
Model Construction Algorithms For Object Oriented Probabilistic
Relational Models

Catherine Howard1 and Markus Stumptner2

Abstract

This paper presents three new algorithms for the automatic
construction of models from Object Oriented Probabilistic
Relational Models. The first two algorithms are based on
the knowledge based model construction approach while the
third is based on an Object Oriented Bayesian Network
instance tree triangulation method. We discuss the strengths
and limitations of each of the algorithms and compare their
performance against the knowledge based model
construction and Structured Variable Elimination algorithms
developed for Probabilistic Relational Models.

1. Introduction

Our research focuses the use of automated reasoning
techniques to produce battlespace situation assessments.
These situation assessments provide dynamic decision
suppor t to t a c t ical military commanders. Situation
Assessments are defined as “persistent representations of
the relationships of interest between objects of interest in
the area of interest” in the battlespace (Lambert 2003).
Such relationships of interest can include physical,
temporal, spatial, organizational, perceptual and functional
relationships.

Bayesian Networks (BNs) are a popular technique that
have been used in many existing tactical military decision
support systems to reason about causal and perceptual
relationships between objects in the battlespace (e.g. Das,
Grey and Gonslaves 2002). However, they have been
shown to be inadequate for reasoning about large, complex
domains (Pfeffer 1999; Wright 2002) because of their lack of
flexibility and inability to take full advantage of domain
structure or reuse. This lack of flexibility is of particular
relevance to producing situation assessments because the
variables relevant to reasoning about a situation are highly
dependent on the domain and the user intentions. Object
Oriented Probabilistic Relational Models (OPRMs) were
recently developed to address some of the limitations of
BNs in modelling complex military domains (Howard and
Stumptner 2005a/b). This paper presents three new
algorithms for the automatic construction of models from
OPRMs. Section 2 outlines OPRMs and presents a simple
university example, which is used in the discussion
(Section 3) and evaluation (Section 4) of the model

Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

construction algorithms. We return to our real world
application in Section 3.3, where we discuss the advantages
and limitations of the various model construction
algorithms for this application.

2. OPRMs

OPRMs (Howard and Stumptner 2005a) specify a
template for the probability distribution over a knowledge
base (KB), where a knowledge base is defined as consisting
of a set of OPRM classes and instances, a set of inverse
statements and a set of instance statements.
Definition: An Object-Oriented Probabilistic Relational
Model, X, is a pair (RC, PC) of a relational component RC
and a probabilistic component PC. The RC consists of:
· A set of classes, C = {C1, C2,…, Cn}, and possibly a partial

ordering over C that defines the class hierarchy;
· A set of named instances, I = {I 1, I 2,…, In}, which

represent instantiations of the classes;
· A set of descriptive attributes, DC = {d1, d2,…, dn}, for each

class C in C. Attribute dx of class C1 is denoted C1.dx.
Each descriptive attribute dx has a domain type
Dom[dx]ÎC and a range type Range[dx]=Val[dx] where
Val[dx] is a predefined finite enumerated set of values, i.e.,
Val[dx] = {Val1, Val2,…, Valn};

· A set of complex attributes, FC ={f1, f2,…, fn}, for each
class C in C. Attribute fx of class C1 is denoted C1.fx.
Complex attributes represent functional relationships
between instances in the knowledge base. Each complex
attribute fx has a domain type Dom[fx]ÎC and a range
type Range[fx]ÎC for some class C in C.

The PC consists of:
· A conditional probability model for each descriptive

attribute dx, P(dx|Pa[dx]) where Pa[dx]={Pa1, Pa2,…, Pan} is
the set of parents of dx. These probability models may be
attached to particular instances or inherited from classes.

2.1 The University Domain Example
Our OPRM model is designed to evaluate the promotion
prospects of university academics based upon their
teaching skills, brilliance, productivity and the impact of
their publications; the latter is affected by the standard and
prestige of the conferences and is summarized by the node
Aggregate(Papers). An aggregate attribute is a descriptive
attribute that summarizes a property of a set of related
instances (Howard and Stumptner 2005a). The model
contains three classes, C= {Lecturer, Paper, Conference},

1Electronic Warfare and Radar Division
Defence Science and Technology Organisation

PO Box 1500, Edinburgh, South Australia, 5111
catherine.howard@dsto.defence.gov.au

2Advanced Computing Research Center
University of South Australia

Adelaide, South Australia, 5095
mst@cs.unisa.edu.au

830

mailto:catherine.howard@dsto.defence.gov.au
mailto:mst@cs.unisa.edu.au

shown in Figure 1. The set of descriptive attributes for the
Lecturer class, for example, is DLecturer={Productivity, Tired,
Brilliance, Teaching Skills, Aggregate(Papers),
WillGetPromoted} while the set of complex attributes is
FLecturer={Papers}.

Figure 1. The classes and attributes of the university OPRM. These

classes will be exactly the same in the equivalent PRM.
The model is the simplest form of OPRM, where the

complete relational structure is known. This means that the
set of objects and the set of potential relationships between
them are known and there is no uncertainty about the
structure of the model. Given this relational structure, the
OPRM specifies a probability distribution over the
attributes of the instances of the model. The unique names
assumption is employed which means that each object in
the knowledge base is assumed to have a unique identifier
(i.e. there is no uncertainty about the identity of the
objects).
2.2 OPRMs versus PRMs
OPRMs follow the principles of Probabilistic Relational
Models (PRMs), first developed by (Koller and Pfeffer
1998) and later refined by (Getoor 2002; Pasula 2003). Both
PRMs and OPRMs integrate probabilistic information with
a frame-based representation system. In both languages,
inference is performed by dynamically constructing the
‘equivalent’ Object Oriented Bayesian Networks (OOBNs)
from the probabilistic information contained in the frames.
For example, Figure 2 shows the BOOBN structure
generated for the Paper class. An OOBN is defined as a BN
fragment containing output, input, a n d encapsulated
nodes. The input and output variables form the interface
of the class. The interface encapsulates the internal
variables of the class, d-separating them from the rest of the
network (Bangsø 2004).

The key difference between PRMs and OPRMs is the
type of OOBN constructed from the probabilistic
information. PRM algorithms construct a Koller/Pfeffer
OOBN (KPOOBN) (Koller and Pfeffer 1997) while OPRM
algorithms construct a Bangsø OOBN (BOOBN) (Bangsø
2004).

The main difference between the two OOBN frameworks
is that BOOBNs introduce the use of reference nodes and
reference links to overcome the problem that no node
inside a class can have parents outside the class. A
reference node is a special type of node that points to a
node in another scope (called the referenced node). A
reference node is bound to its referenced node by a
reference link. In the BOOBN framework, all input nodes
are reference nodes.

Figure 2. The BOOBN structure generated for the Paper class.
These reference nodes provide several important

benefits. Firstly, the use of reference nodes means that the
interface of an OPRM class is fully specified once the class
is defined. The interface for a class C, kC, is the set of input
attributes, aC, and the set of output attributes, bC,
kC=aCÈbC. In the universi ty example, kPaper=
{Brilliance,Standard,Prestige,Impact}. Since KPOOBNs do
not use reference nodes, a PRM class does not have a
single, clearly defined interface. The interface depends on
how other objects refer to it in the particular query under
consideration. For example, the Imports facet of the Papers
attribute in the Lecturer class defines the Paper attributes
the Lecturer class has access to, namely Paper.Impact.
However, from within Lecturer, it is not known how Paper
depends on the Lecturer (or any other) class. This
information is available only within the Paper class. Figs 3
and 4 illustrate this difference between OPRMs and PRMs.

Figure 3. The university OPRM class model showing the
probabilistic (solid) and reference (dashed) relationships. Gray
dashed nodes are output nodes, dashed nodes are input nodes.

Figure 4. The equivalent PRM for the university domain. This
diagram is drawn from the point of view of the Lecturer class and as
such, it is not known how other classes depend on attributes from
the Lecturer class.

The fact that a PRM class does not have a single, clearly
defined interface means that the model construction
algorithms used with PRM knowledge bases need to

831

determine the interfaces of the classes and instances on the
fly (Pfeffer 1999; Pfeffer et al 1999).

Secondly, the use of reference nodes enables the
BOOBN framework to have a more intuitive definition of
inheritance for the modeling domain. The KPOOBN
inheritance definition corresponds to contravariance while
the BOOBN definition corresponds to covariance.

3. OPRM Model Construction Algorithms

We will first describe Model Construction using the following
conventions. The general format of an attribute name is I.g.d,
where I is the instance, g i s a possibly empty slot chain that
consists of complex attributes, and d is the descriptive attribute at
the end of the slot chain. The elements of a slot chain will be
members of F C. For descriptive attributes, g = Æ and for
complex attributes, g ¹ Æ . Take as an example an instance
Paper[1] of the Paper class in Figure 2. Using this notation, the
descriptive attribute Paper[1].Accepted of this instance breaks
down into I = Paper[1], g=Æ and d=Accepted, while the complex
attribute Paper[1].Author.Brilliance breaks down into I =
Paper[1], g=Author and d=Brilliance. In the case where we know
the attribute to be a complex attribute, we replace the I.g.d,
notation with I.f.d. Finally, the range of the attribute I.g.d is
denoted by VT[I.g.d]
In the following, we denote the set of encapsulated attributes by
x=F -k={x1, x2,…, xn}, the set of aggregate attributes by e={e1,
e2,…, en}, and the set of indirect attributes by v={v1, v2,…,
vn}. The selector attribute for a given indirect attribute Ix.f is
denoted by Ix.sel(f), and the number attribute over a multi-valued
Ix.fx by Ix.num(Ix.fx). An instance statement in the KB about
attribute f of instance I is denoted by SI(I.f), and the set of
instance statements for instance I is denoted by S(I).
3.1 The Knowledge Based Model Construction Algorithms
3.1.1 Query Dependant KBMC Algorithm
At design time, the dependency model for each class is
specified. In general terms, at run time, starting with the list
of query variables, the KBMC algorithm uses the
knowledgebase to backward-chain along the dependency
relationships to construct a flat Bayesian Network on which
it performs inference using a junction tree algorithm. More
specifically, the algorithm maintains a list of nodes to be
processed (nodes), which initially contains the set of query
variables s ={s1, s2,…, sn}. During each iteration, the
algorithm removes the first node, n, from nodes (1) and
adds this node to the list of nodes for the complete model,
nodesN. The algorithm then creates a node, nPa, for each
parent pa of n (2). When a node is created, its range, its
parents and its CPD must be specified. If nPa i s a
descriptive attribute, it is simply added to nodes (10). If nPa

is a complex attribute (i.e. of the form Ix.f.d), the knowledge
base instance statements are searched to find any instance
statements relating to attribute Ix.f. If Ix.f is assigned a
named instance Iy in the instance statements, (for example,
in the university model, Paper[1].Author=Gump), Iy is
assigned to Iz (3). If there is no named instance in the KB, a
generic, unnamed instance, Ig, is created and added to the

KB. This generic instance is assigned to Iz (4). A node is
created for Iz.d and added to nodes (5). In cases where nPa is
an indirect or aggregate attribute, nPa is added to nodes (7,9)
after a complete list of parents has been generated (6,8).
How this parent list is generated depends on the type of
nPa.
Algorithm KBMC(s,KB)
 Initialize nodes¬s
 while nodes¹Æ do
(1) n=first(nodes)
 nodesN¬nodesNÈn /*node list for complete model */
 nodes¬nodes–n
 forall PaÎPa[n] do /* for all parents of n */
 if PaÏ(nodesÈnodesN) then
(2) create node nPa for Pa, denoted Ix.g.d
 if g¹Æ and Ix.fÏv then
 if $SI(Ix.f) in KB | Ix.f¬Iy in SI(Ix.f) then
(3) Iz¬Iy
 else
 create Ig, where VT[Ig]=VT[Ix.f]
 add Ig to KB
(4) Iz¬Ig end if
 if Iz.dÏnodes and Iz.dÏnodesN then
 create node nz for Iz.d
(5) nodes¬nodesÈnz end if
 else if g¹Æ and Ix.fÎv then
 Val[I.sel(f)]=VT[I.sel(f)]
(6) /* generate Pa[nPa] */
 forall ValÎVal[I.sel(f)] do
 if ValÎI then
 let Iy denote Val
 Pa[nPa]¬Pa[nPa]ÈIy .d end if
 if ValÎC then
 let C denote Val
 create Ig and add Ig to KB
 Pa[nPa]¬Pa[nPa]ÈIg.d end if
 end forall
(7) nodes¬nodesÈnPa
 else if g=Æ and Ix.dÎe then
 Ix.d is an aggregate attribute over Ix.fx
 if $ number uncertainty then
 nmax=max(VT[Ix.num(Ix.fx)]) end if
(8) /* generate Pa[nPa] */
 if $SI(Pa[nPa]) in KB then
 let Iy denote the instances |
 Pa[nPa]¬Iy in SI(Pa[nPa])
 nactual = |Iy|
 forall IyÎIy do
 Pa[nPa]¬Pa[nPa]ÈIy .d end forall

 if $number uncertaintyÚnmax>nactual then
 for i =m+1 to n do
 create instance Ig
 where VT[Ig]=VT[Ix.f]
 add Ig to KB
 Pa[nPa]¬Pa[nPa]ÈIg.d end for
 end if end if
(9) nodes¬nodesÈnPa
 else if (g=Æand Ix.dÏe) then
(10) nodes¬nodesÈnPa end if
 end if end forall end while
 Create Bayesian Network B from nodesN
end KBMC

Algorithm 1: OPRM KBMC algorithm.

832

As expected, this algorithm is very similar to the PRM
KBMC algorithm. However, there are two important
differences. Firstly, this algorithm is query specific while
the PRM KBMC algorithm is not. The second difference
involves the way that complex attributes are handled. In
the PRM KBMC algorithm, when a complex attribute Ix.f.d is
encountered, a node Iz.d is created and added to the
Bayesian network as a parent of the complex attribute Ix.f.d
and the CPD of Ix.f.d is set to reflect this relationship. Iz is
either a named instance Iy (if there exists an instance
statement in KB for such that Ix.f is assigned the value Iy)
or a generic instance Ig where VT[Ig]=VT[Ix.f]. In the
BOOBN framework however, reference nodes by definition
cannot have parents. Therefore in the OPRM KBMC
algorithm, a node is created for Iz.d and this node is added
to the network and the Ix.f.d node is not. Figure 5 provides
an example of the resulting network. As will be seen in
Figure 7, this technique results in fewer nodes in the model.

Figure 5. An example of part of the network produced by the (a)
PRM KBMC algorithm and (b) OPRM KBMC algorithm where
FLAIRS is the conference to which Paper[1] is submitted and Gump
is the author of the paper.
3.1.2 Query Independent KBMC Algorithm

The objective driving the modeling process during our
real world application of deriving situation assessment is to
determine which of the relationships of interest to the user
hold at any given time given the observations and a priori
data. The overall task of producing situation assessments
is relatively constant, but the set of concepts relevant to
performing this task varies dynamically. The information in
the knowledgebase flows directly from the observations.
That is, for our application, most of the information we need
to represent and reason about will be in the form of
instances in the KB. Therefore we require that the model
construction algorithms must operate over the KB to
dynamically construct a situation specific model based on
the observations. A query driven construction process is
clearly not appropriate for this application.

The OPRM KBMC algorithm can be made query
independent by changing the initial value of nodes to be
the set of all descriptive attributes from all instances in the
KB i .e . DKB={D I1,D I2,…D In}. Using this initial list, the
algorithm produces a situation rather than query specific
model.

3.2 The Junction Tree Construction Algorithm
At design time, the dependency model for each class is
specified and a BOOBN is created for each class. This
network is then translated directly into a ‘local’ junction
tree. An interface clique is created, which consists of all
nodes in the class’s interface,k. This interface clique is
connected into the local junction tree and any loops
created during this process are removed. Thus at design
time, each class is ‘precompiled’ into a local junction tree
and these local junction trees are stored in a cache. At run
time, whenever an instance of a class is created, the
appropriate local junction tree is instantiated. The KB is
searched for any instance statements applicable to the
instance under consideration and any required corrections
to the local junction tree are made. A root clique for the
model is created which contains all the nodes in all the
instances interfaces. Each local instance junction tree is
then connected to the root clique to create the ‘global
junction tree’. Inference can then be performed using this
global junction tree.

We denote the unrooted junction tree for class C by
JTUC, the rooted junction tree for class C by JTRC, the set of
cliques for the class C by W C={w1, w2,…, wn}, and
correspondingly use W UC for the set of cliques in the JTUC,
W RC for the set of cliques in the JTRC and W KB={W C1,
W C1,…, W Cn} for the set of cliques in the KB. The interface
clique for the class is denoted by wk and the root clique for
the KB by wR.
Algorithm JC(s,KB)
Design Time
forall CÎC do
 nodesC¬DCÈk C
 Create Bayesian Network BC from nodesC
 Create JTUC from BC; Create JTRC from JTUC
 W RC¬W UC and JTRC¬JTUC
 wk={n|nÎk}
 W RC¬W RCÈwk
 Calculate dij | dij=1 Û node j occurs in clique i
 forall wxÎW RC | wx¹wk and (d(wx,:)Çd(wk,:))¹Æ do
 /* where d(wx,:) denotes all nodes in clique wx */

 JTRC(wk ,wx)=1and JTRC(wx,wk)=1 end forall
 Compute separator matrix y for JTRC where
 yxy=d(wx,:)Çd(wy ,:)
 if Øacyclic(JTRC) then remove loops end if
end forall
Runtime
forall IÎI do
 nodesI¬nodesC where C=VT[I], JTRI=JTRC and W I=W C
 if SI(I)¹Æ then
 forall SÎS I(I) where S=SI(I.f) do
 if $SI(I.f) in KB then
 let Iy={Iy1,Iy2, … Iyn} denote the instances |
 I.f¬Iy in SI(I.f)
 forall IyÎIy | I.f.dÎ nodesI and Iy .dÏnodesI do
 create node for Iy .d

 nodesNN¬nodesNNÈIy .d
 forall wÎW I | I.fÎw,
 forall yxyÎy | I.fÎyxy,
 forall xÎnodesI | I.f.dÎPa[x] do
 replace I.f.d with nodesNN end forall
 nodesI¬nodesI-I.f

 (a)

(b)

833

 nodesI¬nodesIÈnodesNN
 end forall end if end forall end if
 nodesKB¬nodesKBÈnodesI
 W KB¬W KBÈ(W I -wk)
 wR¬ wRÈk I
end forall
W KB¬(W KBÈwR)
Create yKB from y I

end JC
Algorithm 2: OPRM Junction Tree Construction algorithm.

3.3 Real-World Application and Discussion
There are two facets to the structure provided by the
OPRM language that model construction algorithms should
exploit. They should exploit the structure of the domain by
exploiting the fact that the internal state of the
classes/instances are encapsulated from the remainder of
the network via their interface. Algorithms should also
facilitate reuse where possible.

The first limitation of the OPRM KBMC algorithm is that
while the OPR models take advantage of the structure of
the domain, the KBMC algorithm does not, nor does it
facilitate reuse. All structure gained by using OPRMs to
represent observations and prior knowledge is lost as soon
as this information is translated into a flat BN.

The second limitation is that the algorithm is query
driven. If the set of query variables changes, the entire
model construction process must b e run again and a
different model will result. While this may not b e
detrimental to the current university example, it can be a
critical problem for our real world application domain o f
deriving situation assessments from observations. This
application is data driven.

As discussed in Section 3.1.2, the OPRM KBMC
algorithm can be made query independent. However, as
shown in Figure 6, depending on the model and the query,
the query specific algorithm can significantly outperform
the non-query specific algorithm.
To solve a query on class C, using the KB, the PRM
Structured Variable Elimination (SVE) algorithm constructs
a local BN for C consisting of a node for each attribute of C
in addition to special output and projection nodes. When
the algorithm comes across a complex attribute in C (of type
C¢), it eliminates it by performing a recursive call that
generates a temporary local flat BN for the class C¢ and
applies standard variable elimination techniques to
compute the factor over the query variables of class C¢,
given the input variables. This factor is then used in the
BN representing class C.

By taking this structured approach to the elimination of
complex attributes in classes, SVE takes advantage of the
structure of the domain. However, when dealing with
instances, Pfeffer et al reason that there may be situations
where the instance interfaces no longer encapsulate the
protected attributes from the rest of the network, which
means that the recursive technique cannot be used. For all
instances, SVE copies the instance information into a top
level object T in the knowledgebase and uses this object to

construct one flat BN containing all attributes of all the
instances using a backward chaining algorithm. Inference
is then performed using this flat BN. By copying this
information into a flat structure, SVE fails to take advantage
of the structure of the domain for instances. And while
there is a cache to help reuse of computations for classes,
there is no mechanism for reuse for instances.
SVE produces a query specific network and as such the
model construction time is dependant on the query asked
(simpler queries result in shorter model construction times)
and because of its recursive nature, a complete model of the
situation never exists.

For our application domain, the OPRM JC algorithm has
several advantages. Firstly it produces a situation rather
than query specific model. Secondly, unlike SVE, even
when constructing models involving mainly instances, the
algorithm exploits the structure of the domain and facilitates
reuse of the class models. The main disadvantage of the
ORPM JTC algorithm, as seen in Fig 9b, is that its model
construction times are longer than SVEs for the same
number of nodes in the network.

4. Experimental Results

The OPRM presented in Section 3 and the equivalent PRM
were used to evaluate the performance of the query specific
and non-query specific OPRM KBMC algorithms and the
OPRM JC algorithm against each other and the PRM
KBMC and SVE algorithms (Figures 6-9). The
knowledgebase consisted of one Lecturer instance:
Lecturer Gump and a varying number of Paper and
Conference instances. The query variable used in most
comparisons was Gump.WillGetPromoted. However in the
comparison of the query specific and non-query specific
OPRM KBMC algorithms the Paper[1].Impact query was
used. Because the Gump.WillGetPromoted query involves
nearly all the attributes in the university OPRM, the
difference in performance of the two algorithms for this
query was minimal. However, for the Paper[1].Impact
query, regardless of the number of instances in the
knowledge base, the query specific algorithm produced a
BN with only six nodes (Gump.Brilliance, FLAIRS.Standard,
FLAIRS.Prestige, Paper[1].Quality, Paper[1].Accepted,
Paper[1].Impact) while the number of nodes in model
produced by the non-query specific algorithm depended on
the number of instances in the KB.

For all algorithms, the model construction time measured
the time taken for the algorithm to complete its model
construction process and did not include the time taken to
perform inferencing. For example, the SVE algorithm, which
is divided into the initialization, factor construction and
variable elimination phases, was timed from the beginning
of the initialization phase to the end of the factor
construction phase.

The first plot in Figure 8 shows the number of instances
versus the number of nodes (SVE x;OPRM +) and number
of factors (o) produced by the algorithms. While SVE
produces a node for every attribute of the class or instance,

834

it calculates factors only for those attributes of direct
relevance to the query, so in order to compare its
performance against the OPRM algorithms, we have plotted
Model Construction Time versus the number of Factors,
rather than the number of nodes. The number of factors
produced by the SVE algorithm is the same as the number
of nodes produced by the OPRM JTC and OPRM KBMC
algorithms.

 Figure 6. Comparison of the query specific (circles) and non-query
specific (crosses) OPRM KBMC algorithms.

Figure 7. Comparison of the query specific OPRM KBMC algorithm
(circles) with the PRM KBMC algorithm (crosses).

Figure 8. Comparison of the query specific OPRM KBMC algorithm
(circles) with the PRM SVE algorithm (crosses).

Figure 9. Comparison of the OPRM JC algorithm (circles) with the
(a) query specific OPRM KBMC algorithm (crosses) and (b) PRM
SVE algorithm (crosses).

All algorithms were implemented in MATLAB a n d
executed using a Pentium III, 1.2GHz. To illustrate the

differences between a query specific and situation specific
approach, consider running the following group of queries:
s={Paper[1].Impact}, s={Paper[2].Impact} up to
s={Paper[100].Impact} in succession on a knowledgebase
consisting of one Lecturer instance and 100 Paper and
Conference instances. The time taken for the OPRM JC
algorithm to construct a model on which it can perform
these queries is 122.48 seconds, while the time taken for the
SVE algorithm to construct its models to answer the same
queries (as the query variable changes each time, the SVE
algorithm will construct a different model for each query) is
8705 seconds.

5. Conclusions

Based on our OPRM language that extends prior work on
OOBNs, we have presented three model construction algorithms
for OPRMs and compared their performance with the model
construction algorithms developed for PRMs. While the SVE
algorithm outperforms the OPRM JC algorithm for individual
larger models, the JC algorithm has several advantages over SVE
for our application domain, in particular the production of a
model that is reusable for multiple queries, and OO style reuse of
class models. As the most expensive part of the SVE algorithm is
in the variable elimination phase, which was not part of the model
construction time measurements, we aim to measure the time
taken to perform inference for both the algorithms in future
experiments. We also aim to examine a number of extensions such
as the use of approximate algorithms for very large models.

6. References
Lambert, D.A. 2003.Grand Challenges of Information Fusion. In
Proc. 6th Intl Conf on Information Fusion.

Das, S., R. Grey, and P. Gonsalves. 2002. Situation Assessment via
Bayesian Belief Networks. in Proc.5th Intl Conf on Information
Fusion. Annapolis, MD, USA.

Pfeffer, A.J. 1999 . Probabilistic Reasoning for Complex Systems.
Ph.D. diss, Stanford University.

Wright, E., et al. 2 0 0 2 . Multi-Entity Bayesian Networks for
Situation Assessment. In Proc. 5th Intl Conf on Inf. Fusion.

Howard, C. and M. Stumptner. 2005a. Situation Assessments Using
Object Oriented Probabilistic Relational Models. I n Proc. 8 th Intl
Conf on Information Fusion. Philadelphia, USA.
Howard, C. and M. Stumptner. 2005b. Situation Assessment with
Object Oriented Probabilistic Relational Models. I n Proc. 7 th Intl
Conf on Enterprise Information Systems.
Koller, D. and A. Pfeffer. 1998. Probabilistic Frame-Based Systems.
In Proc. AAAI-98. Madison, Wisconsin.

Getoor, L. 2002. Learning Statistical Models From Relational Data.
Ph.D. diss, Stanford University.
Pasula, H.M. 2003 . Identity Uncertainty. Ph.D. diss, Dept. of
Computer Science, UC Berkeley.

Bangsø, O. 2004. Object Oriented Bayesian Networks. P h D diss,
Dept of Computer Science, Aalborg University.

Koller, D. and A. Pfeffer. 1 9 9 7 . Object-Oriented Bayesian
Networks. In Proc.13th Conf. on Uncertainty in Artificial Intelligence
(UAI-97). Providence, Rhode Island.
Pfeffer, A., et al. 1999. SPOOK: A System for Probabilistic Object
Oriented Knowledge Representation. In Proc.15th C o n f . o n
Uncertainty in Artificial Intelligence (UAI-99).

(a) (b)

835

	3.1.1 Query Dependant KBMC Algorithm
	3.1.2 Query Independent KBMC Algorithm
	Design Time
	Runtime

