Package Planning with Graphical Models

Y. Xiang and M. Janzen
University of Guelph, Canada

Abstract

We consider a novel class of applications where a set of ac-
tivities conducted by a group of people over a time period
needs to be planned, taking into account each member’s pref-
erence. We refer to the decision process that leads to such a
plan as package planning. The problem differs from a num-
ber of well-studied Al problems including standard Al plan-
ning and decision-theoretic planning. We present a compu-
tational framework using a combination of activity grammar,
search, and graphical models. We show that the computation is
tractable when the problem parameters are reasonably bounded.

I ntroduction

We consider a novel class of applications where a set of activ-
ities conducted by a group of people over a time period needs
to be planned taking into account the preference of each mem-
ber. We refer to the decision process that leads to such a plan
as package planning. Examples of package planning include
the following:

A family or a group of college students living in a dormitory
shares a kitchen and shops for grocery collectively. The items
to buy depend on a meal plan between consecutive shopping
trips. Some meals are individual, such as a snack, but others
are collective, such as a family supper. Each member has his
or her preference of what and when to eat or drink. There are
also budget constraints. Automated meal planning plans meals
that satisfies these preferences and generates a shopping list.

Cable and satellite TV channels supply many programs
daily. A program may be broadcast when a viewer is busy.
Even when the viewer is free, he or she may prefer to record
the program through a VCR and view it later so that uninterest-
ing commercials can be fast forwarded. Members may prefer
different viewing times during the day, but may view a pro-
gram together sometimes. Each member has different tastes
for different programs. A package planning system can select
programs to record for all members taking into account indi-
vidual preference in content and time, and to plan who views
what and when.

A third example is to plan a group tour. It has a main
travel path (e.g., via a cruise ship) but at different stops sub-
groups may choose to tour different places (e.g., some go
shopping and others visit museums). Planning ahead and pre-
arrangement of transportation will ensure a smooth and more
cost-effective tour. A package planning system can select both
the main tour route and stops for the whole group, as well as
individual tour diversions for subgroups.

We are unaware of existing work that addresses package
planning computationally. In this paper, we present a formal
framework for solving this problem.

Copyright © 2004, American Association for Avrtificial Intelligence
(www.aaai.org). All rights reserved.

Package Planning Domains

We refer to the group of people involved as a family and each
member of the family as a user. Formally, we denote the fam-
ily by a set F" of users.

The activities of users to be planned occur over a finite
time period. The period is represented by non-overlapping
intervals (not necessarily adjacent) of some granularity ap-
propriate to the problem domain. For any given user, no
more than one activity occurs in each interval. Formally, we
denote the planning time period by a sequence of intervals
T = {to,t1,...}. In meal planning, we can have

T = {Mon morning, Mon noon, Mon a fternoon, Mon evening, ...}.

Possible activities of users are denoted by a set A. Each ele-
ment of A is referred to as an activity, such as having a turkey
meal, viewing a given TV program, or touring a given place.

A package is a set K where each element is a triplet (a, t,r)
witha € A, t € Tandr C F. We refer to (a,t,7) as a
planned activity for users . Note that » could be a single user,
a subset of the family, or the whole family. For instance, in
meal planning, (turkey meal, Sunday evening, F) represents
a turkey meal as the supper for the family on Sunday. In
TV planning, (Titanic, Saturday afternoon, Lisa) stands for
a Saturday afternoon activity for Lisa, where we have written
{Lisa} as Lisa for simplicity. Similarly, (Great Wall, Mon-
day, David) has the obvious meaning in tour planning. Note
that it is not necessary for K to contain a planned activity for
each t € T and for each user r € F' (a user r may prefer a null
activity in a given interval). The collection of all possible
packages for a family is denoted by X and called the package
space.

We assume that each user has his/her own preference about
different packages. For each user r, a utility function p,. is
defined over the package space K and in the range [0, 1]. We
denote the set of utility functions, one for each user in F', by
HF.

Def 1 summarizes the above to define a package planning
domain and a package planning problem.

Definition 1 A package pl anni ng domai n consists of
atuple (F,T,A,K,ur). F is aset of users. T is a set of
nonoverlapping time intervals. A is a set of activities. K is
the collection of all possible packages over F', T and A, and
pr is aset of user utility functions. A package pl anni ng
pr obl emis to find a package K* in X such that

1 o 1
WZHT(K) —IH)%XWTEZFHT(K); (1)

reF
where maximization is over K of length |T'|.

That is, the goal of package planning is to find a package that
best suits all users in a family. The average utility among
users is assumed, although other alternatives are possible (e.g.,
weighted average).

Individual Preference

A package consists of a set of planned activities. Some are
planned for only one user and some for several users. In order
to evaluate alternative packages effectively, we assume that a
user’s preference towards a given package is independent of
other users’ preferences towards the same package. That is,
we do not allow the preference such as “If Lisa likes it, then
I like it too.” We refer to this assumption as independence of
individual preference. We present its implication below.

Given a planned activity and a user, we define the user’s
perspective for such an activity as a projection of the triplet.
For example, the projection of (turkey meal, Sunday evening,
F) onto the user Lisa is (turkey meal, Sunday evening, {Lisa}).
Each planned activity can be projected to each user with the
convention that (a,t,r) projected to ', where r N r' = 0,
yields a null triplet. Given a package K and a user r, the
package obtained by projecting each planned activity in K to
r is called the projection of K to r and denoted by K. Note
that the projection of K to r is a sequence of planned activities
for » only. Given K and a user r, the projection of K to r
can be similarly defined, which we refer to as the projected
package space and denote by KC,.

Each user in a family has his/her own preference over differ-
ent activities and how they are sequenced. Lisa may like fried
chicken but David does not. Both may like turkey. David may
have turkey three days in a row but Lisa only wants to have
it once in a while. Given independence of individual prefer-
ence, for each user r, its utility function u,. is defined over the
projected package space K,.. Therefore, the package planning
problem can be reformulated as to find a package K* over T
such that

LS (K =max = S (K. (@)

|F‘ reF Kk |F| reF

In summary, independence of individual preference allows
more focused and efficient computation.

Distributed Package Planning

The package planning task is carried out by multiple agents*
consisting of one user agent for each user and a manager
agent. We denote the agent for user r as g, and the manager
asg.

The manager g is responsible for generating alternative
packages from K. For each package K, g sends K, to each g,..
User agent g, maintains the utility function p, and uses it to
evaluate K. The result u.,.(K,.) is then sent back to g. When
g receives the reply from each g,., it integrates replies into a
final evaluation of K. The best K is selected after enough
alternatives are evaluated.

These agents work for different principals. A meal manager
is an agent in a smart house. A TV program manager is an-
other agent in the smart house. Each user agent g,. serves one
user r in the family. The meal planning agent for user » may
be the same agent who does also TV planning for r, since the
tasks are quite similar. This same agent may also do tour plan-
ning for . On the other hand, a tour manager agent g works
for a travel agency and provides service to users from many

1\We use the term agent in a broad sense.

different households. The assumption that agents work for
different principals implies a distributed (versus centralized)
implementation of package planning.

Space Reduction with Grammar

To select the best package, each projected package needs to be
evaluated by a corresponding user agent. The desirability of
a (projected) package to a user depends partially on the desir-
ability of individual activities in the package (and partially on
how the activities are sequenced, which we consider in Sec-
tions and). We consider the complexity of the activity space
here:

In meal planning, a meal may consist of a number of foods.
For example, a dinner may consist of steak as the main dish,
baked potato as one side and steamed broccoli as another, Cae-
sar salad, wine as a drink, and ice cream as desert. Denote the
set of all foods by F'd and its cardinality by | F'd|, the number
of possible meals is O(2!¥?), the cardinality of the activity
space (consisting of both primitive activities such as a food
and composite activities such as a multi-food meal). As |Fd|
can be well over a hundred, this is clearly intractable to pro-
cess. Similar situations arise in TV planning and tour planning
as well. In general, we need to consider composite activities
in package planning.

To reduce the number of composite activities to be consid-
ered, we observe that composite activities that users prefer fol-
low certain structures. By requiring a composite activity to
follow the structural constraint, we can focus the computation
on preferable activities and reduce the number of activities to
be considered significantly. We explore the use of a gram-
mar to specify such structures. An example meal grammar
is shown in Fig 1 in Backus-Naur form (BNF) and the above
steak dinner is a possible meal generated from the grammar.
We restrict the grammar to disallow the head of a rule to ap-
pear also at the tail.

< start > — < breakfast > | < dinner >

< break fast > — breakfast cereal

< dinner > — < steak dinner > | < stir fry dinner >

< steak dinner > — steak < side > < side > < drink >
< salad > < desert >

< stir fry dinner > —» stir fry < drink > < desert >

< side > —» steamed broccoli | baked potato | french fries

< drink > — wine | Coca Cola | water

< salad > — garden salad | Caesar salad | Greek salad

< desert > — chocolate cake | ice cream | fresh fruit

Figure 1: An example meal grammar

Such a grammar can be equivalently encoded into an AND-
OR tree Y. Denote the maximum depth of Y by d. When Y’
contains only OR nodes, a composite activity is a leaf in Y.
If the maximum branching factor for OR nodes is b, the num-
ber of leaves is O(b?). When Y contains both AND and OR
nodes, there is no alternative at an AND node and a composite
activity is a set of leaves. If the maximum branching factor for
AND nodes is ¢ and the number of AND nodes in a maximum
path from the root to a leaf is m, then the number of composite
activities is between O(b9=™) and O(b?~™ x ¢™) depending
on how close the AND nodes are from the root. When d and
m are small, O(b4~™ x c¢™) is tractable. For the example of
Figl,b=4,¢=6,d =4 m =1, and |Fd| = 15. The

grammar thus reduces the complexity from the order of 32768

to 384.
Package Search

The desirability of a (projected) package to a user also depends
on how activities in the package are sequenced. For many,
eating the same foods in a row is undesirable. Hence, pack-
age selection must consider the dependence among activities
at different time intervals. In other words, we need to consider
the desirability of both individual activities in a package and
them as a whole. However, given A and T', the number of
packages is O(|A|'T"): an intractable search space.

We assume that the desirability of an activity depends only
on the activities in the past but not those in the future. We
refer to this assumption as future independence of activities. In
other words, the contribution of a partial package (between ¢
and ¢ to the utility of the package cannot be changed by the
activities from ¢, onwards. In Section , we present a graphical
model representation of the dependence between an activity at
consideration and activities in the history. As will be seen, this
assumption simplifies the representation.

Although the desirability of an activity does not depend on
future activities, once the activity is determined, it does af-
fect the desirability of future activities. Therefore, the future
independence assumption does not reduce the complexity of
the package search space. Greedy search is commonly used in
learning probabilistic graphical models, e.g., (Cooper & Her-
skovits 1992; Heckerman, Geiger, & Chickering 1995). To
make the computation tractable, we apply greedy search as an
approximation method. We search for the best activity in each
time interval, considerating dependence only on the past ac-
tivities. For example, to plan the fifth breakfast of a week,
we only evaluate each activity in A given the meals that have
been planned so far for the first four days (and the preceding
meal history). This allows us to reduce the package search
space to the order of O(JA| |T'|). The effect of this choice
is the replacement of the package search space K by a sub-
space K' C K in Eqgn (2). Preliminary experiments showed
no significant impact of this replacement on the quality of the
planning outcome.

Cost and Desirability

The utility of an activity to a user depends on a number of fac-
tors. We group these factors grossly into desirability and cost,
where desirability concerns nothing about cost. We denote the
cost related utility function of a user r by ¢, and its desirabil-
ity related utility function by u,.. A meal that is delicious and
expensive has both high desirability and high cost. Its overall
utility depends on the relative importance of desirability and
cost to the user(s), i.e., u, = a, ¢ + (1 — ;) u,, where
a constant (0 < «, < 1) encodes the relative importance.
A package planning problem can then be stated as finding a
package K* such that

Il?l ; o (K7) = max Il?\ rez;[arcr(x) + (1 — ar)un (K], ®
Note that the package search is over subspace K'. We have
assumed linear utility combination, although other combina-
tions are possible (Keeney & Raiffa 1976).

We assume that u,-(K,) can be aggregated from the util-
ity of each planed activity (a',t,r) in K,, which we de-

note as wu.(a',t,r). Furthermore, u.(a',t,r) can be ag-
gregated from the utility of each primitive activity a con-
tained in the composite activity a’. We refer to this assump-
tion as utility decomposition (see (Keeney & Raiffa 1976;
Bacchus & Grove 1995) for more general discussion). For
example, the utility of a meal package K. can be aggregated
from the utility of each meal for r and the utility of each meal
can be aggregated from the utility of each food contained. Our
framework does not dictate the form of aggregation, although
averaging can be a simple option. Note also that the aggre-
gation does not hinder representation of utility dependence
among activities, as will be clear below.

For each user r, a user agent g, maintains «,.. Based on
the above method, g, must maintain user r’s desirability
for each primitive activity a. The desirability of a primitive
activity can depend on how much the user likes the activity
in general, what other primitive activities are contained in
the same composite activity, what activities were conducted
in the recent past, and other context factors. For example,
the desirability of a food in a particular meal depends on the
user’s taste about the food, other foods in the same meal, what
foods the user consumed recently, and the time of the day and
the season as context factors.

We represent each user’s desirability about activity a as a
utility function from a set of factors to [0, 1]. Let u’ be the
desirability of user r for the ith primitive activity a®. Let 7 be
the set of factors that u% depends on. Then % can be written
as u’ (a’|m"). For example, suppose a’ = french fries (ff)
and 7* = {backed potato (bp), steak (s),wine (w)}. Then
“never serve backed potato and french fries together” can be
expressed by ui(ff = ylbp = y,s,w) = 0. “French fries
are better with steak when wine is served as a drink” can be
represented by wi(ff = y|bp = n,s = y,w = n) = 0.6 and
u,(ff =ylbp=n,s=y,w=y) =08

Desirability of an activity partially depends on whether it
was performed recently. A naive representation of this depen-
dence would include in 7# a variable corresponding to the ac-
tivity in each past time interval. As aresult, |7¢| grows linearly
as the desirability of a‘ is evaluated for later time intervals, and
ul(at|r®) grows exponentially.

We present an alternative representation with the following
characteristics: First, we consider dependence of an activity
on its own historic performance as well as that of other ac-
tivities. For instance, whether chocolate ice cream is desir-
able for an afternoon snack depends not only on whether it
was the dessert in lunch, but also on whether the user had hot
chocolate recently. Second, we group historic performance of
a relevant activity into, say, just, recently, and a while ago.
The exact time period covered under each group depends on
the domain. In meal planning, for instance, just may cover
the last two days and recently may cover days beyond the last
two and within the last seven days. Hence, if a food a® has
been planned for r once in the last two days, then the vari-
able just — had — a® has the value some. This representation
allows historical dependence of each primitive activity to be
encoded in a compact and stable form. Although the repre-
sentation is an approximation relative to the naive alternative,
it corresponds intuitively to human preference patterns.

Agent g, maintains u(a?|7*) but may not know its pa-
rameters with certainty. We encode g,’s uncertain knowl-
edge about r’s preference as a probability distribution over
possible utility functions: P(u%(a*|7*)). To facilitate package
evaluation (see Section), we approximate the range of val-
ues of function u, by a set U of discrete utility values, e.g.,
U = {0,0.25,0.5,0.75, 1}. The uncertainty about the above
ul(a*|zo, yo) may then be expressed as

P(ul(a’|zg,y0) = 0) =0,

P(uy(a’|zg, yo) = .5) = 0.2,
P(uf (ailzo, yo) = 1) = 0.15.

P(uf(a|zo, yo) = .25) = 0.05,
P(uj(a*|zg,yo) = .75) = 0.6,

The representation admits estimated preference and allows its
uncertainty to be reduced gradually by learning (see Section).
We simplify notation P(u’(a*|7")) as P(ul|n"), i.e.,

P(ui, = zq,y0) = 0.05,

P(ul = u0zg,y0) =0, '
P(ul = u*3|zg,y0) = 0.6,

P(ul = u'?|z0,y0) = 0.2,
P(ul = ui|zg,y0) = 0.15.

where 1! denotes the utility value 0.25.

Evaluation of ¢,.(K) is performed by first evaluating the
cost of K relative to r and then mapping the cost to utility
by ¢,.. User preference on quantity and cost information can
be attached to the grammar in Section for cost evaluation in
a straightforward way. The cost evaluation is then a simple
summation.

Package Evaluation

By Eqgn (3), evaluating desirability of a projected package
amounts to computing u..(K.), as defined below:

Definition 2 Let K, be a package projected to user r. Its
desirability based utility of K. is

LS S wiP@i =K, (@)

Ea"@t 1 i@t j

where a’@t is a primitive activity in K, at time ¢, u¥ is a
discrete utility value.

The summation »_ .4, is over each primitive activity at each
time interval and 3 is over each discrete utility value. Hence,
> aiay 1 denotes the number of primitive activities at time ¢.

The evaluation can be performed using a graphical model
which we term as a package evaluation net (PEN). It is a utility
network (Bayesian network augmented with multiple utility
nodes) applied to package planning. A PEN is created by g,
in order to evaluate a given package.

u’I‘(KT) =

Definition 3 Let K, be a package projected to user r and
{P(u|r*)} be the uncertain desirability of r defined over
each primitive activity a’. A package eval uati on net
for K, is a triplet (V, G, P). V is a set of discrete variables
consisting of only the following:

e For each planned activity (a,t,r) and each primitive ac-
tivity a’ in a, there are two variables in V: desirability
uw'@t € {u® u, ...} and expected utility wi@t € {y,n}.2

e For each u*@t, there is a subset 7¢@¢ C V that is a copy of
7t (as defined by ut (at|n?)) for time ¢.

The space {y, n} can be alternatively expressed as {1,0}. It’s a
technique to allow utility to be handled in the same form as probabil-

ity.

G is a DAG whose nodes map one-to-one to variables in
V and are labeled accordingly. Its topology admits seman-
tics that d-separation (Pearl 1988) implies conditional inde-
pendence. Its arcs are defined as follows:

e For each pair of »*@t and w*@t, there is an arc from u*@t
to w*Qt.

e For each z € #*@t, there is an arc from z to u‘@t.
P is a set of probability distributions:
e Each i@t is assigned P(u'Qt|ni@t) = P(ul|n?).

e Each node without parents is assigned a uniform distribu-
tion.

e Each w'@t is assigned
P(w'@t = ylu'Qt = u') = u,
P(w'@t = n|u'@t = u') =1 —u¥.

Consider a trivial projected package for Lisa’s lunch and
afternoon snack:

Kpisa = {(hotdog meal,noon, Lisa),

(chocolate ice cream, a fternoon, Lisa)}.

Suppose that the hotdog meal is composed of sausage, hotdog
bun and hot chocolate drink. Fig 2 shows the graph struc-
ture G of its PEN. It is trivial because a package in practice
involves many time intervals and hundreds of primitive activ-
ities.

just_had_hotdog

o\%tlotdog@noon
o

meal_type@noon w_hotdog@noon

just_had_hot_chocolate_1 w_hot_chocolate@noon
S
u_hot_chocolate@noon

season

meal_type@afternoon w_chocolate_ice_cream@afternoon

e

u_chocolate_ice_cream@afternoon
just_had_hot_chocolate 2

Figure 2: A trivial PEN where meal_type@noon indicates
the meal type for an activity at noon and just_had_hotdog
indicates immediate eating history with hotdog.

Syntactically, a PEN is equivalent to a Bayesian net (Pearl
1988) as shown below:

Proposition 4 A package evaluation net specified by Def 3 is
a syntactically valid Bayesian net.

Proof: By Def 3, G is a DAG. Each node in G corresponds to
a variable. Each node z with parents w(x) in G is assigned a
conditional probability distribution in the form P(z|x(x)). O

Due to Proposition 4, belief propagation can be performed
in a PEN. The following Algorithm 5 allows utility w..(K,)
to be computed using a PEN based on any belief propagation
algorithm (D’ Ambrosio 1999):

Algorithm 5 Input: A projected package K, and its corre-
sponding PEN S = (V, G, P).

1 for each node »'@t in S

2 for each parent node z of u*@t

3 instantiate x according to K;

4 perform belief propagation in the resultant S;
5 for each node wi@t in S

6 retrieve updated probability P'(w'@t = y);
TrUME = s<——5 3 iq, P'(w'@t = y);

The algorithm starts by instantiating parent variables of
u?@t, which corresponds to entering observations in standard
probabilistic reasoning with graphical models (D’ Ambrosio
1999). Belief propagation is then performed using any in-
ference methods. Afterwards, the updated probability in each
node w!@t is retrieved and integrated as the result. Theorem 6
establishes the correctness.

Theorem 6 Let K, be a package projected to user r and S =
(V,G, P) be the PEN of K,.. After Algorithm 5 halts, its return
value satisfies £ = u,.(K) as specified by Def 2.

Proof: From Def 2, we need to show

1 .
E= > P'w'@t=y)

Yuiot! wiat

1 .. . -
== X [2w Py = K] = un(Kn).
Yaiat i@t J

By Def 3, for every a’@t in K, there is a corresponding
w?@t. Hence, it suffices to show that the following holds for
each wi@t: P'(w'Qt = y) = > u¥ P(ut = u|K,). By
Def 3, each node »*@t has a single child node w’@t that itself
has no child. In Algorithm 5, parent variables of each v¢@t
are instantiated at step 3. Neither any w*@t nor any w*@t is
instantiated. Hence, after instantiation and belief propagation
(step 4), the updated probability at each node u?@t is

P'(u'@t =) = P(ul = uY|K,). (5)

Since each node w*@t is not instantiated and has no child,
after belief propagation, we have

P'(w'@t) = P(w'Qt|K,) (6)

= Y Pw'et,u'@t|K,) @)
ui@t

=) P@'@tju'at, K,)P(u'et|K,) (8)
ui@t

=) P'@tlu'et)P(u‘Qt|K,). 9)
ut@t

Eqgn (6) holds by belief propagation. Eqn (7) follows from
marginalization and Eqgn (8) from product. Eqn (9) is due to
semantics of PEN. By restricting the value of w!@t to y, we
derive Egn (10), and from Def 3 on the distribution assigned
to w'@t, we derive Eqn (11).

P'(w'@t = y)
Z P(w'@t = ylu'@t = v)P(u'@t = v |K,) (10)
J

S WPl =uK,). O (11
J

Def 3 can be extended to incorporate canonical dependence
models such as noisy-or (Pearl 1988). Conditioning factors
of an activity can be further decomposed, resulting in longer
directed paths in PENs (than those in Fig 2). Algorithm 5 will
then have to be modified accordingly. Such modification is
straightforward. The validity of Theorem 6, however, remains.

An important advantage of PEN representation and Algo-
rithm 5 is that they allow package evaluation to be performed
based on existing belief propagation algorithms intended for
Bayesian nets.

Complexity and Experiment

Package evaluation is dominated by the computation per-
formed at each user agent. Using notations in Section for
d (max depth of activity grammar tree), b (max branching
factor), m (max number of AND nodes in a root-to-leaf
path), and ¢ (max branching factor of AND nodes), the hum-
ber of composite activities to be considered at each greedy
search is O((b?~™) ¢™). Hence, each user agent evaluates
O((b%=™) ¢™ |T'|) packages.

Let n denote the number of primitive activities. Each PEN
has O(n) nodes. Let k denote the maximum number of val-
ues of a variable. Let ¢ denote the maximum number of
parents of a node. The evaluation computation is in the or-
der O(n k7). Overall, the complexity for each user agent is
O((d%*=™) ¢™ |T| n k?). When d, m and ¢ are reasonably
bounded, the computation is tractable.

A prototype was implemented in meal planning. Its repre-
sentation contains 49 foods and the meal grammar consists of
27 rules, from which 3 million meal plans per day could be
generated. Preliminary experiments show satisfactory results.
Details are omitted due to space limit.

Related Work

Package planning provides a class of useful practical applica-
tions. We are unaware of previous work that deals with this
problem. The package planning problem differs significantly
from standard Al planning. Standard planning (Weld 1999) is
specified by an initial and a goal state, and possible actions.
The objective is to find a sequence of actions to transform the
initial state to the goal. Package planning has no equivalent
goal states and has a significantly different objective.

Similar comparisons can be made between package plan-
ning and problems solvable by state-space search algorithms
such as A* and branch-and-bound. These problems have well-
defined goal states. There are no natural goal states in package
planning.

Decision-theoretic planning (Boutilier, Dean, & Hanks
1999) has been an active research area on planning using
MDPs. Package planning shares some features of MDPs (e.g.,
an activity can be viewed as an action and its desirability can
be viewed as a reward). However, the Markov property does
not hold in package planning domain because desirability of
an activity at a given time may depend strongly on the user’s
activity history (both recent and more remote). Although a
non-Markovian model of a finite order can always be con-
verted to an equivalent Markov model, the approach seems
to be more complex than what we have presented: In trying
to convert the non-Markovian model into Markovian, if each
time interval has & local variables, then to make variables at ¢,

independent of those at ¢ given those at ¢1, 2k variables are
needed at ¢; in the worst case. In general, (m + 1)k variables
are needed for time interval ¢,, in the worst case. Parallel to
this linear increase of number of variables in each time inter-
val, the number of parent variables at ¢,, also increases lin-
early with m. As a result, the number of parameters needed to
specify the conditional probability distribution at each variable
grows exponentially with m. The representation using historic
performance grouping (Section) as a reasonable approxima-
tion results in no more than 4k variables for every time inter-
val in the worst case. For general proposals on solving non-
Markovian problems using a temporal logic representation of
historic dependence, see Bacchus et al (Bacchus, Boutilier, &
Grove 1997).

Package planning differs significantly from schedul-
ing (Zweben & Fox 1994). Although scheduling also selects
among alternative plans for activities, it aims at optimizing re-
source allocation relative to some hard resource constraints
and measures such as tardiness, inventory and makespan.
Package planning, instead, aims at optimization subject to a
set of desirability and cost preferences of soft nature.

More generally, package planning differs from constraint
satisfaction problems (CSP). How a composite activity is
made out of primitive activities may be alternatively repre-
sented by constraints. The corresponding computation for
activity composition appears to be more complex than what
is needed using the BNF grammar. Valued CSPs (Schiex,
Fargier, & Verfaillie 1995) allow preferences to be handled
in a CSP framework. However, composite activities in a pack-
age rarely follow any hard constraints. Hence, representation
of package planning as a CSP appears to be unnatural and less
effective than what we have been presented.

Our work is influenced by work on graphical models (Pearl
1988; D’ Ambrosio 1999) and by situation specific model con-
struction (e.g., (Goldman & Breese 1992; Mahoney & Laskey
1998)). Each PEN is such a situation specific model. PEN
evaluation using probabilistic reasoning is inspired by (Cooper
1988). Utility decomposition has been explored by Bacchus
and Grove (Bacchus & Grove 1995) in a generic context al-
though they did not address uncertainty on utility functions.

Limitations and Future Work

We identify package planning as a class of novel applications.
Solution by exhaustive search is intractable. To solve the prob-
lem effectively, we assumed (1) independence of individual
preference, (2) future independence of activities, (3) grouping
of historic dependence, (4) greedy search, (5) utility decom-
position, (6) uncertain user preference, and (7) discrete util-
ity. Some assumptions, e.g., (3),(4) and (7), introduce approx-
imations. Other assumptions prevent certain packages to be
selected. For instance, (1) prevents certain types of preference
toward joint activities, as illustrated in Section . Further re-
search is needed to relax this assumption. Assumption (2) also
appears to limit selected packages. Whether it really has any
negative impact and to what degree need to be carefully as-
sessed. Some specific representational choices were also made
in the framework developed, such as the BNF grammar for
composite activity and the encoding of historic performance.
Despite these limitations, these assumptions greatly re-

duced computational complexity. Based on these assumptions
and representational choices, we developed the first compu-
tational framework where agents working for different prin-
cipals cooperate to select a package that approximately opti-
mally suits all users. The computation is tractable when prob-
lem parameters are reasonably bounded. The framework pro-
vides a basis for further generalization, elaboration and im-
provement.

Our presentation does not deal with acquisition of probabil-
ity and utility parameters. Work on parameter learning, e.g.,
(Spiegelhalter & Lauritzen 1990), and preference elicitation,
e.g., (Nguyen & Haddawy 1998), are relevant on this regard.

Acknowledgement Financial support from NSERC, Canada is
acknowledged. We thank reviewers for their helpful comments.

References

Bacchus, F., and Grove, A. 1995. Graphical models for preference
and utility. In Proc. 11th Conf. on Uncertainty in Artificial Intelli-
gence, 3-10.

Bacchus, F.; Boutilier, C.; and Grove, A. 1997. Structured solu-
tion methods for non-Markovian decision process. In Proc. 14th
National Conf. on Artificial Intelligence, 112-117.

Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision theoretic
planning: structural assumptions and computational leverage. J.
Artificial Intelligence Research 1-94.

Cooper, G., and Herskovits, E. 1992. A Bayesian method for the
induction of probabilistic networks from data. Machine Learning
9:309-347.

Cooper, G. 1988. A method for using belief networks as influence
diagrams. In Shachter, R.; Levitt, T.; Kanal, L.; and Lemmer, J.,
eds., Proc. 4th Workshop on Uncertainty in Artificial Intelligence,
55-63.

D’Ambrosio, B. 1999. Inference in Bayesian networks. Al Maga-
zine 20(2):21-36.

Goldman, R., and Breese, J. 1992. Integrating model construction
and evaluation. In Dubois, D.; Wellman, M.; D’ Ambrosio, B.; and
Smets, P., eds., Proc. 8th Conf. on Uncertainty in Artificial Intelli-
gence, 104-111. Stanford University: Morgan Kaufmann.
Heckerman, D.; Geiger, D.; and Chickering, D. 1995. Learning
Bayesian networks: the combination of knowledge and statistical
data. Machine Learning 20:197-243.

Keeney, R., and Raiffa, H. 1976. Decisions with Multiple Objec-
tives. Cambridge.

Mahoney, S., and Laskey, K. 1998. Constructing situation specific
belief networks. In Proc. 14th Conf. on Uncertainty in Artificial
Intelligence, 370-378.

Nguyen, H., and Haddawy, P. 1998. The decision-theoretic video
advisor. In AAAI Workshop on Recommender Systems.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann.

Schiex, T.; Fargier, H.; and Verfaillie, G. 1995. Valued constraint
satisfaction problems: Hard and easy problems. In Proc. Inter. Joint
Conf. on Artificial Intelligence, 631-637.

Spiegelhalter, D., and Lauritzen, S. 1990. Sequential updating of
conditional probabilities on directed graphical structures. Networks
20:579-605.

Weld, D. 1999. Recent advances in Al planning. Al Magazine
20(2):93-123.

Zweben, M., and Fox, M., eds. 1994. Intelligent Scheduling. Mor-
gan Kaufmann.

