
Margin Distribution and Learning Algorithms

Ashutosh Garg ASHUTOSH@US.IBM.COM

IBM Almaden Research Center, San Jose, CA 95123 USA

Dan Roth DANR@UIUC.EDU

Department of Computer Science, University of Illinois, Urbana, IL 61801 USA

Abstract
Recent theoretical results have shown that im-
proved bounds on generalization error of clas-
sifiers can be obtained by explicitly taking the
observed margin distribution of the training data
into account. Currently, algorithms used in prac-
tice do not make use of the margin distribution
and are driven by optimization with respect to the
points that are closest to the hyperplane.

This paper enhances earlier theoretical results
and derives a practical data-dependent complex-
ity measure for learning. The new complex-
ity measure is a function of the observed mar-
gin distribution of the data, and can be used, as
we show, as a model selection criterion. We
then present the Margin Distribution Optimiza-
tion (MDO) learning algorithm, that directly op-
timizes this complexity measure. Empirical eval-
uation of MDO demonstrates that it consistently
outperforms SVM.

1. Introduction
The study of generalization abilities of learning algorithms
and its dependence on sample complexity is one of the fun-
damental research efforts in learning theory. Understand-
ing the inherent difficulty of learning problems allows one
to evaluate the possibility of learning in certain situations,
estimate the degree of confidence in the predictions made,
and is crucial in understanding, analyzing, and developing
improved learning algorithms.

Recent efforts in these directions (Garg et al., 2002; Lang-
ford & Shawe-Taylor, 2002) were devoted to developing
generalization bounds for linear classifiers which make use
of the actual observed margin distribution on the training
data, rather than relying only on the distance of the points
closest to the hyperplane (the “margin” of the classifier).

Similar results have been obtained earlier for a restricted
case, when a convex combination of multiple classifiers is
used as the classifier (Schapire et al., 1997). At the heart
of these results are analysis techniques that can use an ap-
propriately weighted combination of all the data points,
weighted according to their distance from the hyperplane.

This paper shows that these theoretical results can be made
practical, be used for model selection, and to drive a new
learning algorithm.

Building on (Garg et al., 2002), which introduced the data
dependent generalizations bounds, we first develop a more
realistic version of the bound, that takes into account the
classifier’s bias term. An important outcome of (Garg et al.,
2002), which we slightly modify here, is a data dependent
complexity measure for learning which we call the projec-
tion profile of the data. The projection profile of data sam-
pled according to a distribution D, is the expected amount
of error introduced when a classifier h is randomly pro-
jected, along with the data, into a k-dimensional space. Our
analysis shows that it is captured by the following quantity:
ak(D, h) =

∫
x∈D

uk(x)dD, where

uk(x) = min

(
3 exp

(
−

(ν(x) + b)2k

8(2 + |(ν(x))|)2

)
,

2

(ν(x) + b)2
, 1

)

(1)
and ν(x) is the distance between x and the classifying
hyperplane1 defined by h, a linear classifier for D and
b is the bias of the classifier. The sequence P(D, h) =
(a1(D, h), a2(D, h), . . .) is the projection profile of D.

The projection profile turns out to be quite informative,
both theoretically and in practice. (Garg et al., 2002)
proved its relevance to generalization performance and
used it to develop sample complexity bounds (bounds on
generalization error) that are more informative than exist-
ing bounds for high dimensional learning problems.

The main contribution of this paper is to show that the pro-
jection profile of the observed data with respect to a learned
classifier can be directly optimized, yielding a new learning

1Our analysis does not assume linearly separable data.

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.



algorithm for linear classifiers, MDO (Margin Distribution
Optimization), that attempts to be optimal with respect to
the margin distribution based complexity measure. Specif-
ically, we first argue that this complexity measure can be
used for model selection. Empirically, we show that the
margin distribution of the data with respect to a classifier
behaves differently than the margin and observe that it is
both better correlated with its accuracy and is more sta-
ble in terms of measurements over the training data and
expected values. With this as motivation we develop an
approximation to Eqn. 1 that is used to drive an algorithm
that learns a linear classifier which directly optimizes this
measure. We use several data sets to compare the resulting
classifiers to those achieved by optimizing the margin, an
in SVM, and show that MDO yields better classifiers.

The paper is organized as follows. In the next section we
introduce the notations and some definitions that will be
used in later sections. Sec. 3 introduces our enhanced ver-
sion of the data dependent generalization bound based on
the margin distribution of the training data and discusses
its implications. In Sec. 4 we show that the projection pro-
file is not only meaningful for the purpose of generalization
bounds but can also be used as a model selection criterion.
The MDO algorithms is introduced in Sec. 5 and experi-
mental results with it are presented in Sec. 6. We conclude
by discussing some open issues.

2. Preliminaries
We study a binary classification problem f : IRn →
{−1, 1}, a mapping from a n dimensional space to class
labels {−1, 1}. Let S = {(x1, y1), . . . , (xm, ym)} denotes
a sample set of m examples. The hypothesis h ∈ IRn is
an n-dimensional linear classifier and b is the bias term.
That is, for an example x ∈ IRn, the hypothesis predicts
ŷ(x) = sign(hTx + b).

We use n to denote the original (high) dimensionality of
the data, k to denote the (smaller) dimension into which
projections are made and m to denote the sample size of the
data. The subscript will refer to the index of the example
in the sample set and the superscript will refer to particular
dimension that is under consideration.

Definition 2.1 Under 0-1 loss function, the empirical error
Ê of h over a sample set S and the expected error E are
given resp. by,

Ê(h, S) =
1

m

∑

i

I(ŷ(xi) 6= yi);

E(h, S) = Ex

[
I(ŷ(x) 6= f(x))

]
,

where I(·) is the indicator function which is 1 when its
argument is true and 0 otherwise. The expectation Ex is
over the distribution of data.

We denote by || · || the L2 norm of a vector. We will assume
w.l.o.g that all data points come from the surface of unit
sphere (ie. ∀x, ||x|| = 1), and that ||h|| = 1 (The non
unity norm of classifier and data will be accounted for by
normalizing the bias b.)

Let ν(x) = hTx denote the signed distance of the sam-
ple point x from the classifier h. When xj refers to the
jth sample from S, we denote it by νj = ν(xj) = hTxj .
With this notation (omitting the classifier h) the classifica-
tion rule reduces simply to sign(ν(x) + b).

Our analysis of margin distribution based bounds is based
on results in the area of random projection of high dimen-
sional data, developed in (Johnson & Lindenstrauss, 1984),
and further studied in several other works, e.g., (Arriaga
& Vempala, 1999). Briefly, the method of random projec-
tion shows that with high probability, when n dimensional
data is projected down to a lower dimensional space of di-
mension k, using a random k×n matrix, relative distances
between points are almost preserved. We will use this to
show that if the data is separable with large margin in a
high dimensional space, then it can be projected down to a
low dimensional space without incurring much error. Next
we give the definition of random matrix:

Definition 2.2 (Random Matrix) A random projection
matrix R is a k × n matrix whose each entry rij ∼

N(0, 1/k). For x ∈ IRn, we denote by x′ = Rx ∈ IRk

the projection of x from an n to a k-dimensional space us-
ing projection matrix R.

Similarly, for a classifier h ∈ IRn, h′ denotes its projec-
tion to a k dimensional space via R, S ′ denotes the set
of points which are the projections of the sample S, and
ν′j = (h′)Tx′j , the signed distance in the projected space.

3. A Margin Distribution based Bound
The decision of the classifier h is based on the sign of
ν(x) + b = hTx + b. Since both h and x are normalized,
|ν(x)| can be thought of as the geometric distance between
x and the hyperplane orthogonal to h that passes through
the origin. Given a distribution on data points x, this in-
duces a distribution on their distance from the hyperplane
induced by h, which we refer to as the margin distribution.

Note that this is different from the margin of the sample set
S with respect to a classifier h, traditionally defined in the
learning community as the distance of the point which is
closest to the hyperplane.

margin of S w.r.t. h is γ(S, h) =
m

min
i=1

|hTxi + b|.

In (Garg et al., 2002), we have developed a data dependent
margin bound for the case when the classification is done



as ŷ = sign(ν(x)). Although theoretically one can rede-
fine x ≡ [x, 1] and h ≡ [h, 1] and obtain a similar result, it
turns out that in practice this may not be a good idea. The
bias term b is related to the distance of the hyperplane from
the origin and h is the slope of the hyperplane. Proving
the bound, as well as developing the algorithmic approach
(based on Eqn. 3 below), require considering a projected
version of the hyperplane into a lower dimensional space,
k, in a way that does not significantly effects the classifi-
cation performance. At times, however, the absolute value
of b may be much larger than the individual components of
h (even after normalization with the norm of h). In these
cases, b will contribute more to the noise associated with
the projection and it may not be a good idea to project b.
Due to this observation, the algorithmic approach that is
based on Eqn. 3 necessitates that we prove a slightly mod-
ified version of the result given in (Garg et al., 2002).

Theorem 3.1 Let S = {(x1, y1), . . . , (x2m, y2m)} be a set
of n-dimensional labeled examples and h a linear classifier
with bias term b. Then, for all constants 0 < δ < 1; 0 < k,
with probability at least 1 − 4δ, the expected error of h is
bounded by

E(h) ≤ Ê(S, h) + min
k



µk + 2

√
(k + 2) ln me

k+2
+ ln 2

δ

2m



(2)

with µk redefined as

µk =
2

mδ

2m∑

j=1

min

{
3 exp

(
−

(νj + b)2k

8(2 + |νj |)2

)
,

2

k(νj + b)2
, 1

}
.

Note that by choosing b = 0, the above result reduces to the
one given in (Garg et al., 2002). Although one can prove
the above theorem following the steps given in (Garg et al.,
2002), we give the sketch of the proof as it is instrumental
in developing an intuition for the algorithm.

The bound given in Eqn. 2 has two main components.
The first component, µk, captures the distortion incurred
due to the random projection to dimension k; the second
term follows directly from VC theory for a classifier in k
dimensional space. The random projection theorem (Ar-
riaga & Vempala, 1999) states that relative distances are
(almost) preserved when projecting to lower dimensional
space. Therefore, we first argue that, with high probability
the image, under projection, of data points that are far from
h in the original space, will still be far in the projected (k
dimensional) space. The first term quantifies the penalty
incurred due to data points whose images will not be con-
sistent with the image of h. That is, this term bounds the
additional error incurred due to projection to k dimensional
space. Once the data lies in the lower dimensional space,

we can bound the expected error of the classifier on the
data as a function of the dimension of the space, number of
samples and the empirical error there (that is, the first com-
ponent). Decreasing the dimension of the projected space
implies increasing the contribution of the first term, while
the VC-dimension based term decreases. To get the optimal
bound, one has to balance these two quantities and choose
the dimension k of the projected space so that the gener-
alization error is minimized. The following lemma is the
key in proving the above theorem; it quantifies the penalty
incurred when projecting the data down to k dimensional
space. For proof, please refer to (Garg et al., 2002).

Lemma 3.2 Let h be an n-dimensional classifier, x ∈ IRn

a sample point, such that ||h|| = ||x|| = 1, and ν = hTx.
Let R ∈ IRk×n be a random projection matrix (Def. 2.2),
with h′ = Rh, x′ = Rx. Let the classification is done as
sign(hTx + b). Then the probability of misclassifying x,
relative to its classification in the original space, due to the
random projection, is

P
[
sign(hTx + b) 6= sign(h′

T
x′ + b)

]
≤

min

{
3 exp

(
−

(ν + b)2k

8(2 + |ν|)2

)
,

2

k(ν + b)2
, 1

}
.

The above lemma establishes a bound on the additional
classification error that is incurred when projecting the
sample down from an n to a k dimensional space. Note that
in this formulation, unlike the one in (Garg et al., 2002)) we
only project h while keeping b as in the original space. It
can be shown that in many cases this bound is tighter than
the one given in (Garg et al., 2002).

Once the above result is established, one can prove the the-
orem by making use of the symmetrization lemma (An-
thony & Bartlett, 1999) and standard VC-dimension argu-
ments (Vapnik, 1998). See (Garg et al., 2002) for details.

3.1. Existing Learning Algorithms

In this section, we attempt to provide some intuition to the
significance of considering the margin distribution when
selecting a classifier. We note that the discussion is gen-
eral although done in the context of linear classifiers. It
has been shown that any classifier can be mapped to a
linear classifier in high dimensional space. This suggests
that analysis of linear classifiers is general enough and can
give meaningful insights. The selection of a classifier from
among a set of classifiers that behaves well on the training
data (with respect to some complexity measure) is based
Vapnik’s (Vapnik, 1998) structural risk minimization prin-
ciple. The key question then is, what is the measure that
should guide this selection.

A cartoon example is depicted in Fig. 1. Training data with
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(a) (b) (c) (d)

Figure 1. (a) A cartoon showing the training data in two dimensional space with “∗” corresponding to positive class and “o” correspond-
ing to negative class. (b) Linear classifiers that can classify the data without error. (c) The hyperplane that learned by a large margin
classifier such as SVM. (d) This hyperplane may be a better choice than the one learned by SVM, since more data points are further
apart from the hyperplane.

“∗” corresponds to positive and with “o” corresponds to
negative data. Clearly, there are a number of linear classi-
fiers that can classify the training data perfectly. Fig. 1(b)
shows some of these classifiers. All these classifiers have
zero error on the training data and as such any selection
criteria based on training error only will not distinguish be-
tween them.

One of the popular measure that guides the selection of
classifier is the margin of a hyperplane with respect to
its training data. Clearly, however, this measure is sensi-
tive since it typically depends on a small number of ex-
treme points. This can be significant not only in the case
of noisy data, but also in cases of linearly separable data,
since this selection may effect performance on future data.
In the context of large margin classifiers such as SVM, re-
searchers tried to get around this problem by introducing
slack variables and ignoring some of the closest points in
an ad hoc fashion, but this extreme notion of margin still
drives the optimization. The cartoon in Fig. 1(d) shows a
hyperplane that was chosen by taking into account all the
data points rather than those that are closest to the hyper-
plane. Intuitively, this looks like a better choice than the
one in Fig. 1(c) (which would be chosen by a large margin
classifier) , by the virtue of being a more stable measure.
In the next section, we argue that one can use projection
profile as a model selection criterion and show that this hy-
perplane is the one that would actually be selected if this
model selection criteria is used.

4. Algorithmic Implications
The expected probability of error for a k-dimensional im-
age of a point x that is at distance ν(x) from an n-
dimensional hyperplane (where the expectation is with re-
spect to selecting a random projection matrix) is given by
the projection profile in Eqn. 1. This expression measures

Dataset C:Margin-E C:ProjProfile-E
Pima 0.3734 0.7913

Breast Cancer 0.4558 0.6162
Ionosphere 0.1753 0.3490

Credit 0.1215 0.3147

Table 1. The first column (C:Margin-E) gives the correlation co-
efficient between the Margin of the training data and the error on
the test set. The second column (C:ProjProfile-E) gives the cor-
relation coefficient between the weighted margin according to the
cost function given in Eqn. 5 and the error on test set; all done
for four datasets from UCI ML Repository. When computing the
margin we look at only correctly classified points.

the contribution of a point to the generalization error as a
function of its distance from the hyperplane (for a fixed k).
Figure 2(a) shows this term (Eqn. 1) for different values of
k. All points contribute to the error, and the relative contri-
bution of a point decays as a function of its distance from
the hyperplane. Hypothetically, given a probability distri-
bution over the instance space and a fixed classifier, one can
compute the margin distribution which can then be used to
compute the projection profile of the data.

The bound given in Thm. 3.1 depends only on the projec-
tion profile of the data and the projection dimension and
is independent of the particular classifier. Of all the clas-
sifiers with the same training error, the one with the least
projection profile k value will have the best generalization
performance. Therefore, the Theorem suggests a model se-
lection criterion. Of all the classifiers, choose the one that
optimizes the projection profile and not merely the mar-
gin. A similar argument, but for a slightly restricted prob-
lem, was presented by (Mason et al., 2000). They argued
that when learning a convex combination of classifiers, in-
stead of maximizing the margin one should maximize a
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Figure 2. (a)The contribution of data points to the generalization error as a function of their distance from the hyperplane. (b) The
contribution of data points to the generalization error as a function of their distance from the hyperplane as given by (Mason et al., 2000)
(c) The weight given to the data points by the MDO algorithm as a function of there margin.

weighted function of the distance of the points from the
learned classifier. This was used to develop margin distri-
bution based generalization bound for convex combination
of classifiers. The weighting function that was proposed is
shown in Fig. 2(b). The results of their algorithm showed
that a weighted margin distribution (for convex combina-
tion of classifiers) is a better complexity measure than the
extreme notion of margin which has been typically used in
large margin classification algorithms like SVM. Although
the problem addressed there is different from ours, inter-
estingly, the form of their weighting function (shown in
Fig. 2(b), discussed later) is very similar to ours.

In our work, instead of working with the actual projection
profile, we work with a simpler form of it given in Eqn. 3.

u(x) = exp(−(ν(x) + b)2k) (3)

The advantage of using the projection profile as a model
selection criteria is evident from the experiments presented
in Table 1. In particular, we took four data sets from UCI
ML repository. For each data set, we randomly divided it
into a test and a training data set. A classifier was learned
on the training set and was evaluated on the test data. This
experiment was repeated 200 times (each time choosing a
different subset as training data). Each time we computed
the actual margin of the SVM that was used as the initial
guess and the weighted margin according to a cost function,
given in Eqn. 5, for this classifier. Table 1 gives the corre-
lation between the generalization error of the classifier (its
performance on the test data) and these quantities. The first
column in Table 1 gives the correlation between the error
on test data and the margin on training data. The second
column gives the correlation between the error on the test
data and the weighted margin (projection profile) computed
on the training data. Note that here we are looking at the
absolute value of the correlation coefficient. The correla-
tion results highlights the fact that our new cost function is

a better predictor of generalization error. Further evidence
is presented in Table 2. It presents empirical evidence to
show that the cost function given in Eqn. 5 is a more stable
measure than the margin. The first column in Table 2 gives
the correlation between the margin (which is computed as
the distance of the closest correctly classified point from the
hyperplane) on the training and test data over 200 runs. The
second column gives the correlation between the weighted
margin (projection profile) computed on the training data
and test data. Again, a high correlation in the latter case
indicates the stability of this new measure.

5. The MDOAlgorithm
In this section, we introduce a new learning algorithm,
the Margin Distribution Optimization (MDO) algorithm.
MDO is driven by optimizing with respect to the simpli-
fied form of projection profile given in Eqn. 3. The learning
algorithm attempts to find a classifier that minimizes a cost
function which happens to be the projection profile of the
data. The cost function in Eqn. 3 determines the contri-
bution we want our selected classifier to give to the data
points. In order to choose a classifier that optimizes with
respect to this measure, though, we need to change it in or-
der to take into account misclassified points. We do that by
defining a new cost function which explicitly gives higher
weights to misclassified points. Thus, the weight given to
an example xi with true class label yi and learned hyper-
plane h with bias b is given by

W (xi) =

{
e−α(ν(xi)+b)2 if yi(ν(xi) + b) ≥ 0,

e−βyi(ν(xi)+b) if yi(ν(xi) + b) < 0.
(4)

That is, for correct classification, the weight is the one
given by the projection profile. However, for misclassified
points, the example is exponentially weighted. The con-
stants α, β allows one to control the weight of these two



Dataset C:Margin Tr-Te C:ProjProfile Tr-Te
Pima 0.5763 0.8225

Breast Cancer 0.2782 0.5375
Ionosphere 0.4312 0.4618

Credit 0.3208 0.6201

Table 2. The first column (C:Margin Tr-Te) gives the correlation
coefficient between the margin on the training data and the margin
on the test data. The second column (C:ProjProfile Tr-Te) gives
the correlation coefficient between weighted margin according to
cost function given in Eqn. 5 on the training data and on the test
data for four datasets from UCI ML Repository. When computing
the margin we look at only correctly classified points.

terms. α should be thought of as the optimal projection
dimension and could be optimized (although at this point
our algorithms determines it heuristically). Fig. 2(c) shows
a family of weight functions as a function of the margin
ν(x) + b for an example. In this figure, a positive mar-
gin means correct classification and negative margin cor-
responds to misclassification. The weight given to points
which were classified with good margin is very low while
points which are either misclassified or very close to the
margin get higher weights. Minimizing this cost function
will essentially try to maximize the weighted margin while
reducing the misclassification error. Note the close resem-
blance to the weighting function proposed by Mason et. al.
for the convex combination case, shown in Fig. 2(b).

Given a training set S of size m, the optimization problem
can be formulated as: Find (h, b) such that the following
cost function is minimized.

L(h, b) =
m∑

i=1

I(ŷi = yi)e
−α(ν(xi)+b)2

+

m∑

i=1

I(ŷi 6= yi)e
−βyi(ν(xi)+b) (5)

Here I(·) is an indicator function which is 1 when its argu-
ment is true otherwise 0. α is directly proportional to the
concept of projection dimension and β is a related to the
tradeoff between the misclassification error and the projec-
tion profile. There are a few observations that needs to be
made before we proceed further. In most practical cases,
learning is done with non-separable training data. Standard
learning algorithms like SVM handle this case by introduc-
ing slack variables and the optimal values of the slack vari-
ables are chosen by a search procedure. This makes the
performance of the algorithm dependent on the particular
search method. Our formulation automatically takes care
of misclassified points. While minimizing the above cost
function, it gives larger penalty to points which are in er-
ror as against the ones which are correctly classified. The
amount of error that will be tolerated can be controlled by

choosing α, β appropriately. One possible way to choose
these parameters is by evaluating the learned classifier over
some hold out set. In our case, we observed that in most
cases α = 1

(ν+b)2 and β = 1
(ν+b) gave good results where

ν is an estimate of average margin given by ν =
∑
|νi|/m

for a data set of size m for some h.

The main computational difficulty in our algorithm lies in
the non-convexity of the objective function. In general, one
would like to avoid solving a non-convex problem as it is
hard to obtain a globally optimal solution and there is no
closed form expression. Nevertheless we show that gra-
dient descent methods are quiet useful here. Due to non-
convexity, there are a number of local saddle points and
one may not reach a global optimal point. This makes the
choice of starting point extremely critical. In our work, we
suggest to use SVM learning algorithm to choose the ini-
tial starting classifier. Once an initial classifier is obtained,
the algorithm uses gradient descent over the cost function
given in Eqn 5. The algorithm stops once it has reached
a local minima of the cost function. Two important points
that deserves attention are (1) the norm of the classifier h
and (2) the non-differentiability of the cost function. In
general, by increasing the norm of the classifier, we can
decrease the value of the cost function (as the margin will
increase). Therefore, we don’t take into account the norm
of the classifier h in the cost function and at each iteration,
after obtaining the updated vector h, we re-normalize it.
The second issue is more tricky. The derivative of the cost
function is not defined for those xi which have 0 margin
i.e. ν(xi) + b = 0 . At such points, we compute both the
left and right derivatives. All the gradient directions are
then evaluated and those which lead to maximum decrease
in the cost function is selected. The algorithm terminates if
no such gradient direction are found.

The algorithm given in Fig. 7 gives the implementation de-
tails. It starts with learning a classifier using SVM learning
algorithm obtaining (h, b). We assume2 that ||h|| = 1. α,
β are then initialized (as above). MAX CONST - maxi-
mum number of points with zero margin that will be con-
sidered at any given iteration of the algorithm. Since at
points with zero margin, we are evaluating both the left
and right derivative, the number of directions considered
is exponential in the number of points with zero margin,
and as such we limit the number of such points (for which
both gradient directions are considered) to MAX CONST.
MDO is the main procedure. If there are no points with 0
margin, the algorithm simply computes the gradients as:

∂L(h, b)

∂hk
= −2α

m∑

i=1

I(ŷi = yi)(ν(xi) + b)xki e
−α(ν(xi)+b)2

−β
m∑

i=1

I(ŷi 6= yi)yix
k
i e
−βyi(ν(xi)+b) (6)

2If ||h|| 6= 1, define h = h/||h||, b = b/||h||. The classifica-
tion result will be unchanged.
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Figure 3. The plot gives the experimental results for the breast
cancer dataset from the UCI ML repository. It gives the projection
profile “∗” and margin “·” of the learned classifier on the training
data as the algorithm iterates.

These derivatives are then used by procedure Update to
obtain the updated values of (h, b) given by (h′, b′). While
updating, we make sure that cost function is decreasing at
each iteration. However, if there are points with 0 mar-
gin, we randomly select of MAX CONST such points, and
at those we compute all the possible gradients (computing
both left and right derivatives). The other points with zero
margin are ignored. Once we have the derivative of the cost
function, the same update procedure, as above, is called.
While doing the experiments, we observed that the algo-
rithm typically converges in a small number of steps.
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Figure 4. The plot gives the experimental results for the breast
cancer dataset from the UCI ML repository. This plot gives the
training error “·” and test error “∗” at each iteration. With the
iterations, training error increased from the starting point - 0th
iteration while test error went down.

Datasets SVM MDO % Reduction
Credit (UCI) 94.04 95.83 30.03
Breast (UCI) 91.71 92.93 14.72

Ionosphere (UCI) 94.47 95.55 19.53
Heart (UCI) 79.72 80.94 6.02
Liver (UCI) 83.31 84.13 5.99

Mushroom (UCI) 96.1 96.42 8.21
peace & piece 89.26 91.72 22.91
being & begin 96.04 96.75 17.92

Table 3. Results comparing the performance of SVM and MDO.
The first six datasets are from UCI ML repository. The last two
datasets are from the context sensitive spelling correction prob-
lem. The column SVM gives the % correct classification for test
data when a classifier learned using SVM was used and column
MDO gives the same for MDO. The last column gives the percent-
age reduction in error from SVM to MDO. As seen, in all cases,
MDO’s results are comparable or better than the ones obtained
using SVM. These results are averaged over 100 runs.

6. Results
In this section, we provide the empirical comparison of the
MDO with SVM. Note that although, in our experiments,
MDO’s starting point is the SVM classifier, the results ob-
tained by MDO could be worse than SVM. Indeed, the
selection of the new classifier is driven by our new opti-
mization function and it could lead to larger error. Inter-
estingly, when doing the experiments we observed that in
many cases we obtained better generalization at the cost of
slightly poor performance on the training data. To under-
stand this we analyzed in detail the results for the breast
cancer dataset from UCI ML repository. In Fig. 3 we plot
the margin and the value of the cost function given in Eqn. 5
over the gradient descent iterations. As expected, while the
cost function of MDO improved (decreased in value) the
margin deteriorated (since we started with SVM, the mar-
gin at 0th iteration is maximal). Fig. 4 is even more reveal-
ing. We show how the training and test error changed with
the iterations of the gradient descent. Interestingly, the er-
ror on the training error went up from 5% at 0th iteration to
9%. The algorithm traded the increase in training error with
the decrease in projection profile. The second plot gives the
test error and as evident, the test error went down with more
iterations. The gap between the training error and test error
also decreased which shows that the new classifier gener-
alized well and the cost function proposed in Eqn. 5 is a
better measure of learning complexity.

In Table 3, we compare the classification performance of
MDO and SVM on a number of datasets from UCI ML
repository and on two real world problems related to con-
text sensitive spelling correction. The spelling data is taken
from the pruned data set of (Golding & Roth, 1999). Two
particular examples of context sensitive spelling correction,



being & begin and peace & piece, are considered. For de-
tails on the dataset see (Murphy, 1994). In all experiments,
data was randomly divided into training ( 60%), and test set
(40%). The experiments were repeated 100 times each time
choosing a different subset (randomly chosen) of training
and test data. It is evident that except for a few case (in
which the improvement is not statistically significant), in
most cases MDO outperforms SVM.

7. Conclusions
We presented a new, practical, margin distribution based
complexity measure for learning classifiers that we derived
by enhancing a recently developed method for developing
margin distribution based generalization bounds. We have
shown that this theoretically justified complexity measure
can be used robustly as a model selection criterion and,
most importantly, used it to drive a new learning algorithm
for linear classifiers, that is selected by optimizing with re-
spect to this complexity measure. The results are based on
a novel use of the margin distribution of the data relative to
the learned classifier, that is different than the typical use
of the notion of margin in machine learning. Consequently,
the resulting algorithm is not sensitive to small number of
samples in determining the optimal hyperplane.

Although the bound presented here is tighter than existing
bounds and is sometimes informative for real problems, it is
still loose and more research is needed to match observed
performance on real data. Algorithmically, although we
have given an implementation of the new algorithm MDO,
one of the main direction of future research is to study it
further, as well as to investigate other algorithmic implica-
tions of the ideas presented here.

Acknowledgments: This research is supported by
NSF grants ITR-IIS-0085836, ITR-IIS-0085980 and IIS-
9984168 and an IBM fellowship to Ashutosh Garg.

References
Anthony, M., & Bartlett, P. L. (1999). Neural network learning:

Theoretical foundations. Cambridge.

Arriaga, R. I., & Vempala, S. (1999). An algorithmic theory of
learning: Robust concepts and random projection. Proc. of the
40th Foundations of Computer Science (pp. 616–623).

Garg, A., Har-Peled, S., & Roth, D. (2002). On generalization
bounds, projection profile, and margin distribution. Proc. of
the International Conference on Machine Learning.

Golding, A. R., & Roth, D. (1999). A Winnow based approach
to context-sensitive spelling correction. Machine Learning, 34,
107–130.

Johnson, W. B., & Lindenstrauss, J. (1984). Extensions of lip-
schitz mappings into a hilbert space. Conference in modern
analysis and probability (pp. 189–206).

Here we initialize the constants and obtain initial
estimate of the classifier
Global :
Training Set: S = {(x1, y1), ..., (xm, ym)}
Classifier: Learn (h, b) using linear SVM

Where h, b : yi(h
Txi + b) > 0 (for all

the correctly classified training examples.)
Constants: MAX CONST,α,β,cinf

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is the main function
Procedure MDO(h, b, S)
For all (xi, yi) ∈ S, fh(xi) = yi(h

Txi + b)

C(h, b) =
∑

i:fh(xi)≥0 e
−αfh(xi)

2
+

∑
i:fh(xi)<0 e

−βfh(xi)

A := {(xi, yi) ∈ S : fh(xi) = 0} (points with 0 margin)
if (A = φ) No points with 0 margin
gh := −∇hC(h, b); gb := −∇bC(h, b)
Update (h′, b′, h, b, gh, gb)

else A is a set of points with 0 margin
if (|A| >MAX CONST) then B is random subset
of A of size MAX CONST, else B = A
N = |B|
for each (b1, ..., bN ) ∈ {±1}N

{g
(b1,..,bN )
h , g

(b1,..,bN )
b } = −{∇

(b1,..,bN )
h ,∇

(b1,..,bN )
b }C(h, b);

where ∇(b1,...,bN ) means the left or right derivative at
the ith example in B according as bi = +1 or − 1.
Update (h′, b′, h, b, gh, gb)
c(b1,...,bN ) = C(h, b)− C(h′, b′)

end
Choose h′, b′ which had the maximum reduction in cost

end
if C(h, b)− C(h′, b′) < cinf , then BREAK
else h = h′; b = b′; MDO(h, b, S)

End
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This procedure gives the updated parameters based on the
old parameters and gradients
Procedure Update(h′, b′, h, b, gh, gb)
h′ = h+ εgh, b

′ = b+ εgb; h′ = h′/||h′||, b′ = b′/||h′||
where ε is maximum positive real number
such that C(h, b)− C(h′, b′) ≥ 0.

end

Figure 5. Sketch of the Margin Distribution Optimization (MDO)
Algorithm

Langford, J., & Shawe-Taylor, J. (2002). Pac-Bayes and margins.
Advances in Neural Information Processing Systems.

Mason, L., Bartlett, P., & Baxter, J. (2000). Improved gener-
alization through explicit optimization of margins. Machine
Learning, 38-3, 243–255.

Murphy, P. M. (1994). UCI repository of machine learn-
ing databases [http://www.ics.uci.edu/ mlearn] (Technical Re-
port). Irvine, CA: University of California.

Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1997).
Boosting the margin: a new explanation for the effectiveness
of voting methods. Proc. 14th International Conference on
Machine Learning (pp. 322–330). Morgan Kaufmann.

Vapnik, V. N. (1998). Statistical learning theory. New York: John
Wiley and Sons Inc.


