
Building Hint Specifications in an NL Tutorial System for Mathematics

Dimitra Tsovaltzi, Helmut Horacek, and Armin Fiedler
Department of Computer Science

Saarland University
{tsovaltzi,horacek,afiedler}@ags.uni-sb.de

Abstract

NL interaction and skillful hinting are known as cornerstones
for successful tutoring. Despite these insights, a combination
of these two factors is widely under-represented in the field.
Building a tutorial system for teaching mathematical proof
techniques, we aim at an elaborate hinting algorithm which
integrates problem solving, discourse contexts and accurate
domain knowledge into a socratic hinting strategy.

Introduction
The mode of interaction between the tutor and the student
is a crucial factor in tutorial systems. Specifically, natu-
ral language dialog capabilities are necessary for the suc-
cess of tutorial sessions, as it has been shown empirically
(Moore 2000). Moreover, hinting has been demonstrated
to be a beneficial ingredient in tutoring (Chi et al. 1994;
Rosé et al. 2001), since it helps the student build a deeper
understanding and improve their performance. Despite
these insights, only few state-of-the-art tutoring systems use
natural-language interaction and hinting in an elaborate way.
Typically, no natural language interaction is used, (Graesser
et al. 2003) being one of the rare exceptions.

We suspect a fundamental reason for the limited use of
natural language interaction lies in the architectures used in
existing systems, in which domain knowledge, tutoring and
pedagogical knowledge, and knowledge about dialog man-
agement are tightly intertwined. In contrast, we aim at a
tutoring system in the domain of mathematics in which do-
main knowledge, dialog capabilities, and tutorial strategies
can clearly be identified. Our investigations are part of the
DIALOG project (Benzmüller et al. 2003a). The aim of the
project is the development of a mathematical tutoring sys-
tem that is able to teach proving in a way that not only helps
the student understand the current proof, but also allows for
a high learning effect. What is meant by the latter is the abil-
ity of the students to better understand the problem at hand,
as well as to generalize and apply the solving techniques on
their own later on.

In order to accomplish this ambitious goal, we envisage
a tutorial system that employs an elaborate natural language
dialog component. Furthermore, to tutor mathematics, we

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

need a formally encoded mathematical theory including def-
initions and theorems along with their proofs, a theory of tu-
toring, and means of classifying the student’s input in terms
of the knowledge of the domain demonstrated.

We propose to meet these requirements in the following
way. Since it is in general impossible to precompile all pos-
sible proofs for a given theorem, we make use of the state-
of-the-art theorem prover ΩMEGA (Siekmann et al. 2002)
with its mathematical knowledge base. To classify the stu-
dent’s input, we have developed a categorization scheme for
student answers, which draws on ΩMEGA’s mathematical
ontology. As far as the tutoring model is concerned, we
have been developing a taxonomy of hints for the naive set
theory domain. This taxonomy is used by a hinting algo-
rithm which models the socratic tutoring method by means
of selecting different hint categories according to an implicit
student model (Fiedler & Tsovaltzi 2003). In this paper we
focus on the hinting category selection and the generation of
its content specifications. More specifically, we talk about
the enhancement of the ΩMEGA mathematical ontology and
discuss an abstraction technique for hint content specifica-
tion.

The paper is organized as follows. First, we briefly mo-
tivate our approach to hinting. Then we introduce the tax-
onomy of hint categories. The first major section is devoted
to outlining the hinting algorithm, which is responsible for
the hint category selection. In the other major section, we
describe the hint content determination. Finally, we discuss
related work and future activities.

Our Approach to Hinting
Adhering to psychological evidence for the high educational
effect of hinting (Rosé et al. 2001) and taking into consid-
eration such psychological evidence as cognitive load the-
ory, schema acquisition and motivational theory (Lim &
Moore 2002; Owen, Sweller, & Olson 1985; Keller 1987),
we propose to establish our tutoring aims by making use
of a socratic tutoring method, whose decisive characteris-
tic is the use of hints in order to achieve active learning. Our
work builds on the little systematic research done to date
in the area (Hume et al. 1996; Fiedler & Horacek 2001;
Tsovaltzi 2001; Tsovaltzi & Matheson 2002).

We have been developing a taxonomy of hints, which
draws on a mathematical ontology and on abstraction con-



active passive
domain-relation elicit-antithesis give-away-antithesis

elicit-duality give-away-duality
domain-object give-away-antithesis give-away-relevant-concept

elicit-basic-knowledge give-away-more-general-
knowledge

elicit-more-general-knowledge give-away-basic-knowledge
inference rule give-away-relevant-concept give-away-inference-rule

elaborate-domain-object
elicit-inference-rule

substitution give-away-inference-rule spell-out-substitution
elicit-substitution

meta-reasoning spell-out-substitution explain-meta-reasoning
performable-step explain-meta-reasoning give-away-performable-step

reduce-parentheses
variables-closer

pragmatic ordered-list take-for-granted
elicit-discrepancy

Table 1: A fragment of the taxonomy of hints

siderations, as well as on empirical data from the BE&E cor-
pus (Moore et al. 2000) and our own corpus (Benzmüller et
al. 2003b; 2004). This taxonomy is used by a hinting algo-
rithm which models the socratic tutoring method by means
of selecting different hint categories according to an implicit
student model (Fiedler & Tsovaltzi 2003). The actual con-
tent determination of hinting specifications incorporates the
use of relations from our enhanced mathematical ontology,
as well as abstraction mechanisms which enable us to select
from a repertoire of hints at varying degrees of specificity.

A Taxonomy of Hint Categories
The hint taxonomy depicted in Table 1 shows all the dimen-
sions and classes of the full taxonomy, but only illustrative
examples of the hint categories in them. The taxonomy cap-
tures the underlying function of hints that is mainly respon-
sible for the educational effect of hints. The structure of the
hint taxonomy also reflects the function of the hints with re-
spect to the information that the hint addresses or is meant
to trigger.

In order to capture the different functions of a hint we
have defined hint categories across two dimensions. The
first dimension distinguishes between the active and pas-
sive function of hints. The passive refers to the informa-
tion provided each time to the student. The active function
refers to the information that the hint aims at triggering in
the student’s current cognitive state, that is, the information
elicited. The second dimension distinguishes between dif-
ferent classes of hints. Hint categories are grouped in classes
according to the kind of information they address in relation
to the domain and the formal proof step under consideration.
The classes are ordered according to the amount of informa-
tion they give away.

By and large, the hints of the passive function of a class
in the second dimension are part of the hints of the active
function of its immediately subordinate class. For exam-
ple, the passive hint give-away-relevant-concept of the class
domain-object is also an active hint of its subordinate class,
namely, inference-rule. In providing this hint the system

is trying to elicit the inference rule, which would help the
student proceed with the proof. In an example from our cor-
pus, the tutor pointed to the inference rule that eliminates
an implication by producing the following realization of the
hint give-away-relevant-concept (an English translation is
included):

T2: Sie müssen als erstes die wenn-dann-Beziehung betrachten.
[You first have to consider the if-then-relation.]

For a detailed discussion of the taxonomy see (Fiedler &
Tsovaltzi 2003).

Hint Category Selection
Selecting a hint category relies on modeling of the context
which mainly manifests itself in terms of previous student
answers. The hinting algorithm’s central part is the function
socratic. A specific feature of the algorithm is subtask
handling. We devote a section to each of these issues.

General Session Modeling
In this section we look into a few aspects that are used in
choosing the right hint for a student, which constitutes the
session modelling. As we will see in the following subsec-
tion, the hinting algorithm takes as input the categories of
the student’s answers. We categorize the student’s answer in
terms of its completeness and accuracy with respect to the
expected answer. The expected answer is any correct proof
step that fits into the proof the student has pursued so far. In
order to produce the proof that includes the student’s answer,
we use the state-of-the-art theorem prover ΩMEGA (Siek-
mann et al. 2002). This makes it possible for the system
to give guidance according to the proof that the student is
attempting without imposing one of the alternatives.

Our definitions of completeness and accuracy make use
of the concept of a part, that is, a premise, the conclusion,
or the inference rule of a proof step.

We say that an answer is complete if and only if all desired
parts of the answer are mentioned. We say that a part of an
answer is accurate if and only if the propositional content of



the part is the true and desired one. Based on these notions,
we define the following student answer categories:

Correct: An answer which is both complete and accurate.
Complete-Partially-Accurate: An answer which is com-

plete, but some parts in it are inaccurate.
Complete-Inaccurate: An answer which is complete, but

all parts in it are inaccurate.
Incomplete-Accurate: An answer which is incomplete, but

all parts that are present in it are accurate.
Incomplete-Partially-Accurate: An answer which is in-

complete and some of the parts in it are inaccurate.
Wrong: An answer which is both incomplete and inaccu-

rate.
Irrelevant: An answer, which is in principle correct, but

does not contribute to the proof under consideration.
Non-Attempt: The student does not attempt an answer.

Since we do not make use of all of the above categories for
the algorithm, we collapse the categories complete-partially-
accurate, complete-inaccurate and incomplete-partially-
accurate to one category, namely, inaccurate. Moreover,
for the purposes of this paper we treat irrelevant and non-
attempt answers as wrong answers. For more on the student
answer categories see (Tsovaltzi & Fiedler 2003).

Our Hinting Algorithm
The algorithm takes into account the current and previous
student answers. The particular input to the algorithm is
the category to which the student answer has been assigned,
based on our student answer categorization scheme and the
domain knowledge employed in the answer. Moreover, the
algorithm computes whether to produce a hint and which
category of hint to produce, based on the number of wrong
answers, as well as the number and kind of hints already
produced. We will now have a closer look at the algorithm.
The bulk of the work in the algorithm which implements
hinting is done by the main function socratic (cf. Figure
1), which we outline here. The function takes as an argument
the category C of the student’s current answer. If the origin
of the student’s mistake is not clear, a clarification dialog is
initiated, before socratic is called. Further algorithm in-
put includes H, which denotes the number of hints produced
so far, and C−1, which denotes the category of the student’s
previous answer. The function socratic calls several other
functions that roughly correspond to hint classes of the hint
taxonomy, which we do not look into in this paper. Both the
function socratic and the functions called within it, pro-
duce as output single hint categories. After having produced
a hint category, the function socratic requires the analysis
of the student’s answer to that hint. If the student’s answer
is still not right the function socratic is recursively called.
For a more detailed description of the algorithm see (Fiedler
& Tsovaltzi 2003).

Subtasks
Inspired by our corpus data and the need to add more struc-
ture to the hinting process that captures a meta-reasoning

Case H = 0
if C is wrong or inaccurate then call elicit
if C is incomplete-accurate then produce an active
pragmatic hint {that is, ordered-list , or unordered-list}

Case H = 1
if C is wrong
then if C−1 is wrong or incomplete-accurate

then call up-to-inference-rule
if C−1 is inaccurate then call elicit-give-away
if C−1 is correct then call elicit

else call elicit
Case H = 2

if C is wrong
then if this is the third wrong answer

then produce explain-meta-reasoning
else if previous hint was an active substitution hint

then produce spell-out-substitution
else if previous hint was spell-out-substitution

then produce give-away-performable-step
else call up-to-inference-rule

else call elicit-give-away
Case H = 3

if C is wrong and it is at least the third wrong answer
then produce point-to-lesson and stop

{The student is asked to read the lesson again. After-
wards, the algorithm starts anew.}

else produce explain-meta-reasoning
Case H ≥ 4

give away the answer and switch to didactic strategy;
switch back after three consecutive correct answers with
all counters reset

{After three hints, the algorithm starts to guide the student more
closely to avoid frustration. }

Figure 1: The Function Socratic

process, we have built a way of handling subtasks into the
hinting algorithm. More specifically, the algorithm as pre-
sented so far models hinting at the one main line of reason-
ing. We elaborate the hinting process by adding more levels,
in the form of subtasks, to the line of reasoning that can be
hinted at. Subtasks aim at facilitating the main line of rea-
soning itself. They open and close at the same point in the
line of reasoning and may be nested.

To illustrate the function of subtasks we include in Fig-
ure 2 a series of possible hint realizations, based on hints
from our taxonomy and their use in subtasks. The task is
to prove that A∩B ∈ P (A∪C)∩ (B∪C)) and for the first
step the definition of P (powerset) needs to be applied. That
is A ∈ P (B) ⇒ A ⊆ B. Numbers signify sequences of hints
within the same task level. Primes signify task levels, which
are embedded. There is additional indication for when one
level of a task starts and ends. The names in brackets cor-
respond to hint categories from the taxonomy. We look at
a full unfolding of the subtasks as we assume that the hints
produced have not elicited the correct answer from the stu-
dent.

Hint Content Determination
The content generation of hints relies on ontological infor-
mation which goes beyond what is represented in ΩMEGA’s
knowledge base. Among others, this enhanced ontology is
exploited for abstraction techniques, which are important
features for expressing hints.



1: (elicit-inf-rule) Can you find a rule now that connects
P and subset.
(Subtask initiated)
1′: (elicit-more-gen-know) What is the condition of be-
longing to/being an element of P ?
(Subsubtask initiated)
1′′: (elicit-basic-know) What is the condition of belong-
ing to a set in general?
2′′: (give-away-basic-know) A subset of a set belongs to
the set.
(End of subsubtask)
2′: (1′ repeated) What is the condition of belonging to/being an
element of P ?
3′: (give-away-more-gen-know) A set A is an element of
P (B) if the set is a subset of B.
(End of subtask)
2: (1 repeated) Do you know which rule you need to use?
3: (give-away-inf-rule) You need to apply the definition
of P , namely A ∈ P (B) ⇒ A ⊆ B.

Figure 2: Subtasks

An Enhanced Domain Ontology
ΩMEGA’s knowledge base is organized as an inheritance
network. The semantics of mathematical objects is ex-
pressed in terms of λ-calculus expressions which constitute
precise and complete logical definitions required for proving
purposes. Inheritance is merely used to percolate specifica-
tions efficiently, to avoid redundancy and ease maintenance,
but not even hierarchical structuring is imposed. Meeting
purposes of hinting, in contrast, does not require access to
the complete logical definitions, but does require several
pieces of information that go beyond what is represented
explicitly in ΩMEGA’s knowledge base. In order to meet
these requirements, the domain objects are reorganized in
a specialization hierarchy, and semantic relations that exist
implicitly in ΩMEGA’s knowledge base are expressed ex-
plicitly.

We consider relations between mathematical concepts, re-
lations between mathematical concepts and inference rules,
and relations among mathematical concepts, formulae and
inference rules. By making these relations explicit we en-
hance the existing mathematical database into an ontology
for tutoring mathematics, as these concepts and relations
can be used to hint at anchoring points for proving, pro-
viding, but not imposing, students with heuristics and prov-
ing models that facilitate learning (Lim & Moore 2002;
Owen, Sweller, & Olson 1985).

In the following, we shall give some examples of such
explicitly defined relations. We use the following inference
rule in our examples:

U ⊆V V ⊆U

U = V
Set=

where U and V are sets.
Let σ,σ′ be mathematical concepts, R be an inference

rule and ϕ1, . . . ,ϕn,ψ formulae, where ϕ1, . . . ,ϕn are the
premises and ψ the conclusion of R.

Antithesis: σ is in antithesis to σ′ if and only if it is its oppo-
site concept (i.e., one is the logical negation of the other).
Examples: ∈ and 6∈ are in antithesis

Relevance: σ is relevant to R if and only if R can only be
applied when σ is part of the formula at hand (either in
the conclusion or in the premises).
Examples: ⊆,⊇ and = are relevant to rule Set=

Introduction and Elimination: Rule R introduces σ if and
only if σ occurs in the conclusion ψ, but not in any of
the premises ϕ1, . . . ,ϕn. Rule R eliminates σ if and only
if σ occurs in at least one of the premises ϕ1, . . . ,ϕn, but
not in the conclusion ψ.
Examples: Set= introduces = and eliminates ⊆ and ⊇

This ontology is evoked primarily for the determination
of the content of hint categories chosen by the socratic algo-
rithm. Because we want to avoid the standard static gamed-
based generation of hints, every hint category is chosen with
respect to the session model of the student. This means that
for every student and for his current performance on the
proof being attempted, the hint category is chosen, which
must be realized in a different way based on, for instance,
the discourse structure and the dialog management. This, in
turn, means that hint categories must constitute descriptive
place holders for the actual realizations. The realization it-
self requires collaboration of the hinting algorithm with the
dialog manager (cf. (Tsovaltzi & Karagjosova 2004)), on the
one hand, and with the knowledge databases, on the other.

Taking these consideration into account, we define hint
categories based on generic descriptions of domain objects
or relations. The role of the ontology is to map the generic
descriptions on the actual objects or relations that are used in
the particular context, that is, in the particular proof at hand
and the proof step in it. These concepts or relations are used
for the actual generation of the hints which point to them as
relevant anchoring points.

Abstraction Techniques
In the experiments underlying our corpus study, it turned out
that the hints produced by the tutor according to the algo-
rithm used were not as helpful as we had hoped. We believe
that one of the problems for this lies in the complexity of the
domain, since performing proof steps requires understand-
ing at several levels of granularity. In contrast, the underly-
ing system ΩMEGA as well as the hinting algorithm used for
the collection of the data mainly provided information about
domain objects and relations, but not about the reasoning in-
volved in manipulating these objects at varying degrees of
detail. In order to make hints more effective on the basis of
the available domain knowledge, we have added abstractions
in the hint presentations, thereby also enhancing the reper-
toire by adding hints addressing the problem from another
perspective, which we call functional complementing the
conceptual one. We conjecture that these measures in com-
bination with the added subtask structure of the hinting algo-
rithm, which can make use of them, can improve the student
performance. The reason for it is that the varying degree
of abstraction allows for a sort of meta-reasoning over the
problem, which facilitates skill-transferability. Nonetheless,
students are reluctant to phrase any meta-reasoning without
such prompting (Conati & VanLehn 1999).

For building abstractions of hint specifications, we made
a distinction between a conceptual view, which emphasizes



a relation to a mathematical concept, and a functional view,
which emphasizes the effect imposed on the conclusion of
an assertion (i.e., axiom, definition or theorem) under con-
sideration. Hints in the conceptual view refer to assertions
relating a central property of a mathematical concept to
some assertion by an implication. Depending on the direc-
tion of the implication, that assertion expresses a condition
for the property of the mathematical concept under consider-
ation, or a consequence. In the functional view, the applica-
bility of some descriptions is tested by comparing structural
properties of the premises and conclusion of an inference
rule, such as, the number of operators, the number of paren-
theses, and the appearance of a variable. Possible deriving
hint content determinations are “simplify”, “reduce the num-
ber of parentheses”, and “eliminate a variable”, respectively.
Other descriptions are defined based on patterns that appear
in the conclusion but not in the premises of the assertion.
These patterns make use of wild card characters which rep-
resent abstractions of subformulae. For example, the pattern
for isolating a variable is ’X∗’, to which the conclusion but
not the premises must be reducible by abstraction.

Next, the generation of the hint specification undergoes an
abstraction process. The operations for this process depend
on the view taken on the inference in question. For the con-
ceptual view, the conceptual elements appearing in that rule
are generalized, according to the underlying domain taxon-
omy. This abstraction can be used in a pure form, as the
basis for a rather general hint. Moreover, subformulae of the
concrete instance can be embedded in the abstracted form, to
be used as more specific follow-up hints. For the functional
view of an inference, the structure of the formula is sub-
ject to abstraction (in our domain). More concretely, atomic
elements in a formula (variables, constants, and operators)
are successively abstracted into a wild card character place
holder. Moreover, two immediately adjacent wild card char-
acters can be combined into a single one. This way, building
formulae reduced to their structural embedding is possible,
with selected variables still present.

Let us illustrate the potential uses of this method by an ex-
ample. The theorem to be proved is the following (P stands
for power set): (A∩B) ∈ P ((A∪C)∩ (B∪C)).

When focusing on the conclusion obtained after applying
distributivity to the expression in the scope of the power set
operator, which is (A∩B)∪C, some of the possible and most
useful abstractions for the present operation are: ((A∪B)∩
∗), ((A ∪ B)∗), ((A ∗B)∗), ((∗)∩ ∗). The last two fit the
hint descriptions “Try to bring A and B closer together” (the
last-but-one), and “Reduce the number of parentheses” or
“Simplify” (the last one).

Focusing on the relation between the two sets related on
top level in the theorem above, the underlying rule can be
formulated as x∈ P (y)⇒ x⊆ y, which is essentially how the
notion of power set is defined. The most accurate conceptu-
alization for this relation is “the condition for belonging to
a power set”. Through generalization, this can be weakened
into “the condition for belonging to a set”, and simply “the
condition”.

Conversely, these expressions can be augmented by the
expressions to which x and y are instantiated in this example:
“the condition for A∩B belonging to P ((A∪C)∩ (B∪C))”,

and simply “the condition for A∩ B being related to (A∪
C)∩ (B∪C)”.

Related Work
Several other tutoring systems tackle hinting, in one form or
the other. We will only mention here the ones that we judge
to be most related to our work.

Ms. Lindquist (Heffernan & Koedinger 2000), a tutoring
system for high-school algebra, has some domain specific
types of questions which are used for tutoring. Although
there is some mention of hints, and the notion of gradually
revealing information by rephrasing the question is promi-
nent, there is no taxonomy of hints or any suggestions for
dynamically producing them.

An analysis of hints can also be found in the CIRCSIM-
Tutor (Hume et al. 1996), an intelligent tutoring system for
blood circulation. Our work has been largely inspired by the
CIRCSIM project both for the general planning of the hint-
ing process and for the taxonomy of hints. CIRCSIM-Tutor
uses domain specific hint tactics that are applied locally, but
does not include a global hinting strategy that models the
cognitive reasoning behind the choice of hints. We, instead,
make use of the hinting history in a more structured manner.
Our algorithm takes into account the kind of hints produced
previously as well as the necessary pedagogical knowledge,
and follows a smooth transition from less to more infor-
mative hints. Furthermore, we have defined a structured
hint taxonomy with refined definition of classes and cate-
gories based on the passive vs. active distinction, which is
similar to the active-passive continuum in CIRCSIM. These
classes roughly correspond to algorithm functions, which re-
semble CIRCSIM tactics, but are again more detailed and
more clearly defined. CIRCSIM-Tutor (Lee, Seu, & Evens
2002) uses an ontology at three levels: the knowledge of
domain concepts, the computer context of tutoring and the
meta-language on attacking the problem. Our ontology is
not concerned with the second level. The first level corre-
sponds to our existing knowledge base. The third level can
be viewed as a simplified attempt to model tutoring, which
we do via hinting. CIRCSIM-Tutor does, however, use its
domain ontology in categorizing the student answer and fix-
ing mistakes.

Matsuda and VanLehn (2003) research hinting for helping
students with solving geometry proof problems. They orient
themselves towards tracking the student’s mixed direction-
ality, which is characteristic of novices. We, on the contrary,
follow psychological findings in providing a model, which
assists the learning process with specific reference to the di-
rectionality of a proof, thus elevating unnecessary cognitive
load and assisting schema acquisition (Owen, Sweller, & Ol-
son 1985).

Conclusion and Future Work
In the DIALOG project, we use an adaptive hinting algo-
rithm based on session modeling, and aim at dynamically
producing hints that fit the needs of the student with regard
to the particular proof. Additionally, we do not restrict our-
selves to the use of a gamed of static hints, but use a taxon-
omy of hints based on domain content and cognitive func-



tion. That allows us an equally dynamic realization of hints
that can take into account dialog and discourse management,
as well as domain independent pedagogical knowledge.

The choice of hints proposed in this paper describes only
the pedagogically motivated selection and the content de-
termination of the hint categories. The realization of hints
in terms of dialog moves and the interconnection between
the dialog management and hint generation are currently be-
ing investigated (Tsovaltzi & Karagjosova 2004). Moreover,
we plan to realize the hints and the other dialog moves by
extending the system P.rex, a full-fledged natural language
generation system that presents and explains mathematical
proofs (Fiedler 2001).

References
Benzmüller, C.; Fiedler, A.; Gabsdil, M.; Horacek, H.;
Kruijff-Korbayová, I.; Pinkal, M.; Siekmann, J.; Tsovaltzi,
D.; Vo, B. Q.; and Wolska, M. 2003a. Tutorial dialogs on
mathematical proofs. In Proceedings of the IJCAI Work-
shop on Knowledge Representation and Automated Rea-
soning for E-Learning Systems, 12–22.
Benzmüller, C.; Fiedler, A.; Gabsdil, M.; Horacek, H.;
Kruijff-Korbayová, I.; Pinkal, M.; Siekmann, J.; Tsovaltzi,
D.; Vo, B. Q.; and Wolska, M. 2003b. A Wizard-of-Oz
experiment for tutorial dialogues in mathematics. In Pro-
ceedings of the AIED Workshop on Advanced Technologies
for Mathematics Education, 471–481.
Benzmüller, C.; Fiedler, A.; Gabsdil, M.; Horacek, H.;
Karagjosova, E.; Kruijff-Korbayová, I.; Tsovaltzi, D.; Vo,
B. Q.; and Wolska, M. 2004. Annotating a corpus on math-
ematical tutorial dialog. In Proceedings of the NAACL/HTL
Conference Workshop CFP: Frontiers in Corpus Annota-
tion 2004. Submitted.
Chi, M. T. H.; de Leeuw, N.; Chiu, M.-H.; and Lavancher,
C. 1994. Eliciting self-explanation improves understand-
ing. Cognitive Science 18:439–477.
Conati, C., and VanLehn, K. 1999. Teaching meta-
cognitive skills: implementation and evaluation of a tutor-
ing system to guide self-explanation while learning from
examples. In Proceedings of AIED ’99, 9th World Confer-
ence of Artificial Intelligence and Education, 297–304.
Fiedler, A., and Horacek, H. 2001. Towards understanding
the role of hints in tutorial dialogues. In Proceedings of
the BI-DIALOG 5th Workshop on Formal Semantics and
Pragmatics in Dialogue, 40–44.
Fiedler, A., and Tsovaltzi, D. 2003. Automating hint-
ing in mathematical tutorial dialogue. In Proceedings of
the EACL-03 Workshop on Dialogue Systems: Interaction,
Adaptation and Styles of Management, 45–52.
Fiedler, A. 2001. Dialog-driven adaptation of explanations
of proofs. In Nebel, B., ed., Proceedings of the 17th In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI), 1295–1300. Seattle, WA: Morgan Kaufmann.
Graesser, A., et al. 2003. AutoTutor improves deep learn-
ing of computer literacy: Is it the dialog or the talking
head? In Proceedings of the Conference on Artificial Intel-
ligence in Education, 47–54.

Heffernan, N. T., and Koedinger, K. R. 2000. Building
a 3rd generation ITS for symbolization: Adding a tutorial
model with multiple tutorial strategies. In Proceedings of
the ITS 2000 Workshop on Algebra Learning.
Hume, G.; Michael, J.; Rovick, A.; and Evens, M. 1996.
Student responses and follow up tutorial tactics in an ITS.
In Proceedings of the 9th Florida Artificial Intelligence Re-
search Symposium, 168–172.
Keller, J. M. 1987. Strategies for simulating the motivation
to learn. Performance and Instruction Journal 26(8):1–7.
Lee, C. H.; Seu, J. H.; and Evens, M. W. 2002. Build-
ing an ontology for CIRCSIM-Tutor. In Proceedings of
the 13th Midwest AI and Cognitive Science Conference,
MAICS-2002, 161–168.
Lim, E. L., and Moore, D. W. 2002. Problem solving
in geometry: Comparing the effects of non-goal specific
instruction and conventional worked examples. Journal of
Educational Psychology 22(5):591–612.
Matsuda, N., and VanLehn, K. 2003. Modelling hinting
strategies for geometry theorem proving. In Proceedings
of the 9th International Conference on User Modeling.
Moore, J., et al. 2000. The BE&E corpus.
www.hcrc.ed.ac.uk/˜jmoore/tutoring/
BEE_corpus.html.
Moore, J. 2000. What makes human explanations effec-
tive? In Proceedings of the Fifteenth Annual Conference
of the Cognitive Science Society, 131–136. Hillsdale, NJ.
Earlbaum.
Owen, E.; Sweller, J.; and Olson, T. W. 1985. What do stu-
dents learn while solving mathematical problems? Journal
Educational Psychology 77:272–284.
Rosé, C. P.; Moore, J. D.; VanLehn, K.; and Allbritton, D.
2001. A comparative evaluation of socratic versus didactic
tutoring. In Moore, J., and Stenning, K., eds., Proceedings
23rd Annual Conference of the Cognitive Science Society.
Siekmann, J.; Benzmüller, C.; Brezhnev, V.;
Cheikhrouhou, L.; Fiedler, A.; Franke, A.; Horacek,
H.; Kohlhase, M.; Meier, A.; Melis, E.; Moschner, M.;
Normann, I.; Pollet, M.; Sorge, V.; Ullrich, C.; Wirth,
C.-P.; and Zimmer, J. 2002. Proof development with
ΩMEGA. In Voronkov, A., ed., Automated Deduction —
CADE-18, number 2392 in LNAI, 144–149. Springer
Verlag.
Tsovaltzi, D., and Fiedler, A. 2003. An approach to fa-
cilitating reflection in a mathematics tutoring system. In
Proceedings of AIED Workshop on Learner Modelling for
Reflection, 278–287.
Tsovaltzi, D., and Karagjosova, E. 2004. A dialogue move
taxonomy for tutorial dialogues. In Proceedings of 5th SIG-
dial Workshop on Discourse and Dialogue. Submitted.
Tsovaltzi, D., and Matheson, C. 2002. Formalising hint-
ing in tutorial dialogues. In Proceedings of EDILOG: 6th
Workshop on the Semantics and Pragmatics of Dialogue,
185–192.
Tsovaltzi, D. 2001. Formalising hinting in tutorial dia-
logues. Master’s thesis, The University of Edinburgh, Scot-
land, UK.


