
Increasing AI Project Effectiveness with Reusable Code Frameworks:
A Case Study Using IUCBRF∗

Steven Bogaerts and David Leake
Computer Science Department

Lindley Hall, Indiana University
Bloomington, IN 47405, U.S.A.

{sbogaert, leake}@cs.indiana.edu

Abstract

Instructors’ ability to assign artificial intelligence program-
ming projects is limited by the time the projects may require.
This problem is often exacerbated by the need for students
to develop significant system infrastructure, requiring them
to spend time addressing issues which may be orthogonal to
the AI course’s core pedagogical goals. This paper argues
that such problems can be alleviated by basing coding as-
signments on paradigm-specific frameworks, collections of
reusable code designed to be extended and applied to a vari-
ety of specific problems. In addition, frameworks can provide
a basis for further student research or application of projects
to real-world domains, providing additional motivation. This
paper illustrates the application of a framework-based ap-
proach to teaching case-based reasoning (CBR), introduc-
ing the Indiana University Case-Based Reasoning Framework
(IUCBRF), discussing its design, and presenting sample ex-
ercises that take advantage of the framework’s characteristics.

Introduction
The use of course projects has long been advocated in educa-
tion, both as a way to enhance traditional courses and as the
basis for new project-based instruction strategies (Blumen-
feld & Soloway 1991). Studies support these approaches
by suggesting that projects may have important benefits in
forming more flexible understanding with improved transfer
to real problems (for example, see (Boaler 1997)). Mak-
ing the projects themselves deal with real-world domains
may further enhance student motivation. However, attempts
to apply such strategies can cause frustration for instructors
and students alike, as they attempt to manage project com-
plexity in the time available for course assignments (Marx
et al. 1997; Krajcik et al. 1998). One reason for this is that
real-world domains and full-scale systems may require sig-
nificant detours into side topics outside the desired course
focus (Barron et al. 1998; Blumenfeld & Soloway 1991).
For artificial intelligence programming projects, significant
detours include implementing algorithms and infrastructure
needed for the function of a system, but conceptually orthog-
onal to the pedagogical goals of the course. Thus methods

∗ We thank the anonymous reviewers for helpful comments.
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

are needed for decreasing the effort which AI students must
devote to these tasks.

In AI, a number of strategies have been used to maintain
focus on the core issues. One strategy is to rely on high-
level discussions of components in the abstract, enabling
coverage of many central ideas. Unfortunately, such discus-
sions provide poorly grounded abstract exercises rather than
hands-on experiences and real experimentation. Another is
to present demonstrations of particular algorithms, without
requiring student coding, as in numerous web applets for
AI. These can spur initial interest and give students an im-
pression of the function of the algorithms, but make limited
contributions to student’s ability to implement AI systems.

Another alternative is for students to develop sample sys-
tems within simplified “toy” domains or to experiment with
adapting code from simplified versions of real systems, such
as Schank et al.’s microprograms (Leake 2002). Such tasks
can be useful, but students whose experience comes solely
from simplified systems may be unconvinced of the power
of the methods and of the real-world value and scalabil-
ity of their work. If small-scale approaches are used ex-
clusively, students miss the boosts to self-efficacy and self-
confidence that are often found in student accomplishments
in real-world projects (Thomas 2000).

Thus, ideally, AI instructors should be able to provide stu-
dents with opportunities to examine real-world domains in
addition to toys, and to use fully-functional systems, with
minimal overhead. This paper argues that the use of large-
scale frameworks can help achieve this goal. A frame-
work is a collection of reusable code designed to be ex-
tended and applied to a variety of specific problems (John-
son & Foote 1988). Frameworks can provide a basis for
students to develop system components and perform experi-
mentation in the context of a well-documented “real-world-
strength” system that is easily understandable, adaptable,
and extendible. Frameworks help focus students’ work on
building components that directly address key concepts, on
a provided infrastructure that facilitates application to large-
scale projects.

The paper begins by discussing the nature of frameworks
and their benefits for educational use. It then examines a
specific use of the framework-based approach to teaching
AI: teaching CBR with the Indiana University Case-Based
Reasoning Framework (IUCBRF), a newly-released, freely-



available CBR framework designed for educational and re-
search use (Bogaerts & Leake 2005). Using IUCBRF, a
full CBR system for a real-world domain can be developed
without necessarily requiring intricate student understand-
ing or time-consuming construction of every component.
This frees the instructor to focus on components of inter-
est, at the desired level of coverage. The framework benefits
instruction both through its support for system development
for CBR projects—by providing standard component imple-
mentations, minimizing dependence between system com-
ponents, and minimizing component dependence on the par-
ticular domain—and through its built-in support for exper-
iments to study the effects of design decisions. This paper
illustrates the use of IUCBRF in instruction with sample ex-
ercises exploring some key aspects of case-based reasoning.

Teaching Computer Science With Frameworks
Two properties of frameworks that make them useful for
teaching are their provision of basic infrastructure and their
minimization of dependencies, both between components
and to particular domains. These properties greatly reduce
the time required to build a complete system, and allow in-
troductory students to use complete systems before they un-
derstand each component. Thus, instructional time may be
used more effectively on, for example, covering additional
topics and/or addressing real-world domains.

Providing Infrastructure
For many computer science topics, projects require much
implementation of non-lesson-critical infrastructure before
the issues of interest can be examined. Such work can pro-
vide good learning experiences for students, but can take
time away from intended course topics. By providing this
infrastructure to students (perhaps leaving that material for a
more suitable course), frameworks allow students to quickly
focus on the important issues and to perform experiments
which might not be feasible starting from scratch.

Minimizing Component Dependencies
A natural way to study alternative approaches for any topic
in computer science is to perform a comparative study of the
behaviors of systems using the approaches. To perform such
a study, the system must be designed to allow component
genericity: components should not make assumptions about
implementation details of other components, so that a dif-
ferent approach for a component can be swapped in without
system-wide consequences.

Achieving genericity in student projects might require
considerable attention to object-oriented design. While
object-oriented design is worthy of in-depth study, it is tan-
gential to the stated focus of comparing approaches for a
particular AI task. Furthermore, student frustration at the
time spent on incidental tasks may prompt them to rely on
substandard designs and error-prone “hacks” to accomplish
the desired genericity. The deficiencies of the result could
severely limit student desire and ability to return to their sys-
tems for future coursework or research.

The framework design philosophy of independence of
components addresses this issue. Neither the instructor nor
the students must spend extra time to build such a design
from scratch. They may instead proceed immediately to the
stated focus of the work.

Minimizing Domain Dependencies

Ideally, student projects are not isolated efforts, but instead
part of a growing toolkit of methods that students will apply
to new domains in continued coursework or research. How-
ever, students who have built their past systems from scratch
may face the arduous task of working with a system that has
been hurriedly designed to satisfy the requirements of a par-
ticular domain, attempting to untangle these dependencies
to implement a new domain. Again, unless great care was
taken in the original design, such dependencies are likely to
be numerous, complex, and undocumented, and so students
may once again be tempted to attempt a quick error-prone
fix to complete the assignment.

Frameworks designed to minimize domain dependencies
can alleviate this problem. Such frameworks can represent
the domain explicitly in a central location, enabling com-
ponents needing domain-dependent details to simply ask the
relevant object for these details, rather than requiring them to
be coded in the component directly. Only on rare occasions
should a component need such domain-specific knowledge
that additional effort will be required. This assists students
working with a framework to apply a single system to many
domains.

Framework Construction

We expect the use of frameworks to be an effective teach-
ing strategy across a wide range of AI areas. Although in
some respects CBR may be seen as especially well-suited to
a component-based approach, any AI method may be ana-
lyzed for its major tasks, categories of operations for the task
of interest, and parameters for each step. Likewise, tasks can
be analyzed for the major algorithms, components and data
containers involved. These determine the access points of
the framework, for providing customizability.

The properties described above provide broad guidelines
to follow in designing a framework for any AI method: pro-
viding infrastructure, minimizing component dependencies,
and minimizing domain dependencies. Providing infrastruc-
ture means not only providing the components specific to the
topic of interest, but also more mundane components such as
GUI widgets and experimentation support. Minimizing de-
pendencies can be accomplished by careful separation and
encapsulation of components into logical chunks that con-
nect with other components only through general algorithm-
and domain-independent interfaces. Finally, in very gen-
eral terms, the implementation should be planned in a care-
ful object-oriented manner (for example, see (Gamma et al.
1995)). The following case study provides a concrete illus-
tration of how we have applied some of these design princi-
ples for case-based reasoning.



Figure 1: The CBR cycle

CBR and IUCBRF
CBR is an AI problem-solving approach in which a sys-
tem stores prior problem-solving experiences (cases) and re-
trieves and adapts them to suggest a solution for a current
problem. Students can be introduced to the area through
textbooks (e.g., (Kolodner 1993) or on-line overviews (e.g.,
(Leake 1996; Aamodt & Plaza 1994)).

The basic CBR cycle, as sketched in figure 1, proceeds
as follows. A problem is described using the vocabulary of
the system. Similar past cases are retrieved, and are then
adapted to propose a solution to the current problem. That
solution is evaluated and either returned for more adaptation,
or stored in the case base for use in future problems.

IUCBRF is a freely available open-source framework,
written in Java, to facilitate the development of CBR sys-
tems. For a complete foundational discussion and technical
details of IUCBRF, and for information on how to obtain the
source code, please see (Bogaerts & Leake 2005). One of the
goals of the IUCBRF project is to enhance CBR instruction
with the benefits common to frameworks for a classroom
setting, including provision of basic infrastructure, and min-
imization of component and domain dependencies. We first
describe the IUCBRF capabilities and then illustrate how
they can be leveraged for instruction.

At time of writing, IUCBRF has been provided by request
to a few dozen researchers and students, who have applied
it to domains such as network fault analysis, visualization
of case base properties, a calendar scheduling system, and
a system for recommending codes for earthquake model-
ing (Aktas et al. 2004). In our own research we have ap-
plied the framework to several domains from the UCI repos-
itory (Blake & Merz 2000), the largest of these involving
20000 cases (the UCI Letter domain). While the code has
not been heavily optimized, performance is adequate for our
purposes. For example, on a Sun Blade 1000 (750 Mhz)
the time to perform a simple kNN retrieval that scans an un-
structured case base of 1729 cases averages approximately
0.15 seconds. Of course, performance also depends heavily
on the particular algorithms used.

IUCBRF Infrastructure
IUCBRF provides a basic infrastructure for the implementa-
tion of components for the major steps in the CBR cycle, and

for utilities to increase system functionality and usability.

Standard CBR Components
IUCBRF’s implementation of the major components of the
CBR cycle enables students to work with a full CBR system,
potentially without understand the intricate details of each
component. Instead, students are free to temporarily con-
sider some components as “black boxes” (or perhaps “grey
boxes”), so as not to be overwhelmed by full-system com-
plexities while studying a few components. When the in-
structor deems it appropriate for course goals, students may
return to these black boxes for a closer look. Instructors may
also remove components for students to implement, or pro-
vide students with additional pre-implemented components,
to allow for a gentle introduction and to help familiarize stu-
dents with entire systems before in-depth study.

Utilities
In addition to CBR components, IUCBRF provides several
utilities to assist in basic functionality and experimentation.
Such utilities can play a crucial role in building a usable
CBR system or studying its performance, yet would gen-
erally fall out of the scope of a CBR unit of an AI course.
The utilities include:

• Random generation facilities, according to uniform, nor-
mal, and binomial distributions, applied to generation of
domains, problems, cases, and weights.

• Clustering facilities, with k-medoid clustering already
implemented, and an open framework for modifying and
implementing other clustering approaches to use within
the CBR system (e.g., for selecting prototypical cases).

• Prebuilt GUIs for all major components to assist in
quickly building usable interactive systems. In much the
same way that Java provides Swing components to han-
dle the details of GUI widgets, IUCBRF provides widgets
for CBR-specific tasks such as viewing cases, inputting
problem information, and viewing basic component im-
plementation details.

• Performance monitoring of the system, tracking measures
including average retrieval and adaptation time, system
competence, average solution quality, and a basic history.

• Reference solution facilities to provide an alternative
means of solving a problem, for comparison to CBR per-
formance or to treat the alternative method as an “oracle”.

• Support for experimentation, according to leave-one-out
and random problem generation strategies. Results are
tracked by a performance monitor.

With the above utilities, students may focus on the CBR is-
sues of interest and still obtain experimental results and a
usable system without tedious implementation taking time
away from the true course focus.

Minimizing Component Dependencies In
IUCBRF

IUCBRF follows the design philosophy of independence of
components, to allow the swapping of one implementation



for another without requiring changes to other components.
This is especially useful for performing comparative studies
of component implementations. This genericity is accom-
plished through polymorphism—the ability of an object to
have a standard interface, yet take one of any number of ac-
tual forms. The other components depend only on the in-
terface, not the implementation details. To illustrate how
this occurs, consider the example of features in problem
descriptions. A problem consists primarily of a collection
of features. The Feature interface includes basic opera-
tions such as a feature comparing itself to another feature
of the same type. The collection of features in a problem
may be implemented in any way, provided that an iterator
on those features can be created. Thus the retrieval compo-
nent merely depends on the interfaces of the feature types
(for individual feature comparison) and the collection (for
iteration). Details such as feature type, storage, and com-
parison need not be considered by the retrieval component,
and thus can be changed without a ripple effect of changes
across the framework.

Minimizing Domain Dependencies In IUCBRF
IUCBRF also follows the design philosophy of minimizing
dependence on the domain, to allow a single system to be
applied to several domains without requiring reworking or
reimplementation of components. To illustrate, consider the
problem feature example of the previous section. The sim-
ilarity component does not need to know what features ex-
ist to compute similarity. It simply must be able to iterate
through the collections of features and ask each pair of fea-
tures for their individual feature comparison value. Thus the
similarity component can be independent of the domain de-
tails, as well as the implementations of other components.

On rare occasions, some dependencies between a compo-
nent and the domain are unavoidable. The primary exam-
ple of this in IUCBRF is in the case adaptation component.
IUCBRF does provide some standard domain-independent
adaptation techniques, but some systems’ adaptation com-
ponents are inherently specialized with knowledge for their
particular domain. However, IUCBRF is designed to handle
even this situation gracefully, to minimize effort required to
move a system to a new domain. This is accomplished via
the template design pattern, in which domain-independent
classes pass only a few domain-dependent operations to sub-
class implementations of abstract methods.

Thus by explicit representation of the domain, interaction
through a standard interface, and deferring a minimal num-
ber of operations to domain-dependent subclasses, IUCBRF
components remain independent from the domain. This
means that a system built using IUCBRF to work in one
domain can easily be modified for another, again allowing
students and instructors to focus on the topics of interest.

Sample Exercises
To illustrate the educational use of IUCBRF, we present
sample exercises applying IUCBRF to the study of key con-
cepts in CBR. These exercises illustrate the advantages re-
alized from independence between components, indepen-

dence from the domain, and pre-implementation of CBR
components and utilities. Note that these examples do not
depend on a chosen domain, facilitating generalization of
the lessons learned.

The Curse Of Dimensionality
In this exercise, students observe the consequences of irrele-
vant features in the problem representation of a CBR system.

• Tasks: Implement a domain from the UCI repository
(Blake & Merz 2000). Then, for nearest-neighbor re-
trieval, run a baseline experiment using IUCBRF’s leave-
one-out capability, recording results with the performance
monitor. For a few specific problem descriptions, exam-
ine which cases receive the highest similarity.
Modify the domain definition to include two additional
features, filled in with random values using IUCBRF’s
random distribution classes. (Thus, the features are ir-
relevant). As before, perform a leave-one-out experiment.
Compare results and compare the retrieved cases for the
same sample problem descriptions. Repeat this for 5 ad-
ditional features added to the domain definition, and then
for 20.

• Questions: What effect do irrelevant features have on sys-
tem performance, and why?

• Observations: Students should observe that the addition
of features increases retrieval times and decreases accu-
racy, and that the sample cases selected with no irrelevant
features (the “true” nearest cases) tend to be buried by
other cases that are near according to irrelevant features.

• Learned Concepts: Students will have seen first-hand
the “curse of dimensionality”—that nearest-neighbor re-
trieval approaches can be mislead by additional irrelevant
features. In addition, due to the heterogeneity of retrieved
cases and the true nearest cases being “buried,” classifica-
tion by majority vote may be less decisive and accurate.

The Swamping Utility Problem
In this exercise, students examine the effects of increases
in case base size on performance of CBR systems. The in-
structor should choose a domain from the UCI repository
with sufficient cases to exceed the minimum required cover-
age of the problem space — such domains are likely to have
few classes and many cases.

• Tasks: Implement the domain chosen by the instructor.
Construct a system with a case library of 10 cases ran-
domly selected from the domain. Perform a leave-one-out
test using the performance monitor to track the system’s
performance. Repeat three times for different sets of 10
cases and compare results to assess expected performance
with a 10-case case library.
Repeat a few more times with higher numbers of cases,
until you notice trends in system performance as case
base size grows. Be sure to do enough experiments to
establish that the trends truly exist and that you have fully
captured their shape, and to consider the range of perfor-
mance statistics.



• Questions: How is performance affected by increasing the
numbers of cases? What trade-offs exist? Are there di-
minishing returns? How do you explain these results?

• Observations: Though results will vary based on the do-
main selected, in general students will find that for few
cases in the case base, retrieval time is very fast, but solu-
tion quality suffers. For many cases in the case base, re-
trieval time is slower, but solution quality improves. How-
ever, as the number of cases continues to increase the rate
of increase of solution quality is likely to level out while
retrieval time will continue to increase.

• Learned Concepts: Students will learn the delicate bal-
ance between having enough case knowledge and having
more than is needed, unnecessarily slowing retrieval. In
comparing results with students working in other domains
with other systems, students will see that this balance de-
pends on the domain and system components used as well
as the number of cases.

Case Base Maintenance
In this exercise, students compare the effects of three simple
case base maintenance approaches on performance of sys-
tem components.

• Tasks: Consider the following case base maintenance
techniques already implemented in IUCBRF:
– Null Maintenance - A new case is always added, and

no case is ever removed, from the case base.
– Periodic age-based deletion - A new case is always

added, but cases can be removed in periodic offline
checks if they have not been used since the last check.

Implement a third technique by extending IUCBRF’s ab-
stract Maintenance class:

– Threshold-based addition - A case is added if the dif-
ference between it and the closest case in the case base
surpasses a fixed threshold. Cases are never removed.

Build a system to run on a UCI domain with at least 200
cases. Set up the system with each maintenance technique
in turn, and use IUCBRF’s random problem experimental
facility to generate 100 test problems to run. Observe the
results with the performance monitor.

• Questions: How does the performance of the system over
time compare for the three techniques, and why?

• Observations: Students will find that for null mainte-
nance, the case base becomes large. They may observe
problematic effects similar to those of the swamping prob-
lem exercise above. For periodic age-based deletion,
the case base size will gradually increase and then sud-
denly decrease when unused cases are purged offline. For
threshold maintenance, the case base does not grow even
temporarily as it does for periodic deletion, but system
performance is slower due to the more costly decision to
add a case. On average, accuracy is expected to increase
with increased case base size.

• Learned Concepts: Students will learn the importance of
performing any extensive maintenance off-line, and how

maintenance policies can avoid the detrimental effects of
unchecked case base growth.

General Principles Of System Design
IUCBRF can also be used as the basis for more open-ended
explorations. Once graduate students are familiar with the
uses and tradeoffs of various components, they can use
IUCBRF to design a system to study a particular research
question, either proposed by the instructor or of their own
choosing. If the framework has already been used in the
course, projects can build on the components already con-
structed, augmented with new ones. By exploiting compo-
nent genericity and domain independence, students can im-
plement and compare alternative components and domains
to investigate questions such as:

• Representation: What feature types are most suitable for
problem and solution representation? Should any aggre-
gate types be used to combine various simple pieces of
data into a summarized or alternative form? What kinds
of processing will need to be done in the CBR cycle for
particular domains, and what representations will facili-
tate that processing?

• Similarity: What are the key considerations for the simi-
larity measure? When is the standard Euclidean distance
sufficient? How should non-numeric attribute types be
compared? How should missing attributes be handled?
How can good attribute weightings be determined?

• Retrieval: How is the choice of retrieval technique influ-
enced by the other components, such as problem repre-
sentation, similarity, and case base storage?

• Adaptation: What kind of case adaptation is most appro-
priate for a given domain? For a given domain, is there
specific domain information available that has not been
placed in another knowledge container, or can be more
easily placed in the adaptation container?

For any of these topics, the instructor can guide students
in a literature search for basic approaches and comparisons.
Examining stated weaknesses of past approaches, or infer-
ring weaknesses on their own, may give students ideas for
extensions or alternative approaches. These alternatives and
the original methods can all be implemented and applied in
turn to a single system due to IUCBRF’s component inde-
pendence. Using IUCBRF’s experimentation utilities, stu-
dents can test their approaches without needing to spend ex-
tra time implementing such facilities. Experimental results
can be obtained for several domains in turn on a single sys-
tem configuration, exploiting IUCBRF’s domain indepen-
dence. Thus using the framework should enable students to
quickly reach the interesting issues and to produce a system
that is more reusable for future research.

Related Work
CIspace (Conati et al. 1999) and AIxploratorium (Greiner
& Schaeffer 2001) are collections of applets demonstrating
several AI topics, designed to be used as visual demonstra-
tions of algorithms. They can assist in learning differences



in behavior between algorithms, and are excellent for il-
lustrating AI algorithms to non-programmers or when time
does not permit detailed study, but are limited in their cus-
tomization of domains and behaviors, as well as their possi-
bilities for learning implementation details.

A more technical library is found in the AIMA code
repository (Russell & Norvig 2002) which presents pseu-
docode examples and code for various topics appropriate for
an introductory AI course. These examples are designed to
illustrate particular concepts, for particular test domains.

WEKA (Witten & Frank 2000) is a collection of domain-
independent machine learning algorithms written in Java,
much in the same spirit as IUCBRF. WEKA is commonly
used by machine learning researchers and industrial scien-
tists, as well as instructors. While WEKA does not include
code for the development of CBR systems, some of the im-
plemented techniques could be embedded in components of
a CBR system, including one developed using IUCBRF.

Thus, with the exception of WEKA, all the above tools fo-
cus on higher-level presentations with limited intent for gen-
eral applicability, while IUCBRF is intended for a range of
levels of presentation (depending on the number of “black-
boxes” the instructor employs), and designed for reusability
and generality within the context of CBR.

Conclusion
Many course projects require considerable time due to de-
tours into algorithms and infrastructure orthogonal to the
true focus of the course. In AI courses, this time require-
ment is often addressed by examining greatly simplified do-
mains and systems, or by even considering systems only in
the abstract. This paper argues that rather than making these
sacrifices, instructors can use frameworks such as IUCBRF
to provide the basic infrastructure, freeing students to fo-
cus on the topic of interest. By maintaining independence
between components and independence from the domain,
systems developed with IUCBRF can be reapplied to new
situations, further reducing the required orthogonal efforts.
In addition, utilities including experimentation facilities and
standard GUIs can increase the usability of the systems. As
shown in both the general discussion and the presentation of
sample exercises, use of IUCBRF can enable rapid explo-
ration of central concepts. Without the use of IUCBRF, any
of the assignments could easily be a several-week project;
with it, we expect that they could be completed in a week
or less. We plan to apply IUCBRF to teaching an intensive
graduate CBR unit in Spring 2005.

References
Aamodt, A., and Plaza, E. 1994. Case-based rea-
soning: Foundational issues, methodological variations,
and system approaches. AI Communications 7(1):39–52.
http://www.iiia.csic.es/People/enric/AICom.pdf.
Aktas, M.; Pierce, M.; Fox, G.; and Leake, D. 2004. A web
based conversational case-based recommender system for
ontology aided metadata discovery. In Proceedings of the
Fifth IEEE/ACM International Workshop on Grid Comput-
ing (GRID 2004). IEEE Computer Society Press.

Barron, B. J. S.; Schwartz, D. L.; Vye, N. J.; Moore, A.;
Petrosino, A.; Zech, L.; and Bransford, J. 1998. Doing
with understanding: Lessons from research on problem-
and project-based learning. Journal Of The Learning Sci-
ences 7:271–311.
Blake, C., and Merz, C. 2000. UCI repository of machine
learning databases.
Blumenfeld, P. C., and Soloway, E. 1991. Motivating
project-based learning: Sustaining the doing, supporting
the learning. Educational Psychologist 26(3,4):369–398.
Boaler, J. 1997. Experiencing School Mathematics; Teach-
ing styles, sex, and settings. Buckingham, UK: Open Uni-
versity Press.
Bogaerts, S., and Leake, D. 2005. IUCBRF: A framework
for rapid and modular CBR system+development. TR 608,
Computer Science, Indiana University, Bloomington, IN.
Conati, C.; Gorniak, P.; Hoos, H.; Mackworth, A.; and
Poole, D. 1999. Cispace: Tools for learning com-
putational intelligence. Accessed October 22, 2004 at
http://www.cs.ubc.ca/labs/lci/CIspace/.
Gamma, E.; Helm, R.; Johnson, R.; and Vlissides, J. 1995.
Design Patterns: Elements of Reusable Object Oriented
Software. Addison Wesley.
Greiner, R., and Schaeffer, J. 2001. The aixploratorium:
A vision for ai and the web. In Proceedings of the IJCAI
Workshop On Effective Interactive AI Resources.
Johnson, R., and Foote, B. 1988. Designing reusable
classes. Journal of Object-Oriented Programming 1(5):22–
35.
Kolodner, J. 1993. Case-Based Reasoning. San Mateo,
CA: Morgan Kaufmann.
Krajcik, J. S.; Blumenfeld, P. C.; Marx, R. W.; Bass,
K. M.; Fredricks, J.; and Soloway, E. 1998. Inquiry
in project-based science classrooms: Initial attempts by
middle school students. Journal of the Learning Sciences
7:313–350.
Leake, D. 1996. CBR in context: The present and future.
In Leake, D., ed., Case-Based Reasoning: Experiences,
Lessons, and Future Directions. Menlo Park, CA: AAAI.
http://www.cs.indiana.edu/ leake/papers/a-96-01.html.
Leake, D. 2002. CBR/CIP microprograms archive.
www.cs.indiana.edu/˜leake/cbr/code/ .
Marx, R. W.; Blumenfeld, P. C.; Krajcik, J. S.; and
Soloway, E. 1997. Enacting project-based science: Chal-
lenges for practice and policy. Elementary School Journal
97:341–358.
Russell, S., and Norvig, P. 2002. Artifical intelli-
gence: A modern approach. Accessed October 22, 2004
at http://aima.cs.berkeley.edu/.
Thomas, J. W. 2000. A review of research on project-
based learning. Available on the World Wide Web at
http://www.k12reform.org/foundation/pbl/research/.
Witten, I., and Frank, E. 2000. Data Mining: Practical
Machine Learning Tools and Techniques with Java Imple-
mentations. San Francisco: Morgan Kaufmann.


