ofp(R;). Sincep(R),
o(R;) in Eq (2) can be represented as relatian$R),
ro(R;), i = 1,...,m, synonymously, we thus can repre-
sent Eq. (2) usmg the product join operator as follows:

I'p(R) I'q)(Rl) X Iy (RQ) . X I‘q>( ) (3)

The above equation indicates that one can conslder
{ro(R1), ..., ro(R,)} as a database over the database
schemeJT = {R;, ..., R,,}. We further calld a proba-
bilistic databaseof the BN with respect to the junction tree
JT.

The Bayesian net community has dealt with the following
problem in the study of belief updating.

Can the marginals op(R) on Ry, ..., R,, i.e.,
p(R1), ..., p(Ry), be computedwithout obtalnlng
p(R) from Eq. (2) in the first place? Or equivalently,
can the marginals of,(R) on Ry, ..., R, ie.,
g, (rp(R)), ..., g, (rp(R)) be computedvithout
obtainingr, (R) from Eqg. (3) in the first place?

The question imposed above is similar to the question

the so-called local propagation procedure which seemingly
has nothing to do with SJP. However, in the following, we

will reveal and prove that the renowned local propagation
method is indeed a generalized SJP.

The local propagation procedure is a computational
scheme based on the primitive operatapsorption We
first recall the notion of “absorption” (anessage passing
in local propagation. Consider two adjacent no@gsR,;,
and their intersectiofy;; in a junction tree with their respec-
tive potentialsp(R; ), #(R;), andp(S,;). ThenR; absorbs
R; by performing the following: (a) updating®(S;;) by

. s Yon s H(R) )
setting ¢~ (S;;) = e (b) updatingé(R;) b
settingg(R;) = ¢(R;) - ¢°(Sij).

Analogous to the definition of semi-join in databases, we
define the notion ofeneralized semi-join

Definition 5 Letry(R;), ry(R;), andr,(S;;) be three rela-
tions representing potentisd§ R;), ¢(R;), anqu(Sij), re
spectively, where5;; = R; N R;. Consider the following
two statements in sequence: €1).S;;) = Ils,, (rg(R;)) x
I‘¢—1(Sij), (2) I‘¢(Ri) = rd)(Ri) X I‘¢(S ) The gen-
eralized semi-joi(GSJ) ofr,(;) and r¢,( ;). denoted
ro(R;) o ry(R;) is defined as the resulting relatmja( i)
in statement (2) above. That is;(R;) x rg(R;) =
rg(R;) x (Ils,; (re(R;)) X rs-1(53;)).

In the above definition, statement (1) corresponds to step
(a) of absorption; statement (2) corresponds to step ()-of a
sorption. Therefore, the notion of GSJ corresponds exactly
to the notion of absorption. If in the definition, we initiall
set the potentiap(S;;) = 1 (thus¢~1(S;;) = 1 as well),
then the notions of GSJ and SJ are isomorphic.

Similarly, we define the notion of generalized semi-join
program.

Definition 6 Let d {re(R1), ..., re(Ry)} be a
probabilistic database of a BN with respect ta/&
{R1, R2, ..., Ry}. A generalized semi-join program
(GSJP) ford is a sequence of assignment statements of the
form I'q)(Ri) — I'<I>(Rl) X I'<I>(Rj) wherel <4 #j <m.

Definition 7 Letd = {rs(R1), ..., ro(Rm)} be a prob-
abilistic database of a BN with respect to a junction tree
= {R1, ..., Ry} such thatrp(R) = re(R;1) x
re(R2) x ... X ro(Ry). Let GSP be a GSJP and
GSP(rs(R;),d) denote the result ong (R;) after apply-
ing GSP tod. We call aGSP ageneralized full reducer

fordif GSP(re(R;),d) = rp(R;) foreachl <i < n.

Theorem 2 The local propagation procedure is a general-
ized semi-join prograni:S P. Moreover, the5S P is a gen-
eralized full reducer which has, — 2 GSJ statements.

Proof: Let JT = {R;, ..., R,} denote a junction tree
transformed from a BN. Led = {ro(R;), ..., re(Rmn)}

be a probabilistic database with respect/tt. The local
propagation procedure consists of two rounds of coordihate

imposed in the preceding section for answering database absorptions (message passings) calletlect-Evidencand
gueries which was solved by SJP. The answer to the above Distribute-EvidencgJensen 1996). The procedure begins

problem is alsoyes The dominant technique used in the
Bayesian net community for solving the above problem is

by picking any node, saR; in JT as a root, calling the rou-
tine Collect — Evidence with the rootR; as input, followed



by calling the routineDistribute — Evidence with the root
R; as input argument as well.

During the execution of ollect — Evidence(R;), a node
R; absorbs a nod#,;, only if R, has absorbed all its de-
scendants, otherwise, the recursive €alllect — Evidence
on Ry is invoked until the node&?;, has no descendants, at
which time the recursive call returns atit),’s parent ab-
sorbsR. This sequence of absorptions is equivalent to a
postorder traversal of the rooted” (with R; as root) such
that whenever a nod®&; of JT is visited in the postorder
traversal, a GSJ afg[Ry] < ro[Ri] « ro[R,], whereRy,
is a parent ofR; in the rootedJT, is executed. We collect

all the GSJs in sequence and put them in a GSJP denoted

GSPT. There are altogether — 1 absorptions each corre-
sponding to a node except the radt

After the routineCollect — Evidence is finished, or
equivalently, after all the GSJ statementsGi$ P™ have
been executed, the local propagation procedure calls the ro
tine Distribute — Evidence with the rootR; as input. The
children of R; in the rooted junction tree absor respec-
tively. Then the recursive calDistribute — Evidence is
invoked on each ofR;’s child until this recursive calling
reaches the leaf node in the rooted junction tree. This se-
guence of absorptions is equivalent to aGétP~ of GSJ
statements obtained froS P+ by reversing the order of
the steps and changing each{R;] < ro[R;] « ro[R;] to
ro|R;] « ro[R;] « re[R;]. There are altogether — 1
absorptions ilGSP—.

Finally, let GS P denote the GSJP that equalsGs& P*
followed by GSP~. TheGSP contains2n — 2 GSJ state-

ments each corresponding to an absorption in the exact order

that the absorption occurred during the two rounds of mes-
sage passings in local propagation. In other words, the loca
propagation procedure is actually tt&5P. The GSP is

a generalized full reducer af since the local propagation
produce(R;) after its two rounds of message passings.

5. Conclusion

Without realizing the connection revealed in this paper,
in the late 1980s and the early 1990s, researchers in the
Bayesian net community independently developed and ma-
tured the local propagation technique based on which belief
updating in BNs are conducted (Huang & Darwiche 1996).
However, our study shows that the local propagation method
used in Bayesian nets is in fact a generalized semi-join pro-
gram in relational databases. This connection has several
implications to the current conduct of belief updating in
BNs. (1) The development of semi-join program in rela-
tional databases was originally for the purpose of answerin
database queries. Since local propagation can be congidere
as a (generalized) semi-join program, this connection im-
plies that we may reconsider the task of belief updating, i.e
computing the posterior probabilities, from a database per
spective. Some initial effort has been reported. In (Wong,
Wu, & Butz 2003), a method which was originally used

in relational database for answering database queries has

been successfully adapted for belief updating in Bayesian
nets so that repetitive applications of the local propagati
procedure can be avoided. (2) Various efforts have been

spent on improving the efficiency of using local propagation
for belief updating (Kjaerulff 1990; Jensen & Jensen 1994;
Kjaerulff 1997; Madsen & Jensen 1998; Olesen & Madsen
2002). Because of the connection between local propagation
and semi-join program, one may look into the literature of
database theory and take advantages of query optimization
techniques used in relational database theory to further im
prove the efficiency of belief updating in BNs. (3) The fact
that the local propagation is indeed a semi-join program fur
ther confirms the intriguing relationship between BNs and
relational databases.
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