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Abstract

Bayesian network is a popular modeling tool for uncertain do-
mains that provides a compact representation of a joint prob-
ability distribution among a set of variables. Even though
Bayesian networks significantly reduce the number of prob-
abilities required to specify probabilistic relationships in the
domain, the number of parameters required to quantify large
models is still a serious bottleneck. Further reduction of pa-
rameters in a model is usually achieved by utilization of para-
metric probability distributions such as noisy-OR gates. In
this paper report the results of an empirical study that sug-
gests that under the assumption, that the underlying mod-
eled distribution follows the noisy-OR assumptions, human
experts provide parameters with better accuracy using elicita-
tion of noisy-OR parameters than when eliciting conditional
probability tables directly. It also seems that of the two alter-
native noisy-OR parameterizations due to Henrion and Dı́ez
the latter results in better elicitation accuracy.

Introduction
Bayesian network formalism (Pearl 1988) provides a conve-
nient and powerful tool for modeling uncertain domains. A
Bayesian network (BN) is a compact representation of the
joint probability distribution over a set of variables. A BN
consists of two parts: the qualitative part, that represents
relationships among variables by the means of an acyclic
directed graph, and the quantitative part that defines local
probability distributions for each variable in the model. We
restrict our discussion to models that consist exclusively of
discrete variables, as the noisy-OR model is inherently dis-
crete.

The qualitative part of a Bayesian network is an acyclic
directed graph, in which each node represents a variable.
The arcs between nodes encode statistical relationships
among the variables. The graph structure encodes indepen-
dencies among the variables, which leads to a significant re-
duction of the number of probabilities required to specify the
joint probability distribution. The quantitative part of a BN
specifies the joint probability distribution by means of lo-
cal probability distributions associated with every node. In
case of nodes that do not have direct predecessors, there is
a single prior probability distribution; in case of nodes that
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have predecessors, there is a set of conditional probability
distributions, each corresponding to one combination of the
parents states. BNs provide a framework for efficient and
sound inference algorithms, that permit diagnostic and pre-
dictive reasoning.

In terms of model building, BNs provide a great dose of
flexibility – models can be obtained from data using theo-
retically sound learning techniques, built completely from
experts knowledge, or a combination of both. Typically,
the graphical part of a model is obtained from an expert.
The graphical part can be also learned from data, enhanced
with some constraints imposed by the expert. Parameters
are learned from data using machine learning techniques,
elicited from human expert or both. Typically, it is useful, if
not necessary, to elicit numerical probabilities from experts.
Therefore, need for good knowledge elicitation schemes for
Bayesian networks has been recognized and is currently a
field of active research (Druzdzel & van der Gaag 2000).

Even though BNs significantly reduce the number of pa-
rameters required to specify a joint probability distribution,
the number of parameters in a model remains still one of the
major bottlenecks of this framework. This problem arises,
when a model contains nodes with multiple parents. Ev-
ery node that has parent nodes has a conditional probability
table (CPT) associated with it. The CPT consists of a set
of discrete probability distributions indexed by all possible
combinations of parents states. For example, if all variables
in a model are binary and a variable X has 3 parents, the
CPT that corresponds to X will have 23 = 8 probability
distributions (because there are 3 parents of X with 2 states
each). Hence, the number of parameters in a CPT grows ex-
ponentially in the number of the parent nodes, easily reach-
ing practically prohibitively large values. One way of re-
ducing this number is to assume some functional relation-
ship that defines the interaction among parents on the child
node. The most accepted and widely applied solution to this
problem is the noisy-OR model (Pearl 1988). The noisy-
OR model gives the interaction between the parents and the
child a causal interpretation and assumes that all causes (par-
ents) are independent of each other in terms of their abilities
to influence the effect variable (child). Given this assump-
tion the noisy-OR model provides a logarithmic reduction
in the number of parameters relatively to CPT, which virtu-
ally makes construction of large models for real-life prob-



lems feasible (Pradhan et al. 1994). The noisy-MAX model
is an extension of the noisy-OR for the multi-valued vari-
ables. In another paper we investigate, how often the noisy-
OR/MAX models can provide a good approximation of the
CPTs that were acquired without the noisy-OR/MAX as-
sumption. It turned out that for the models under study up
to 50% of CPTs could be reasonably approximated by the
noisy-OR/MAX.

In this paper, we describe an empirical comparison of ac-
curacy in probability elicitation for fully specified CPT and
the noisy-OR model. We believe that our study is impor-
tant, because it empirically compares the two widely applied
frameworks, showing that under assumption that the under-
ling phenomenon can be reasonably modeled by a noisy-OR
gate, the direct elicitation of noisy-OR parameters yields
significantly better accuracy than direct elicitation of CPT.
We also investigate which of two noisy-OR parameteriza-
tions proposed in the literature leads to better accuracy. We
limit our study to the case of three parent variables and a
single effect under assumption that all the variables are bi-
nary. We believe that this setting is actually most favorable
for elicitation of parameters for the full conditional proba-
bility table. In cases when the number of parents is larger,
the advantage of noisy-OR becomes more apparent.

In the following sections, we first describe the noisy-OR
model, its assumptions, important equations and we explain
the difference between the two parameterizations. Then we
present the design of the experiment and discuss its results.
Finally, we draw conclusions and discuss limitations of this
study.

Noisy-OR
The noisy-OR gate is a member of the family of mod-
els often referred to as independence of causal influences
(ICI) (Heckerman & Breese 1994; Srinivas 1993; Dı́ez &
Druzdzel 2003). The name of the family reflects the basic
assumption behind these models, which states that the in-
fluence of each modeled cause on the effect is independent
of other causes. The word noisy in the name indicates that
the causal interaction is not deterministic, in the sense that
any cause can produce the effect with some probability. The
second part of the name – OR originates from the functional
relation, which determines the manner in which independent
causes combine to produce their common effect.

One can think about the noisy-OR model as a probabilis-
tic extension of the deterministic OR model. Similarly to the
deterministic OR model, the noisy-OR model assumes that
the presence of each cause Xi is sufficient to produce the
presence of the effect Y and that its ability to produce that
effect is independent of the presence of other causes. How-
ever, the presence of a cause Xi in the noisy-OR model does
not guarantee that the effect Y will occur.

For modeling the noisy-OR by means of the deterministic
OR, we can introduce the concept of inhibitor nodes (Pearl
1988; Heckerman & Breese 1994), which capture proba-
bilistic relations between each cause and the effect individ-
ually. The general model is shown in Figure 1. Causal in-
dependence is represented here by the inhibitor nodes Yi,
whose CPTs encode individual effect of corresponding Xi
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Figure 1: Direct modeling of noisy-OR

on Y . The CPT of Y defines how the individual effects of
Xis interact to produce Y . For the noisy-OR, the CPT of
node Y is equivalent to a deterministic OR. The concept of
inhibitor nodes Yi is introduced to represent noise — the
probabilistic effect of Xis on Y . The CPT of Yi is of the
form:

Pr(yi|xi) = pi

Pr(yi|xi) = 0 .

The value of pi represents the probability that the presence
of Xi will cause the presence of Y and is sometimes referred
to as causal strength. The noisy-OR model assumes that the
absence of Xi never produces presence of Y . The above as-
sumptions allow us to specify the entire CPT for Y by means
of only n parameters pi. Of course, such CPT is constrained
and it is not possible to represent an arbitrary CPT by means
of the noisy-OR distribution.

Leaky Noisy-OR

In practice, it is fairly impossible to capture all possible
causes that can produce the effect in the model. Therefore, in
practical models, the situation when absence of all modeled
causes guarantees absence of the effect almost never hap-
pens. To address this weakness of the noisy-OR model, Hen-
rion (1989) introduced the concept of leak or background
probability which allows for modeling combined influence
of such unmodeled factors.

The leaky noisy-OR model can formally be represented
by the noisy-OR. The concept of leak is intended to help
domain experts to simplify knowledge engineering process.
The leak can be conceptualized as an additional cause X0

and its corresponding inhibitor node Y0. We assume that X0

is always present and the probability that it will cause Y0 is
Pr(y0|x0) = p0, where 0 < p0 < 1. Alternatively, we can
conceptualize the leak as a binary variable X0 with prior
probability Pr(x0) = p0, whose presence always produces
presence of Y .

The interpretation of p0 is following: p0 is the probability
that the effect Y will be produced by the unmodeled causes
in absence of all the modeled causes. We should note, that
there is an underlying assumption that the unmodeled causes
produce the effect independently of the modeled causes Xis.



Parameterizations of Leaky Noisy-OR
Introduction of the leak to the noisy-OR model has an in-
teresting consequence from the point of view of model pa-
rameterization. For the noisy-OR model, parameter pi of the
inhibitor Yi is equal to probability P (y|x1, . . . , xi, . . . , xn).
For the noisy-OR it is not necessary to talk explicitly about
the causal strength of one cause on the effect. Instead we can
ask our expert for the probability of presence of Y under the
condition that only one of the modeled causes is present and
all the other causes are absent. Please note that this allows
us for estimating the noisy-OR parameters directly from a
database.

However, this is not true anymore for the leaky noisy-OR
gate. This fact is attributed to the assumption that leak is
unobserved. For convenience of further discussion, let us
denote pi = Pr(yi|xi) and qi = P (y|x1, . . . , xi, . . . , xn).
It is easy to note, that for the leaky noisy-OR the relation
between pi and qi is the following:

qi = 1 − 1 − pi

1 − p0
. (1)

The leaky noisy-OR model can be specified using either
causal strengths pi or the conditional probabilities qi. Pa-
rameterization based on pi was introduced by Henrion
(1989), and we will refer to it as Henrion’s parameteriza-
tion. The alternative parameterization based on qi was in-
troduced by Dı́ez (1993), we will refer to it as Dı́ez’s pa-
rameterization. Although both specifications are formally
equivalent in the sense of specifying the same mathematical
model (Equation 1 defines the transition between the two
parameterizations), they differ significantly with respect to
knowledge engineering.

Henrion’s definition based on conditional probabilities
of Y seems to be more appropriate for learning from
data – in this setting one can calculate probabilities
P (y|x1, . . . , xi, . . . , xn) directly from a database. When
parameters pi are obtained from a human expert, the ques-
tion asked of the expert is: What is the probability that Y is
present when Xi is present and all other causes of Y that we
are considering in the model are absent.

Dı́ez’s parameterization seems be more applicable to
the situation, when the human expert has some knowl-
edge of the causal relations between Xis and Y . This
means that the expert needs to know explicit parameters
for the inhibitor nodes. The question asked of the expert
in case of Dı́ez’s parameterization: What is the probabil-
ity that Xi produces Y ? or What is the probability that
Y is present when Xi is present and all other causes of Y
(including those not modeled explicitly) are absent?

Experimental Design
The goal of our experiment was to compare the accuracy of
direct elicitation of CPTs and elicitation of the noisy-OR pa-
rameters using two alternative parameterizations, under the
assumption that the modeled mechanism follows the noisy-
OR distribution.

Our research design is based on an objective method
of evaluating probability elicitation methods proposed in

(Wang, Dash, & Druzdzel 2002). This approach assumes
that expert’s knowledge is a database of records which have
been observed in the course of gaining the expertise. To re-
duce the influence of factors other than actually observed
instances (like, for example, textbook, witness reports) and
to ensure a similar level of expertise among our subjects, we
defined an artificial domain, which was reasonably distinct
from any real-life domain. We first trained our subjects so
that they got some degree of expertise. Subsequently we
asked them to provide numerical values of probabilities us-
ing the three elicitation methods under study. We compared
the obtained probabilities to the probabilities that the sub-
jects were actually exposed to.

We trained our subjects in modeling an artificial domain
involving four variables: three causes and a single effect and
then we asked them to specify numerical parameters of in-
teraction among the causes and the effect. Providing an ar-
tificial domain had the purpose of ensuring that all subjects
were equally familiar with the domain, by making the do-
main totally independent of any real-life domain that they
might have had prior knowledge of.

Subjects
The subjects were 44 graduate students enrolled in the
course Decision Analysis and Decision Support Systems at
the University of Pittsburgh. The experiment was performed
in the final weeks of the course, which ensured that subjects
were sufficiently familiar with Bayesian networks in gen-
eral and conditional probabilities in particular. The subjects
were volunteers who received partial course credit for their
participation in the experiment.

Design and Procedure
The subjects were first asked to read the following instruc-
tions that introduced them to an artificial domain that we
defined for the purpose of this study. In addition, we had
full knowledge over what the subjects have actually seen and
should have learned about the domain.

Imagine that you are a scientist, who discovers a new
type of extraterrestrial rock on Arizona desert. The
rock has an extraordinary property of producing anti-
gravity and can float in the air for short periods of time.
However, the problem is, that it is unclear to you what
actually causes the rock to float. In a preliminary study,
you discovered that there are three factors that can help
the rock to levitate. These three factors are: light, X-
rays, and high air temperature.
Now your task is to investigate, to what degree, each of
these factors can produce anti-gravity force in the rock.
You have a piece of this rock in a special apparatus,
in which you can expose the rock to (1) high intensity
halogen light, (2) high dose of X-rays and (3) rise the
temperature of the rock to 1000K.
You have 160 trials, in each trial you can set any of
those three factors to state present or absent. For ex-
ample, you can expose the rock to light and X-ray while
temperature is low.
Be aware of the following facts:



• Anti-gravity in the rock appears sometimes sponta-
neously, without any of these three factors present.
Make sure to investigate this as well.

• You can expect that anti-gravity property of the rock
is dependent on all these three factors. Make sure to
test interactions among them.

Additionally, subjects were presented with a Bayesian net-
work for the domain shown in Figure 2 and told, that at the
end of experiment they will be asked to answer some ques-
tions about the conditional probabilities of the node Anti-
gravity. The subjects had unlimited time to perform the 160
trials.

In our experiment, the interaction between the node Anti-
gravity and its parents was assumed to follow the noisy-OR
distribution. The subjects were not aware of the fact that
the underlying distribution was the noisy-OR and through-
out the whole experiment, special caution was exercised not
to cue the subjects to this fact.

We decided not to introduce noise to the distribution from
which sampling is drown, because we believe it would not
strongly extend external validity of the study, and it is highly
disputable what value of noise and in which form would be
appropriate. We would like to note that the subjects actually
observed distributions that were not precisely the noisy-OR.
This was caused by a relatively small sample of data ob-
served by the subject during the learning phase.

In order to ensure that our results would not be an arti-
fact of some unfortunate choice of initial parameters, each
subject was assigned a unique underlying noisy-OR distri-
bution for the node Anti-gravity. To ensure that the proba-
bilities fell in range of modal probabilities, each model had
the noisy-OR parameters sampled from uniform distribution
ranging from 0.2 to 0.9. To ensure significant difference be-
tween Henrion and Dı́ez parameters, the leak values should
be significantly greater than zero (otherwise both parameter-
izations are virtually equivalent). We sampled them from a
uniform distribution ranging from 0.2 to 0.5.1

Figure 2: BN used in the experiment

In each of the 160 trials, the subjects were asked to assign
values to the independent variables (Halogen Light, X-Ray,

1All values are given using Dı́ez parameters.

and High Temperature) and submit their values to perform
the ‘experiment’ (Figure 3). Subsequently, the screen ap-
peared showing the result – a levitating rock or rock on the
ground. An example of the screen that the subject could see
is presented in Figure 4.

Figure 3: Screen snapshot for setting the three factors

Figure 4: Screen snapshot of the result of a single trial

At the end of the experiment, the subjects were asked to
answer questions on conditional probability distribution of
the node Anti-gravity. We applied a within-subject design.
Each subject was asked to express his or her judgement of
probabilities by answering three separate sets of questions,
which asked for parameters required to define the condi-
tional probability distribution using

1. a complete CPT with 8 parameters,

2. a noisy-OR gate with 4 parameters using Dı́ez’s parame-
terization, and

3. a noisy-OR gate with 4 parameters using Henrion’s pa-
rameterization.

To compensate for the possible carry-over effects, we
counter-balanced the order of the above questions across the
subjects. Additionally, we disallowed the subjects to see pre-
viously answered questions for the other sets.

We chose a within-subject as opposed to between-subject
design due to an anticipated small number of subjects and
the possible resulting lack of statistical power. We also
feared that learning different distributions for each of tested
parameterizations, as suggested by one of the reviewers,
would result in an unacceptable time burden on the subjects.



Results

We decided to remove records of three subjects from further
analysis, as we judged these to be outliers. Two of these
subjects very likely reversed their probabilities and in places
where one would expect large values they entered small val-
ues and vice versa. The third subject did not explore all com-
binations of parent values, making it impossible to compare
the elicited probabilities with the cases actually observed by
the subject. Therefore, the final number of data records was
41.

We did not measure the individual times for performing
the tasks. For most of the subjects, the whole experiment
took between 20 and 30 minutes, including probability elic-
itation part.

As a measure of accuracy, we used the Euclidean distance
between the elicited parameters and the probabilities actu-
ally seen by the subject. The Euclidean distance is one of
the measures used to compare probability distributions. The
other commonly used measure is the Kullback-Leibler mea-
sure, which is sensitive to extreme values of probabilities.
The reason why we selected Euclidean distance is the fol-
lowing. In our study we do not really deal with extreme
probabilities and even if the value is close to 1, the subjects
preferred entering parameters with accuracy of 0.01. Com-
paring parameters with this accuracy to accurate probabili-
ties (those presented to the subject) would result in unwanted
penalty in case of the Kullback-Leibler measure. The ta-
ble below shows the mean Euclidean distance between the
observed and the elicited probabilities for each of the three
methods:

Method Distance
CPT 0.0800

Henrion 0.0796
Dı́ez 0.0663

For each pair of elicitation methods we performed one-
tailed, paired t-test to compare their accuracy. Results sug-
gest that Dı́ez’s parameterization performed significantly
better than CPT and Henrion’s parameterizations (respec-
tively with p < 0.0008 and p < 0.0001). The difference
between Henrion’s parameterization and CPT is not statisti-
cally significant (p ≈ 0.46).

We observed consistent tendency among the subjects to
underestimate parameters. The average difference per pa-
rameter was −0.11 for Henrion’s parameters and CPT and
−0.05 for Dı́ez’s parameters with the individual errors dis-
tribution was bell-shaped and slightly asymmetrical. The
medians were correspondingly: −0.07, −0.08, and −0.02
respectively.

We tested whether the sampled distributions follow the
noisy-OR assumption and whether this had any influence on
the accuracy of the elicitation. Figure 5 shows that the sam-
pling distributions followed fairly well the original noisy-
OR distributions and no clear relationship between sampling
error and the quality of elicitation was observed. This might
suggest that for distributions that are further away from the
noisy-OR, elicitation error under the noisy-OR assumption
might be also smaller than one for direct CPT elicitation.

Figure 5: Elicitation error as a function of the distance from
observed CPT to noisy-OR

Discussion
We believe that these results are interesting for several rea-
sons. First of all, we show that if an observed distribution
follows noisy-OR assumptions, the elicitation of the noisy-
OR parameters does not yield worse accuracy than direct
elicitation of CPT, even when the number of parameters in
the CPT is still manageable.

In our approach, we had a simple model with three binary
parent variables and a binary effect variable. We believe,
that this setting is favorable for applying CPT framework.
When the number of parents increases, the noisy-OR frame-
work will offer significant advantage, as it will require loga-
rithmically fewer parameters. The exponential growth of the
number of parameters required to specify full CPT works
strongly against this framework for models with larger num-
ber of parents.

In our experiments, expert’s domain knowledge comes



exclusively from observation. It is impossible for a sub-
ject to understand the mechanisms of interaction between
causes, because such mechanisms are fictional. In light of
this fact, it is surprising that Dı́ez’s parameters, which as-
sume understanding of causal mechanisms, perform better
than Henrion’s parameters. The latter are more suitable in
situations where one has a set of observations without under-
standing of relationships between them. One possible rival
hypothesis is the following: subjects were unable to pro-
vide Dı́ez’s parameterization (because it requires separating
leak from the cause, which was challenging), so they pro-
vided numbers suitable for Henrion’s parameterization. In
fact, roughly 50% of subjects seemed to act this way. This,
in conjunction with the observed tendency to underestimate
probabilities, might have led to the situation, where these
two contradicting tendencies might have cancelled out lead-
ing to more precise results.

Acknowledgements
This research was supported by the Air Force Office of
Scientific Research under grants F49620–00–1–0112 and
F49620-03-1-0187. All experimental data have been ob-
tained using SMILE, a Bayesian inference engine devel-
oped at Decision Systems Laboratory and available at
http://www.sis.pitt.edu/∼genie. We would
like to thank all students in the Decision Analysis and Deci-
sion Support Systems course at the University of Pittsburgh,
Spring 2003, who agreed to take part in this experiment.

References
Dı́ez, F. J., and Druzdzel, M. J. 2003. Canonical proba-
bilistic models for knowledge engineering. Forthcoming.

Dı́ez, F. J. 1993. Parameter adjustement in Bayes networks.
The generalized noisy OR–gate. In Proceedings of the 9th
Conference on Uncertainty in Artificial Intelligence, 99–
105. Washington D.C.: Morgan Kaufmann, San Mateo,
CA.

Druzdzel, M. J., and van der Gaag, L. 2000. Building
probabilistic networks: Where do the numbers come from?
guest editor’s introduction. In Transactions on Knowledge
and Data Engineering. 12(4):481–486.

Heckerman, D., and Breese, J. S. 1994. A new look at
causal independence. In Proceedings of the Tenth Annual
Conference on Uncertainty in Artificial Intelligence (UAI–
94), 286–292. San Francisco, CA: Morgan Kaufmann Pub-
lishers.

Henrion, M. 1989. Some practical issues in constructing
belief networks. In Kanal, L.; Levitt, T.; and Lemmer, J.,
eds., Uncertainty in Artificial Intelligence 3. New York, N.
Y.: Elsevier Science Publishing Company, Inc. 161–173.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. San Mateo, CA:
Morgan Kaufmann Publishers, Inc.

Pradhan, M.; Provan, G.; Middleton, B.; and Henrion, M.
1994. Knowledge engineering for large belief networks.
In Proceedings of the Tenth Annual Conference on Uncer-

tainty in Artificial Intelligence (UAI–94), 484–490. San
Francisco, CA: Morgan Kaufmann Publishers.
Srinivas, S. 1993. A generalization of the noisy-OR model.
In Proceedings of the Ninth Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI–93), 208–215. San
Francisco, CA: Morgan Kaufmann Publishers.
Wang, H.; Dash, D. H.; and Druzdzel, M. J. 2002.
A method for evaluating elicitation schemes for proba-
bilistic models. In Transactions on Systems, Man, and
Cybernetics-Part B: Cybernetics. 32(1):38–43.


