Hierarchical Policy Gradient Algorithms

Mohammad Ghavamzadeh
Sridhar Mahadevan

MGHQCS.UMASS.EDU
MAHADEVA@QCS.UMASS.EDU

Department of Computer Science, University of Massachusetts Amherst, Amherst, MA 01003-4610, USA

Abstract

Hierarchical reinforcement learning is a gen-
eral framework which attempts to acceler-
ate policy learning in large domains. On
the other hand, policy gradient reinforcement
learning (PGRL) methods have received re-
cent attention as a means to solve problems
with continuous state spaces. However, they
suffer from slow convergence. In this pa-
per, we combine these two approaches and
propose a family of hierarchical policy gradi-
ent algorithms for problems with continuous
state and/or action spaces. We also intro-
duce a class of hierarchical hybrid algorithms,
in which a group of subtasks, usually at the
higher-levels of the hierarchy, are formulated
as value function-based RL (VFRL) prob-
lems and the others as PGRL problems. We
demonstrate the performance of our proposed
algorithms using a simple taxi-fuel problem
and a complex continuous state and action
ship steering domain.

1. Introduction

Value function-based reinforcement learning (VFRL)
has been extensively studied in the machine learning
literature. However, there are only weak theoretical
guarantees on the performance of these methods on
problems with large or continuous state spaces.

An alternative approach to VFRL is to consider a
class of parameterized stochastic policies, compute the
gradient of a performance function with respect to
the parameters, and improve the policy by adjusting
the parameters in the direction of the gradient. This
approach is known as policy gradient reinforcement
learning (PGRL) (Marbach, 1998; Baxter & Bartlett,
2001), and have received much recent attention as a
means to solve problems with continuous state spaces.
The main motivations for this are : 1) PGRL algo-
rithms are theoretically guaranteed to converge to lo-

cally optimal policies, and 2) it is possible to incorpo-
rate prior knowledge into these methods via appropri-
ate choice of the parametric form of the policy.

However, in real-world high-dimensional tasks, in
which the performance function is parameterized us-
ing a large number of parameters, the PGRL methods
might show poor performance by becoming stuck in
local optima. Moreover, PGRL algorithms are usually
slower than VFRL methods, due to the large variance
of their gradient estimators. The above two reasons
might make the application of these algorithms prob-
lematic in real-world domains. A possible solution
is to incorporate prior knowledge and decompose the
high-dimensional task into a collection of modules with
smaller and more manageable state spaces and learn
these modules in a way to solve the overall problem.
Hierarchical value function-based RL methods (Parr,
1998; Dietterich, 1998; Sutton et al., 1999) have been
developed using this approach, as an attempt to scale
RL to large state spaces.

In this paper, we define a family of hierarchical pol-
icy gradient (HPG) algorithms, for scaling PGRL
methods to high-dimensional domains. In HPG, sub-
tasks involved in decision making (subtasks with more
than one child), which we call non-primitive subtasks,
are defined as PGRL problems whose solution in-
volves computing a locally optimal policy. Each non-
primitive subtask is formulated in terms of a param-
eterized family of policies, a performance function, a
method to estimate the gradient of the performance
function, and a routine to update the policy parame-
ters using the performance gradient.

We accelerate the learning of HPG algorithms by for-
mulating higher-level subtasks, which usually involve
smaller and more manageable state and finite action
spaces, as VFRL problems, and lower-level subtasks
with infinite state and/or action spaces as PGRL prob-
lems (Morimoto & Doya, 2001). We call this family of
algorithms hierarchical hybrid algorithms. The effec-
tiveness of our proposed algorithms is demonstrated
using a simple taxi-fuel problem as well as a more com-

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

plex continuous state and action ship steering task.

2. Hierarchical Task Decomposition

We introduce the hierarchical task decomposition us-
ing a continuous state and action space ship steering
problem (Miller et al., 1990, see Figure 1). A ship
starts at a randomly chosen position, orientation and
turning rate and is to be maneuvered at a constant
speed through a gate placed at a fixed position.

1km

Figure 1. The ship steering domain.

Equation 1 gives the motion equations of the ship,
where T' = 5 is the time constant of convergence to de-
sired turning rate, V' = 3m/sec is the constant speed
of the ship, and A = 0.2sec is the sampling interval.
There is a time lag between changes in the desired
turning rate and the actual rate, modeling the effects
of a real ship’s inertia and the resistance of the water.

x[t + 1] = z[t] + AV sinfl[t]
ylt + 1] = y[t] + AVcos]t]
Ot + 1] = 0[t] + Ad]t]

]

0lt + 1) = O[] + A(r[t] — 6[4])/T

At each time t, the state of the ship is given by its
position x[t] and yl[t], orientation 0[t] and actual turn-
ing rate 6[t]. The action is the desired turning rate
of the ship r[t]. All four state variables and also the
action are continuous and their range is shown in Ta-
ble 1. The ship steering problem is episodic. In each
episode, the goal is learning to generate sequences of
actions that steer the center of the ship through the
gate in the minimum amount of time. The sides of the
gate are placed at coordinates (350,400) and (450,400).
If the ship moves out of bound (z < 0 or z > 1000 or
y < 0 or y > 1000), the episode terminates and is
considered as a failure.

We applied both flat PGRL and actor-critic (Konda,
2002) algorithms to this task without achieving a good
performance in reasonable amount of time (Figure 7).
We believe this failure occurred due to two reasons,

State 0 to 1000 meters

0 to 1000 meters
-180 to 180 degrees
-15 to 15 degrees/sec

-15 to 15 degrees/sec

DR 8

Action

Table 1. Range of state and action variables for the ship
steering task.

which make this problem hard for RL algorithms.
First, since the ship cannot turn faster than 15 de-
grees/sec, all state variables change only by a small
amount at each control interval. Thus, we need a high
resolution discretization of the state space in order to
accurately model state transitions, which requires a
large number of parameters for the function approx-
imator and makes the problem intractable. Second,
there is a time lag between changes in the desired turn-
ing rate r and the actual turning rate 9, ship’s position
x,y and orientation 6, which requires the controller to
deal with long delays.

However, we successfully applied a flat policy gradient
algorithm to simplified versions of this problem shown
in Figure 2, when z and y change from 0 to 150 in-
stead of 0 to 1000, the ship always starts at a fixed
position with randomly chosen orientation and turn-
ing rate, and the goal is reaching a neighborhood of
a fixed point. It indicates that this high-dimensional
non-linear control problem can be learned using an ap-
propriate hierarchical decomposition. Using this prior
knowledge, we decompose the problem into two lev-
els using the task graph shown in Figure 3. At the
high-level, the agent learns to select among four di-
agonal and four horizontal /vertical subtasks. At the
low-level, each low-level subtask learns a sequence of
turning rates to achieve its own goal. We use symme-
try and map eight possible subtasks of the root to only
two subtasks at the low-level, one associated with four
diagonal subtasks and one associated with four hori-
zontal/vertical subtasks as shown in Figure 3. We call
them diagonal subtask and horizontal /vertical subtask.

150 m
Goal (140,75)
\

0 X 150 m 0 X 150m

Figure 2. This figure shows two simplified versions of the
ship steering task, used as low-level subtasks in the hierar-
chical decomposition of ship steering problem.

Horizontal / Vertical
Diagonal Subtasks Subtasks

| — I \
| [x=x+100) (x=x+100) (x=x-100) (x=x-100)! | [x=x+100) (x=x Xx=x-100] [x=x !
ly=y+100] |y=y-100] |y=y+100] |y=y-100]1 i ly=y y=y+100| |y=y y=y-100] |

I I

Horizontal / Vertical
Subtask

Diagonal
Subtask

Continuous Action
Turning Rater
-15<r<15

Continuous Action
Turning Rater
-15<r<15

Figure 3. A task graph for the ship steering problem.

As illustrated above for the ship steering task, the de-
signer of the system uses his/her domain knowledge
and recursively decomposes the overall task into a col-
lection of subtasks that are important for solving the
problem. This decomposition is represented by a di-
rected acyclic graph called task graph, as shown in Fig-
ure 3. Mathematically, the task graph is modeled by
decomposing the overall task MDP M, into a finite
set of subtask MDPs {M°,... M"}. Each subtask
MDP M* models a subtask in the hierarchy and M? is
the root task and solving it solves the entire MDP M.
Each non-primitive subtask ¢ is defined over the MDP
M’ using state space S?, initiation set I, set of termi-
nal states T, action space A?, transition probability
function P?, and reward function R?. Each primitive
action a is a primitive subtask in this decomposition,
such that a is always executable and it terminates im-
mediately after execution. From now on in this paper,
we use subtask to refer to non-primitive subtasks. If
we have a policy u’ for each subtask ¢ in this model,
it gives us a hierarchical policy u = {u®, ..., u"}. A
hierarchical policy is executed using a stack discipline,
similar to subroutine calls in programming languages.

3. Policy Gradient Formulation

After decomposing the overall problem into a set of
subtasks as described in section 2, we formulate each
subtask as a PGRL problem. Our focus in this paper
is on episodic problems, so we assume that the overall
task (root of the hierarchy) is episodic.

3.1. Policy Formulation

We formulate each subtask i using a set of randomized
stationary policies p(6?) parameterized in terms of a
vector 0° € RE. 1¥(s,a,0") denotes the probability of
taking action a in state s under the policy correspond-
ing to #*. We make the following assumption about
this set of policies.

A1l: For every state s € S* and every action a €
Al pi(s,a,6) as a function of 6%, is bounded and has
bounded first and second derivatives. Furthermore,
we have Vy'(s,a,0%) = u'(s,a,0)9(s,a,0), where
(s, a,0?) is bounded, differentiable and has bounded
first derivatives.

Since every time we call a subtask 4 in the hierarchy, it
starts at one of its initial states (€ I') and terminates
at one of its terminal states (€ T*), we can model each
instantiation of subtask i as an episode as shown in
Figure 4. In this model, all terminal states (s € T?)
transit with probability 1 and reward 0 to an absorbing

state s**. We make the following assumption for every
subtask ¢ and its parameterized policy p*(6%).

Terminal States T'

Initial States '

Figure 4. This figure shows how we model a subtask as an
episodic problem under assumption A2.

A2 (Subtask Termination): There exists a state
s* € S% such that, for every action a € A, we have
Ri(s*,a) = 0 and P'(s*!|s**,a) = 1, and for all sta-
tionary policies p?(0%) and all states s € S%, we have
Pi(s* N|s, u'(0%)) > 0, where N = |S?|.
Under this model, we define a new MDP M, for sub-
task ¢ with transition probabilities

i _ [P'(s'|s.a)

P?rl(s ‘S»a) - { T—ri(s/)

and rewards R%,(s,0") = R'(s,0"), where 7'(s) is the
probability that subtask ¢ starts at state s.

s#s“i

S:S*Z

th 73%1 _be_ the set of all transition matrices
P! (s'|s,pu*(0")). We have the following result for sub-
task 1.

Lemma 1: Let assumptions A1l and A2 hold. Then
for every P; € 737‘? and every state s € S?, we have

SN Pi(s* ns, pi(6%)) > 0, where N = |S7).

Lemma 1 is equivalent to assume that the MDP M }T is
recurrent, i.e. the underlying Markov chain for every
policy x*(6%) in this MDP has a single recurrent class
and the state s*! is recurrent state.

3.2. Performance Measure Definition

We define weighted reward-to-go x*(0°) as the perfor-
mance measure of subtask i formulated by parameter-

ized policy u*(0%), and for which assumption A2 holds,
as

X' = 7 (s)J'(s,6")

sES?
where J(s,0%) is the reward-to-go of state s,

T—

E91 Z Sk,

k=0

|so—s

where T = min{k > O|s;, = s*} is the first future
time that state s** is visited.

3.3. Optimizing the Weighted Reward-to-Go

In order to obtain an expression for the gradient
VX' (6"), we use MDP M, defined in section 3.1.
Using Lemma 1, MDP M; is recurrent. For MDP
M.;, let 7..(s,0') be the steady state probability
distribution of being in state s and let Egi gi[T]
be the mean recurrence time, ie. Enig[T] =
Eigi[T|so = s*]. We also define Q'(s,a,6") =
Ei gi [Z:_()l R%,(sk,0")|so = s,ap = a|, which is the
usual action-value function.

Using MDP M. ;i, we can derive the following proposi-
tion which gives an expression for the gradient of the
weighted reward-to-go x*(6°) with respect to 6°.

Proposition 1: If assumptions A1l and A2 hold

VXZ (91 71'1 01
s€St ac Al

The expression for the gradient in proposition 1 can
be estimated over a renewal cycle! as

tmp1—1))
i (i ~i z‘vﬂl(sn,anvez)

F,.(0") = Q' (Sn,0n,0") —————= 2
= 3 @ s)

where t,, is the time of the mth visit at the recurrent
state s** and Q" (sn,an,0") = Z’:;Lﬁl R'(sp,ay) is an
estimate of Q".

From Equation 2, we obtain the following procedure
to update the parameter vector along the approximate
gradient direction at every time step.

Sk = s*i
otherwise (3)

i 0
1
z = . . .
k1 { 2y, + V' (sk, ax, 0y)
1 =0+ a?cRZ(Skaak)lengl

1Cycle between consecutive visits to recurrent state s**

Z Z mti(s,00Vu'(s,a,0)Q" (s, a,6")

where «aj is the step size parameter and satisfies
the following assumptions.

A4: qp’s are deterministic, nonnegative and satisfy
o) oo 2

Do ar =o00and Y, 4 af < oo.

A5: ay’s are non-increasing and there exists a positive

integer p and a positive scalar A such that Z:+2(an

ay) < AtPa? for all positive integers n and t.

We have the following convergence result for the itera-
tive procedure in Equation 3 to update the parameters.

Proposition 2: Let assumptions Al, A2, A4 and A5
hold, and let (6}) be the sequence of parameter vectors
generated by Equation 3. Then, xi(%) converges and
limg—oo VX' (0%) = 0 with probability 1.

Equation 3 provides an unbiased estimate of Vx*(6?).
For systems involving a large state space, the interval
between visits to state s** can be large. As a con-
sequence, the estimate of Vy?(#%) might have a large
variance. Several approaches have been proposed to
reduce the variance in these estimations and deliver-
ing faster convergence. For instance, in one approach,
we can replace s* with S*?, a subset of state space con-
taining s*!, and reset z' when s € S*!. This method
can be easily implemented for each subtask by defining
S* = T J{s*}. Another approach uses a discount
factor v in reward-to-go estimation. However, these
methods introduce a bias into the estimate of Vx(6?).
For both approaches, we can derive a modified version
of Equation 3 to incrementally update the parameter
vector along the approximate gradient direction.

4. Hierarchical Policy Gradient
Algorithms

After decomposing the overall task to a set of sub-
tasks as described in section 2, and formulating each
subtask in the hierarchy as an episodic PGRL prob-
lem as illustrated in section 3, we can use the update
Equation 3 and derive a hierarchical policy gradient al-
gorithm (HPG) to maximize the weighted reward-to-go
for every subtask in the hierarchy. Algorithm 1 shows
the pseudo code for this algorithm.

G'(s|s,a) in lines 10 and 16 of the algorithm is the in-
ternal reward which can be used only inside each sub-
task to speed up its local learning and does not propa-
gate to upper levels in the hierarchy. Lines 11 —16 can
be replaced with any other policy gradient algorithm
to optimize the weighted reward-to-go, such as (Mar-
bach, 1998) or (Baxter & Bartlett, 2001). Thus, Al-
gorithm 1 demonstrates a family of hierarchical policy
gradient algorithms to maximize the weighted reward-
to-go for every subtask in the hierarchy.

Algorithm 1 A hierarchical policy gradient algorithm
that maximizes the weighted reward-to-go for every subtask
in the hierarchy.

1: Function HPG(Task i, State s)

2: R=0

3: if 7 is a primitive action then

4: execute action 7 in state s, observe state s’ and
reward R(s'|s,)

5. return R(s'|s,i)
6: else
7: while i has not terminated (s # s*!) do
8: choose action a using policy u’(s, 0°)
9: R=HPG(Task a, State s)
10: observe result state s’ and internal reward
Gi(s'|s,a)
11: if s = s* then
12: zp,1 =0
13: else
14: z,iH =2l + (s, a,0})
15: end if
16: 0.1 =0 +a,(R+G'(s']s,a)z} 4
17: R=R+R
18: s=s
19: end while
20: end if
21: return R
22: end HPG

The above formulation of each subtask has the fol-
lowing limitations: 1) Compact (parameterized) rep-
resentation of the policy limits the search for a policy
to a set which is typically smaller than the set of all
possible policies. 2) Gradient-based optimization al-
gorithms as a search method for a policy, find a so-
lution which is locally, rather than globally, optimal.
Thus, in general, the family of algorithms described
above converges to a recursively local optimal policy.
If the policy learned for every subtask in the hierarchy
coincides with the best policies, then these algorithms
converge to a recursively optimal policy.

Despite all the methods proposed to reduce the vari-
ance of gradient estimators in PGRL algorithms, these
algorithms are still slower than VFRL methods, as we
will show in the simple taxi-fuel experiment in sec-
tion 5.1. One way to accelerate learning of HPG algo-
rithms is to formulate those subtasks involving smaller
state spaces and finite action spaces, usually located
at the higher-levels of the hierarchy, as VFRL prob-
lems, and those with large state spaces and infinite ac-
tion spaces, usually located at the lower-levels of the
hierarchy, as PGRL problems. This formulation can
benefit from the faster convergence of VFRL methods
and the power of PGRL algorithms in domains with

infinite state and/or action spaces at the same time.
We call this family of algorithms, hierarchical hybrid
algorithms and illustrate them in our ship steering ex-
periment.

5. Experimental Results

In this section, we first apply the hierarchical policy
gradient algorithm proposed in this paper to the well-
known taxi-fuel problem (Dietterich, 1998) and com-
pare its performance with MAXQ-Q, a value-based hi-
erarchical RL algorithm, and flat Q-learning. Then we
turn to a more complex continuous state and action
ship steering domain, apply a hierarchical hybrid al-
gorithm to this task and compare its performance with
flat PGRL and actor-critic algorithms.

5.1. Taxi-Fuel Problem

A 5-by-5 grid world inhabited by a taxi is shown in
Figure 5. There are four stations, marked as B(lue),
G(reen), R(ed) and Y(ellow). The task is episodic.
In each episode, the taxi starts in a randomly chosen
location and with a randomly chosen amount of fuel
(ranging from 5 to 12 units). There is a passenger at
one of the four stations (chosen randomly), and that
passenger wishes to be transported to one of the other
three stations (also chosen randomly). The taxi must
go to the passenger’s location, pick up the passenger,
go to the destination location and drop off the pas-
senger there. The episode ends when the passenger is
deposited at the destination station or taxi goes out of
fuel. There are 8,750 possible states and seven prim-
itive actions in the domain, four navigation actions,
Pickup action, Dropoff action, and Fillup action (each
of these consumes one unit of fuel). Each action is
deterministic. There is a reward of -1 for each action
and an additional reward of 20 for successfully deliver-
ing the passenger. There is a reward of -10 if the taxi
attempts to execute the Dropoff or Pickup actions il-
legally and a reward of -20 if the fuel level falls below
zero. The system performance is measured in terms
of the average reward per step. In this domain, this is
equivalent to maximizing the total reward per episode.
Each experiment was conducted ten times and the re-
sults averaged.

4R G

3 T: Taxi
B : Blue Station
G : Green Station

2

T R : Red Station

1 = Y : Yellow Station
F : Gas Station

oly B

0o 1 2 3 4

Figure 5. The Taxi-Fuel Domain.

Reward per Srep
L S

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Number of Trials

Figure 6. This figure compares the performance of the hi-
erarchical PGRL algorithm proposed in this paper with
MAXQ-Q and flat Q-learning on the taxi-fuel problem.

Figure 6 compares the proposed hierarchical policy
gradient (HPG) algorithm with MAXQ-Q (Dietterich,
1998), a value-based hierarchical RL algorithm, and
flat Q-learning. The graph shows that the MAXQ-Q
converges faster than HPG and flat Q-learning, and
HPG is slightly faster than flat Q-learning.

The hierarchical policy gradient algorithm used in this
experiment is the one shown in Algorithm 1, with one
policy parameter for each state-action pair (s, a).

As we expected, the HPG algorithm converges to the
same performance as MAXQ-Q, but it is slower than
its value-based counterpart. The performance of HPG
can be improved by better policy formulation and us-
ing more sophisticated policy gradient algorithms for
each subtask. The slow convergence of PGRL meth-
ods motivates us to use both value and policy based
methods in a hierarchy and study how to define more
expressive policies for each subtask. We address the
former using the hierarchical hybrid algorithms in the
next section and leave the latter for future work.

5.2. Ship Steering Problem

In this section we apply a hierarchical hybrid algorithm
to the ship steering task described in section 2 and
compare its performance with flat PGRL and actor-
critic algorithms.

The flat PGRL algorithm used in this section uses
Equation 3 and CMAC function approximator with
9 four dimensional tilings, dividing the space into
20 x 20 x 36 x 5 = 72000 tiles each. The actor-critic
algorithm (Konda, 2002) also uses the above func-
tion approximator for its actor, and 9 five dimensional
tilings of size 5 x 5 x 36 x 5 x 30 = 135000 tiles, for
its critic. The fifth dimension of critic’s tilings is for
continuous action.

In hierarchical hybrid algorithm, we decompose the
task using the task graph in Figure 3. At the high-

level, the learner explores in a low-dimensional sub-
space of the original high-dimensional state space. The
state variables are only the coordinates of the ship x
and y on the full range from 0 to 1000. The actions
are four diagonal and four horizontal /vertical subtasks
similar to those subtasks shown in Figure 2. The state
space is coarsely discretized into 400 states. We use
the value-based Q(\) algorithm with e-greedy action
selection and replacing traces to learn a sequence of
diagonal and horizontal/vertical subtasks to achieve
the goal of the entire task (passing through the gate).
Each episode ends when the ship passes through the
gate or moves out of bound. Then the new episode
starts with the ship in a randomly chosen position,
orientation and turning rate. In this algorithm, A is
set to 0.9, learning rate to 0.1 and e starts with 0.1
remains unchanged until the performances of low-level
subtasks reach to a certain level and then is decreased
by a factor of 1.01 every 50 episodes.

At the low-level, learner explores local areas of the
high-dimensional state space without discretization.
When the high-level learner selects one of the low-level
subtasks, the low-level subtask takes control and ex-
ecutes the following steps as shown in Figure 2. 1)
Maps the ship to a new coordinate system in which
the ship is in position (40,40) for the diagonal sub-
task and (40,75) for the horizontal/vertical subtask.
2) Sets the low-level goal to position (140,140) for
the diagonal subtask and (140,75) for the horizon-
tal/vertical subtask. 3) Sets the low-level boundaries
to 0 < z,y < 150. 4) Generates primitive actions until
either the ship reaches to a neighborhood of the low-
level goal, a circle with radius 10 around the low-level
goal (success), or moves out of the low-level bounds
(failure).

The two low-level subtasks use all four state variables,
however the range of coordination variables x and y
is 0 to 150 instead of 0 to 1000. Their action vari-
able is the desired turning rate of the ship, which is a
continuous variable with range -15 to 15 degrees/sec.
The control interval is 0.6sec (three times the sampling
interval A = 0.2sec). They use the policy gradient
learning algorithm in lines 11-16 of Algorithm 1 to up-
date their parameters. In addition, they use a CMAC
function approximator with 9 four dimensional tilings,
dividing the space into 5 x 5 x 36 x 5 = 4500 tiles
each. One parameter w is defined for each tile and the
parameterized policy is a Gaussian:
1 _A Z]\io w;P;
,LL(S,(Z,W): e 2 ’ A==F—
where N = 9 x 4500 = 40500 is the total number of
tiles and ¢; is 1 if state s falls in tile ¢ and 0 otherwise.

1200

Hierarchical Hybrid Algorithm ——
Flat Policy Gradient Algorithm -
Flat Actor-Critic Algorithm -

1000

800

600
JU S

R

e

400 g R
X X
L

Number of Success in 1000 Episodes

200 1)

o
o 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Number of Episodes

Figure 7. This figure shows the performance of the hier-
archical hybrid, flat PGRL and actor-critic algorithms in
terms of the number of successful trials in 1000 episodes.

The actual action is generated after mapping the value
chosen by the Gaussian policy to the range from -15
to 15 degrees/sec using a sigmoid function.

In addition to the original reward of -1 per step, we de-
fine internal rewards 100 and -100 for low-level success
and failure, and a reward according to the distance of
the current ship orientation 6 to the angle between the
current position and low-level goal 6 given by

16— 6]
G= ——] -1
b (30 x 30
where 30(deg) gives the width of the reward function.
When a low-level subtask terminates, the only reward
that propagates to the high-level is the summation of
all -1 rewards per step. In addition to reward received

from low-level, high-level uses a reward 100 upon suc-
cessfully passing through the gate.

We train the system for 50000 episodes. In each
episode, the high-level learner (controller located at
root) selects a low-level subtask, and the selected low-
level subtask is executed until it successfully termi-
nates (ship reaches the low-level goal) or it fails (ship
goes out of the low-level bounds). Then control returns
to the high-level subtask (root) again. The following
results were averaged over five simulation runs.

Figure 7 compares the performance of the hierarchical
hybrid algorithm with flat PGRL and actor-critic al-
gorithms in terms of the number of successful trials in
1000 episodes. As this figure shows, despite the high
resolution function approximators used in both flat al-
gorithms, their performance is worse than hierarchical
hybrid algorithm. Moreover, their computation time
per step is also much more than the hierarchical hy-
brid algorithm, due to the large number of parameters
to be learned.

Figure 8 demonstrates the performance of the system
in terms of the average number of low-level subtask

‘Number of Low-Level Subtask Used ——

Number of Low-Level Subtask Calls in 1000 Episodes.

0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Number of Episodes

Figure 8. This figure shows the performance of the system
in terms of number of low-level subtask calls.

450

Hierarchical Hybrid Algorithm ——
Gradient Algorithm -~
or-Critic Algorithm -

400
350 F %
300

< oo,
R = o S
R B 2 e

250

Number of Primitive Steps in 1000 Episodes

200

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Number of Episodes

Figure 9. This figure shows the performance of the hier-
archical hybrid, flat PGRL and actor-critic algorithms in
terms of number of steps to pass through the gate.

calls. This figure shows that after learning, the learner
executes about 4 low-level subtasks (diagonal or hori-
zontal /vertical subtasks) per episode.

Figure 9 compares the performance of the hierarchical
hybrid, flat PGRL and actor-critic algorithms in terms
of the average number of steps to goal (averaged over
1000 episodes). This figure shows that after learning,
it takes about 220 primitive actions (turn actions) for
hierarchical hybrid learner to pass the gate. Although
flat algorithms should show a better performance than
hierarchical algorithm in terms of the average number
of steps to goal (flat algorithms should find the global
optimal policy, whereas hierarchical hybrid algorithm
converges just to recursive optimal solution), Figure 9
shows that their performance after 50000 episodes is
still worse than the hierarchical hybrid algorithm.

Figures 10 and 11 show the performance of the diago-
nal and horizontal/vertical subtasks in terms of num-
ber of success out of 1000 executions, respectively.

Finally, Figure 12 demonstrates the learned policy for
two sample initial points shown with big circles. The
upper initial point is x = 700, y = 700, § = 100
and 6 = 3.65 and the lower initial point is z = 750,
y = 180, @ = 80 and 6 = 7.9. The low-level subtasks
chosen by the agent at the high-level are shown by
small circles.

1000

Diagonal Subtask Performance ——

in 1000 Episodes

Number of Success

0
0 10000 20000 30000 40000 50000 60000 70000 80000
Number of Episodes.

Figure 10. This figure shows the performance of the diag-
onal subtask in terms of the number of successful trials in
1000 episodes.

1000

Horizontal/\Vertical Subtask Performance ——

in 1000 Episodes

Number of Success

0
0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Number of Episodes.

Figure 11. This figure shows the performance of the hori-
zontal /vertical subtask in terms of the number of successful
trials in 1000 episodes.

6. Conclusions and Future Work

This paper combines the advantages of hierarchical
task decomposition and PGRL methods and describes
a class of hierarchical policy gradient (HPG) algo-
rithms for problems with continuous state and/or ac-
tion spaces. To accelerate learning in HPG algorithms,
we proposed hierarchical hybrid algorithms, in which
higher-level subtasks are formulated as VFRL and
lower-level subtasks as PGRL problems. The effective-
ness of these algorithms was demonstrated by applying
them to a simple taxi-fuel problem and a continuous
state and action ship steering domain.

The algorithms proposed in this paper are for the case
that the overall task is episodic. We also formulated
these algorithms for the case that the overall task is
continuing, but we do not include the results for space
reasons. In this case, the root task is formulated as
a continuing problem with the average reward as its
performance function. Since the policy learned at root
involves policies of its children, the type of optimality
achieved at root depends on how we formulate other
subtasks in the hierarchy. We investigated different
notions of optimality in hierarchical average reward,
reported in our previous work (Ghavamzadeh & Ma-
hadevan, 2001; Ghavamzadeh & Mahadevan, 2002),
for HPG algorithms with continuing root task.

<

Figure 12. This figure shows the learned policy for two ini-
tial points.

Although the proposed algorithms give us the ability
to deal with large continuous state spaces, they are
not still appropriate to control real-world problems in
which the speed of learning is crucial. However, policy
gradient algorithms give us this opportunity to accel-
erate learning by defining more expressive set of pa-
rameterized policies for each subtask. The results of
ship steering task indicate that in order to apply these
methods to real-world domains, a more expressive rep-
resentation of the policies is needed.

References

Baxter, J., & Bartlett, P. (2001). Infinite-horizon policy-
gradient estimation. Journal of Artificial Intelligence
Research, 15, 319-350.

Dietterich, T. (1998). The MAXQ method for hierarchical
reinforcement learning. Proceedings of the Fifteenth In-
ternational Conference on Machine Learning (pp. 118—
126).

Ghavamzadeh, M., & Mahadevan, S. (2001). Continuous-
time hierarchical reinforcement learning. Proceedings
of the Fighteenth International Conference on Machine
Learning (pp. 186-193).

Ghavamzadeh, M., & Mahadevan, S. (2002). Hierarchically
optimal average reward reinforcement learning. Proceed-
ings of the Nineteenth International Conference on Ma-
chine Learning (pp. 195-202).

Konda, V. (2002). Actor-Critic algorithms. Doctoral dis-
sertation, MIT.

Marbach, P. (1998). Simulation-based methods for Markov
decision processes. Doctoral dissertation, MIT.

Morimoto, J., & Doya, K. (2001). Acquisition of stand-up
behavior by a real robot using hierarchical reinforcement
learning. Robotics and Autonomous Systems, 36, 37-51.

Parr, R. (1998). Hierarchical control and learning for
Markov decision processes. Doctoral dissertation, Uni-
versity of California, Berkeley.

Sutton, R., Precup, D., & Singh, S. (1999). Between MDPs
and Semi-MDPs: A framework for temporal abstraction
in reinforcement learning. Artificial Intelligence, 112,
181-211.

