
Generating Tutorial Feedback with Affect
Johanna D. Moore*, Kaska Porayska-Pomsta*, Sebastian Varges‡, and Claus Zinn*

*University of Edinburgh
School of Informatics

2 Buccleuch Place
Edinburgh, EH8 9LW, UK

{jmoore,kaska,zinn}@inf.ed.ac.uk

‡University of Brighton
Information Technology Research Institute

Lewes Road
Brighton, BN2 4GJ, UK.

Sebastian.Varges@itri.brighton.ac.uk

Abstract
Studies aimed at understanding what makes human tutoring
effective have noted that the type of indirect guidance that
characterizes human tutorial dialogue is a key factor. In this
paper, we describe an approach that brings together
sociolingusitic research on the basis of linguistic choice with
natural language generation technology to systematically
produce tutorial feedback appropriate to the given situation.

Introduction
One-on-one human tutoring has been shown to be the most
effective type of learning intervention (Bloom 1994).
Debates about what makes human tutoring effective, and
how this could be captured in computer-based learning
environments have led to detailed studies of human
tutoring. The consensus from these studies is that
experienced human tutors maintain a delicate balance,
allowing students to do as much of the work as possible,
while providing them with enough guidance to keep them
from becoming frustrated or confused (Fox 1993, Lepper
& Chabay 1988). For example, Fox found that tutors
provide frequent feedback indicating that students’
problem solving steps are okay. A short hesitation in
responding “okay’” typically led the student to assume that
something was amiss with the current step, and frequently
led students to repair their own errors. When more explicit
help was required, the tutor focused the student's attention
on the part of their solution that required modification or
on information that would be useful in repairing the error.
In general, tutors try to avoid telling the student that they
are wrong or precisely how a step is incorrect. Instead they
try to lead students to discover the error and to repair it
themselves. This type of indirect guidance allows students
to maintain a feeling of control, and there is evidence that it
has strong motivational benefits.

Although researchers studying tutorial dialogues have
devised inventories of the types of feedback strategies that
human tutors employ, there is no systematic account of the
linguistic forms that are used to realize feedback strategies
(either positive or corrective), and there is little

Copyright © 2004, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

understanding of what factors influence linguistic choice.
In this paper, we describe how we have adapted work from
sociolinguistics to define strategies for linguistic choice
based on a model of the student and the problem solving
situation. We describe how we have operationalized these
strategies in an implemented intelligent tutoring system.

Theoretical basis of linguistic choice
Given the goal of achieving a particular communicative
intention in a specific social setting, an agent must choose
among all the possible variations in semantic content,
syntactic form and acoustic realization. Brown and
Levinson (1987), henceforth B&L, provide a theory of
social interaction in which they identify variables that
affect choice, and specify how different values for the
variables produce different communicative outcomes. In
their theory, all members of society have (and know each
other to have):
(1) Face: public self-image, consisting of:

a. Negative face: A need for freedom of action and
freedom from imposition, i.e., a desire for
autonomy, and

b. Positive face: A positive self-image that is
appreciated and approved of by others, i.e., a desire
for approval,

(2) Capabilities for rational reasoning, in particular means-
end reasoning.

According to B&L, face regulates speakers’ linguistic
choices at all times. People typically choose their
utterances to minimize threat to their own and others' face.
In B&L’s model threat is calculated as a sum of three
socially determined variables: (1) the social distance
between the speaker and the hearer, (2) the power that the
hearer has over the speaker, and (3) a ranking of imposition
for the act under discussion. Humans use personal
experience, cultural norms and situational factors to
determine the values for these variables at any given time.
For example, social distance depends on things like how
well S and H know one another, or whether they belong to
the same peer group. Power is determined by a variety of
sources, such as status or the ability of S to control access
to goods that H wants (e.g., information or money). Acts
(e.g., requests, commands) are ranked according to how

much they interfere with an agent’s desires for self-
determination and approval. A speaker’s ability to assess
the situation with respect to a hearer’s social, cultural and
emotional needs and hence his ability to produce polite
language (i.e., to engage in facework) constitutes a crucial
facet of his social and linguistic competence.

Specific values of the social variables are encapsulated in
the socio-cultural conventions (politeness rules) of a
speech community in which a given language is produced.
The conventions are manifested in concrete communicative
strategies that people in a given speech community ought
to use when attempting to produce socially and culturally
acceptable language (Fetzer, 2003). Given the rationality
assumption, such observance of conventions is expected of
speakers and is said to guarantee, in most cases, the
willingness of the participants in a linguistic exchange to
co-operate and to accommodate each others’ needs. In that
sense linguistic politeness with its central notion of face
constitutes one of the primary pre-requisites of successful
linguistic communication. Furthermore, and crucially to
any dialogue model, according to B&L, politeness rules
can be said to govern linguistic variation of which the most
obvious manifestation is the varying degrees of
indirectness with which the speakers choose to express
their messages.

B&L proposed two main strategies (see Fig.1) to represent
the social conventions that speakers use to make
appropriate linguistic choices: the On-record and the Off-
record strategies. They further split the On-record strategy
into a strategy which does not involve redressive language
and two sub-strategies which do, and which are aimed at
Positive and Negative Face, respectively. Since redressive
language typically involves linguistic indirectness,
accommodating for the Positive and Negative Face can
also be linked explicitly to linguistic indirectness.

Walker, Cahn & Whittaker (1997) combined B&L’s theory
with computational work on speech acts from AI (Allen &
Perrault 1980, Cohen 1978), and devised algorithms that
enable artificial agents to engage in linguistic style
improvisation (henceforth LSI) in an interactive story. An
important basis for their algorithms is speech act theory’s

distinction between the underlying intention of a speech act
and the surface forms that can be used to realize that
speech act. For example, the REQUEST-ACT speech act has
an underlying intention of the speaker getting the hearer to
do a particular action, but this intention can be realized by
a variety of surface speech acts, i.e., by particular
sentential forms such as declaratives, interrogatives, or
imperatives.

Our Approach
In our work, we have also built on this basic notion that
there are many different realizations for a particular
intention, but we found several problems in trying to apply
the LSI algorithms to tutorial dialogue. First, the work of
B&L is not entirely applicable to tutoring: language
produced in tutoring circumstances is governed by
different norms than the language of normal conversation
as described by B&L (Person 1995; Porayska-Pomsta
2003). For example, tutors do not tend to offer gifts or
information to students as a way of fulfilling their needs,
nor do they tend to apologize for requesting information
from them. Thus, some of B&L’s strategies simply do not
apply to educational contexts, and others require a more
detailed specification or complete redefinition.
Specifically, the strategies need to be adapted to reflect
both the pedagogical concerns such as the appropriate level
of content specificity (how specific and how structured the
tutor’s feedback is with respect to the answer sought from
the student), as well as motivational concerns which
determine the appropriate level of illocutionary specificity,
i.e., how explicitly accepting or rejecting of the student and
his answer the feedback is (Porayska-Pomsta 2003).

Second, the LSI operationalization is problematic for
several reasons. The distance and power variables are
relatively fixed for the tutorial context by the tutor-student
roles that the interlocutors are playing. Thus, the rank of
imposition accounts for all of the variation in realization.
The LSI formulation would too narrowly constrain the
range of utterances that could be produced. In our corpus,
we have utterances from all categories, from on-record to
off-record. Another problem is that the ranking of speech
acts used in LSI does not transfer to tutoring. Finally, the
LSI approach accounts for the generation of single speech
acts, whereas tutorial feedback may include several speech
acts in one utterance.

To generate feedback for tutorial dialogues, we had to:
• identify the situational factors which are important in

tutorial interactions, and determine how they impact
on the settings for the variables that determine face
threat,

• develop methods for determining the values of
situational factors,

• determine feedback strategies and their realizations
from a corpus of tutorial dialogues, and

1) Direct strategy : To a perfect stranger: Give me
some money now!

2) Direct strategy with redress
a) To a friend: Look, I know you’re broke

just now, but I really need you to give me
some money.

b) To a stranger: I’m terribly sorry sir, but
I’m short 10 cents for my ticket. Could you
spare some change, please?

3) Off-record strategy: To a lunch partner after
lunch: Drat! I left my purse at home.

Figure 1: Examples of Brown & Levinson’s strategies

• develop discourse plan operators and realization rules
for presenting tutorial feedback to the student that are
sensitive to the values of the situational variables.

In our approach, we recognize the crucial role of facework
in successful language production, but we redefine B&L’s
Negative and Positive face dimensions directly in terms of:
• Autonomy : Tutors should let students do as much of

the work as possible (determination of the appropriate
level of content specificity).

• Approval : Tutors should provide the students with
positive feedback as much as possible (determination
of the appropriate level of illocutionary specificity).

Values for autonomy and approval (henceforth A&A) are
used to choose both the high-level tutorial strategy and the
linguistic form for realization.

Relevant Situational Factors
We studied a corpus of human-human tutorial dialogues in
the domain of basic electricity and electronics (BEE) in
order to catalogue linguistic patterns of tutor feedback in
terms of <aut, app> values. The dialogues along with the
relevant educational literature and informal interviews with
professional teachers were also used to determine a
possible set of contextual factors relevant to teachers’
decisions. In order to determine how tutors perceive the
importance of the individual factors to their feedback
decisions, we performed a study in which teachers were
given situations, as characterized by combinations of
values of the factors shown in Fig. 2. For each
combination, the teachers were asked to rank the
situational factors to indicate the relative importance to
their feedback decisions (Porayska-Pomsta, Mellish &
Pain, 2000).

The results of the studies were used to inform the design
and implementation of the situational model. Specifically,
a Principle Components Analysis allowed us to group the
factors according to how they relate to one another, while
teachers’ written comments and post-hoc interviews
allowed us to determine their possible relation to the A&A
dimensions.

We built a Bayesian network that combines evidence from
the factors to compute values for A&A for each tutor turn.
The structure of the network reflects the relationship of
factors as determined by the study. The network consists of
four levels: (1) the input level represents the situational
factors, their values and their relative importance; (2) the
goal level represents Guidance-Oriented-Goals and
Approval-Oriented-Goals; (3) the voting level combines
the recommendations of the goals at level 2; and (4) the
final outcome nodes represent Autonomy and Approval.
At the second level, the values of the student- and lesson-
oriented factors evoke specific goals that can be interpreted
either in terms of guidance or approval. The relative
importance of the factor values is used to calculate the
strength with which these goals are evoked. The
performance-oriented factors are used to modify the
outcome of the goal recommendations on the third level.
For a more detailed description see Porayska-Pomsta
(2003).

Generating Feedback Based on A&A
To generate appropriate feedback, we devised feedback
strategies sensitive to the values computed for A&A in the
current situation. The discourse planner uses the A&A
values when choosing feedback strategies, and the surface
generator uses them to choose among applicable realization
rules. Fig. 3 shows 6 different feedback strategies that can
be used when the student has made a particular error
(removing a wire to de-energize the circuit). The name of
each strategy is underlined, and the A&A values associated
with the strategy are given in angle brackets. The discourse
planner and realization components choose the operator
and realization rules with the minimal distance between
their <aut, app> value/range and the target <aut, app> pair,
as indicated by the situation modeler (BEESM).

Student-oriented factors
• student confidence
• student interest (bored/motivated)

Lesson-oriented factors
• time left for lesson
• amount of material left to be covered
• difficulty of material
• importance of material

Performance-oriented factors
• correctness of student’s previous answer(s)
• ability of student

Figure 2: Situational Factors

“No, that's not right.” tell incorrect <1.0, 0.1>

“Are you sure that this is the right way to de-energize the
circuit?” question certainty: <0.8, 0.4>

“Not quite, why don’t you try again?”
 tell incorrect plus gauging question <0.6, 0.4>

“Removing the wire does not de-energize the circuit.
 disconfirm effect <0.4, 0.1>

“If you remove the wire, then this will break the circuit but
does it de-energize it?” question effect <0.3, 0.5>

“Isn't this breaking the circuit rather than de-energizing
it?” question validity <0.2, 0.3>

Figure 3: Example feedback with A&A values

Overview of BEETLE System
BEETLE, our Basic Electricity and Electronics Tutorial
Learning Environment, aims at improving student learning
by prompting students to construct knowledge for
themselves. The response generation module computes
appropriate tutorial moves and synthesizes tutorial
feedback as text and GUI actions. In order to combine the
ability to plan tutoring activities with the ability to handle
unexpected responses, interruptions and failures, BEETLE
uses a three-level architecture inspired by work in robotics
(Zinn, Moore, & Core, in press). Its three layers are: a
deliberative planner that projects the future and anticipates
and solves problems (top layer); a sequencer or plan
execution and monitoring system that performs adaptive
on-the-fly refinement (middle layer); and a controller or
perception/action system that interprets student actions and
performs primitive tutor actions (bottom layer). The
deliberative planning and execution monitoring modules
are implemented in the Open Planning Architecture (O-
Plan) (Currie and Tate 1991). BEETLEGEN is the part of
the bottom layer that performs surface realization, and is
described in more detail below.

The complete BEETLE system also has: a robust NLU
module based on the CARMEL toolkit (Rosé 2000) which
translates the user's typed input into a logical form; a
dialogue manager built using the TRINDIKIT dialogue
system shell (Larsson and Traum 2000) which maintains
the system's information state (including the dialogue
history) and encodes rules of conversation; a domain
reasoner encoding the system's knowledge about the
subject matter being taught (implemented in Loom, a
description-logic based knowledge representation and
reasoning engine, see http://www.isi.edu/isd/LOOM/LOOM-
HOME.html ; a GUI for displaying a virtual laboratory,
hypertext lessons and multiple choice questions, and a
situation modeling component, which we describe next.

Situational Modeling: BEESM
BEETLE observes student actions and passes the relevant
information, encoded as messages, to the situational
modeler (BEESM). Messages can encode information of
the following kinds:
• Aspects of the domain knowledge: difficulty and

importance of the material;
• Temporal aspects: time allowed for a given lesson,

time elapsed from the start of a lesson, amount of
material left and material covered;

• Aspects of student behaviour: answer correctness and
hesitation.

A set of diagnostic rules then processes these messages,
interpreting them as situational factors having specific
values. Then the relative importance of the situational
values is determined using case-based reasoning. The case
base implements the results of our teacher study. The
values of the situational factors along with their relative

importance is then used as evidence for the input nodes of
our Bayesian net. Probabilistic inference is then used to
determine the A&A values.

For example, when BEETLE sends a message of the form
action_correctness(<action>,incorrect) to BEESM, the
diagnostic rules identify this observation as the value for
the performance-oriented situational factor “correctness”.
In some contexts, as maintained by the rule engine,
BEESM may also infer values for the factors “student
interest” and/or “student ability”. For instance, if the
student incorrectly attempted the same action several times,
the inferred evidence for the node “student ability” will be
the value low. Case-based reasoning is used to compute the
relative importance of correctness and potentially of other
situational factors. The output of the Bayesian reasoning,
<aut, app> values, informs (strategic) discourse planning
and (tactical) sentence realization.

Strategy Selection: Discourse Planner
For brevity, we describe O-Plan’s operationalization of
A&A values with an example. Fig. 4 depicts one of the
many O-Plan operators for the generation of tutorial
feedback when the student has incorrectly performed a step
in a procedure.

This operator aims at achieving the effect
{action_correctness ?step} = correct, and is applicable
when the conditions are satisfied. The first condition
indicates that the operator may be used when the student’s
action is incorrect. Other conditions query external
knowledge sources (e.g., BEESM and TIS, the agent
maintaining the information state) to obtain instantiations
for O-Plan variables (prefixed with ‘?’). Of interest here is
the nearest_neighbour condition, which discriminates
between various supply_feedback operators. It checks
whether the distance between the computed A&A values
and the given constants is minimal. If the conditions are
satisfied, the operator is expanded into a sequence of more

schema do_supply_feedback_disconfirm_effect;
 vars ?step = ?{satisfies listp},

?aut, ?app = ?{satisfies numberp},
 ?sact = ?{satisfies listp};
 expands {supply_feedback ?step};
 only_use_for_effects {action_correctness ?step} = correct;
 conditions

only_use_if {answer_correctness ?step} = incorrect,
compute {beesm (get_aut_app)} = {?aut, ?app},
compute {nearest_neighbour ?aut 0.4 ?app 0.1} = true,
compute {tis (get_last_utt student action)} = ?sact;

 nodes 1 action {take_turn},
2 action {reject_action},
2 action {disconfirm_effect ?step ?sact},
3 action {give_away_turn};

end_schema

Figure 4: A Discourse Plan Operator

primitive steps. In our example, supply_feedback unfolds
into four sub-steps: take the turn, reject the student’s
action, disconfirm the correctness of the student action, and
then give away the turn. Once a discourse plan has been
found, BEETLE’s execution and monitoring component
selects a sequence of plan steps for execution, transforms
the O-Plan representation into XML (cf. Fig.5), and passes
it to BEETLEGEN for realization.

Linguistic Realization: BEETLEGEN
BEETLEGEN transforms a set of dialogue act
specifications into one or more surface realizations using
XSLT. The input and output data structures are represented
in XML, and the transformation is performed by means of
a pipeline of stylesheets (Clark, 1999). Our pipeline model
is similar to that of Wilcock (2003), but we extend his
approach by adding a distance function, subcategorization,
and context-dependent pronominalization and variation.
We discuss the most important characteristics of our
implementation. An XSLT processor works by traversing
an input XML document top-down and left-to-right,
writing XML elements and attributes into the output tree.
At each node of the input tree, the XSLT processor chooses
the best matching XSLT-template and executes it. This
makes processing deterministic and efficient, but also
makes it difficult to perform search. However, by encoding
appropriate match conditions (in the XPATH language),
we can reduce the risk of making wrong choices.

The realizer works by building an initial text structure, and
then successively refining and filtering it. Fig. 5 shows the
input the realizer will be given when the supply_feedback
operator above has been expanded; the move-ids are
identifiers for speech acts in the Information State. This
input will ultimately generate the utterance “Removing the
wire does not de-energize the circuit.” (cf. Fig. 3). When
traversing the input XML tree, we first encounter two
elements with no children: take_turn and reject_action.
Elements with no children are mapped directly to phrases
by simple XSLT templates. In dialogue, it is common for

turn-taking and acknowledgement moves to be performed
implicitly by subsequent speech acts, thus avoiding
utterances like: “Umhm. No. Removing…” We use XSLT
templates that do not write anything to the output tree to
block verbalization of such moves where appropriate.
Blocking the realization of input speech acts in this way
implements the subsumption principle of Stent (2002).

For example, in the current implementation we block
explicit acknowledgment moves if there are also direct or
assert moves in the input. Likewise, reject_action moves
are blocked in many situations, for example if they are
followed by a diag_query, disconfirm_correctness or
tell_s_incorrect move. This is because the latter moves
realize more fine-grained and appropriate reactions to a
student's mistake than the more general reject_action
move, which could negatively affect the tutor’s strategy by
adding “No” to output that was intended to be indirect.

The d i scon f i rm_e f f ec t element, which contains
propositional content in the form of child elements, is
realized by means of a generation template into which the
propositional content is inserted (cf. Fig. 6). This is done
by first generating a sentence frame containing the canned
text “does not” and the sentence final full stop, and then
recursively calling xsl:apply-templates with the children of
the matched disconfirm_effect element. Thus, our realizer
mixes template-based and rule-based processing. The
additional XSLT calls make use of XSLT-mode
declarations which serve to distinguish subsets of XSLT
templates. We use XSLT templates in different modes to
generate different output trees for the same input element,
depending on the syntactic features that are required. In
Fig. 6, we require a gerund for the first part of the sentence
and an infinitive for the second.

In the remaining stylesheets of the pipeline, we perform
several operations. To prevent incomplete output
sentences, we check whether the obligatory elements
introduced by rules such as the one in Fig. 6 have any child
elements. The next step of the pipeline makes basic
decisions about pronominalization for multi-sentence turns.
For this, we use XPATH expressions in the match

<input>
 <take_turn move-id="9"/>
 <reject_action move-id="3"/>
 <disconfirm_effect move-id="17">
 <de_energize>
 <I-CIRCUIT1/>
 </de_energize>
 <remove>
 <I-CIRCUIT1/>
 <I-WIRE-1451/>
 </remove>
 </disconfirm_effect>
 <give_away_turn/>
</input>

Figure 5: XML input to the text realizer

<xsl:template match="disconfirm_effect">
 <node syncat="sent">

 <obligatory>
 <xsl:apply-templates select="*[2]" mode="vp-gerund"/>
 </obligatory>
 <word phon="does"/> <word phon="not"/>
 <obligatory>
 <xsl:apply-templates select="*[1]" mode="vp-inf"/>
 </obligatory>
 <punct phon="."/>

 </node>
</xsl:template>

Figure 6: XSLT-template building syntactic structure

conditions of XSLT templates to test whether the current
NP node has the same semantics as an NP node of the
previous sentence. At this stage in the pipeline, with the
exception of small pieces of canned text, the generator has
not yet produced any final word forms. This is because it
must wait until pronominalization decisions have been
made. After this is done, a lexical lookup stylesheet
produces fully inflected word forms by matching syntactic
features specified in its input XML tree. The stylesheet
contains default morphological rules as well as exceptions
to those rules. The ordering of the XSLT templates
guarantees that the exceptions take precedence over the
general rules. The final stylesheet extracts lexical items
from the generated tree structure, upcases sentence-initial
words, applies rules of punctuation and controls the
insertion of whitespace.

There is other processing that we have not discussed
above: some XSLT templates use <aut, app> values to
generate different verbalizations, and some access
BEETLE’s Information State to obtain information about
previous word choices in order to avoid repetition.

Evaluation & Future Work

We performed an evaluation of the situational modeler and
the linguistic strategies associated with A&A values. Four
experienced BEE tutors took part in the study. Each was
presented with twenty different situations in the form of
short dialogues between a student and a tutor. Each
interaction ended with a student answer that was either
incorrect or partially correct. For each situation, the
participants were provided with three possible tutor
responses to the student’s answer and were asked to rate
each of them on a scale from 1 to 5 according to how
appropriate they thought the response was in a given
situation. They were asked to pay special attention to the
manner in which each response attempted to correct the
student. The three types of responses rated included: a
response that a human made to the given situation, the
response recommended by the situational modeling
component, and a response that the model was less likely
to recommend for the same situation.
We performed a t-test to determine whether there was a
significant difference between the three types of responses.
The analysis revealed a significant difference between
human follow-up responses and the system’s less preferred
responses (t(19) = 4.40, p < 0.001), as well as a significant
difference between the system’s preferred and the system’s
less preferred responses (t(19) = 2.72, p = 0.013). Finally,
and most encouraging, there was no significant difference
between the ratings of the human responses and the
system’s preferred responses, (t(19)=1.99, p=0.61). This
preliminary analysis indicates that the model’s choices are
in line with those made by a human tutor in identical
situations (for more detail, see Porayska-Pomsta, 2003).
This bodes well for the implementation, and in future

work, we will evaluate the situational model and
generation capabilities in the context of the full BEETLE
system.

References
Allen, J.F. and C. R. Perrault. 1980. Analyzing intention
in utterances. Artificial Intelligence 15:143–178.
Bloom, B. S. 1984. The 2 Sigma problem: The search for
methods of group instruction as effective as one-on-one tutoring.
Educational Researcher 13:4-16.
Brown, P., and S. Levinson. 1987. Politeness: Some Universals
in Language Use, Cambridge University Press.
Clark, J. 1999. XSL Transformations (XSLT), Version 1.0, W3C
Recommendation. http://www.w3.org/TR/xslt.
Cohen, P. R., 1978. On knowing what to say: Planning speech
acts. Technical Report 118, University of Toronto.
Currie, K. and A. Tate. 1991. O-Plan: the Open Planning
Architecture. Artificial Intelligence, 52:49–86.
Larsson, S. and D. Traum. 2000. Information state and dialogue
management in the TRINDI dialogue move engine toolkit.
Natural Language Engineering, 6(3–4):323–340.
Fetzer, A. 2003. ‘No Thanks’: A socio-semantic approach.
Linguistik (14): 137-160.
Fox, B. 1993. The human tutorial dialogue project: Issues in the
design of instructional systems. Lawrence Erlbaum.
Lepper, M.R. and R.W. Chabay. 1988. Socializing the intelligent
tutor: Bringing empathy to computer tutors. In Mandl and
Lesgold (Eds.), Learning Issues for Intelligent Tutoring Systems,
114-137. Springer.
Person, N. K., R. J. Kreuz, R. A. Zwaan, and A.C. Graesser.
1995. Pragmatics and pedagogy: Conversational rules and
politeness strategies may inhibit effective tutoring. Cognition and
Instruction 2(13), 161-188.
Porayska-Pomsta, K., C. S. Mellish, and H. Pain. 2000. Pragmatic
analysis of teachers’ language: Towards an empirically based
approach. Proc. of the AAAI Fall Symposium on Building Systems
for Tutorial Applications.
Porayska-Pomsta, K. 2003. Influence of situational context on
language production: Modeling teachers’ corrective responses.
PhD thesis, University of Edinburgh.
Rosé, C. P. 2000. A Framework for Robust Semantic
Interpretation. In Proc. of NAACL.
Stent, A. 2002. Conversation Acts–Model for Generating Spoken
Dialogue Contributions. Computer Speech and Language, Issue
on Spoken Language Generation.
Wilcock, G. 2003. Integrating Natural Language Generation with
XML Web Technology. In Proc. of the Demo Sessions of EACL-
2003, pp. 247-250.
Walker, M.A., J. E. Cahn and S. J. Whittaker. 1997. Improvising
Linguistic Style: Social and Affective Bases for Agent
Personality. Proc. of the First International Conference on
Autonomous Agents.
Zinn, C., J. D. Moore and M. G. Core. In press. Intelligent
information presentation for tutoring systems. In Intelligent
Information Presentation. In Stock & Zancanaro (Eds.), Kluwer.

