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Abstract 

The successfulapplication of data mining techniques ideally 
requires both system support for the entire knowledge dis- 
covery process and the right analysis algorithms for the par- 
ticular task at hand. While there are a number of successful 
data mining systems that support the entire mining process, 
they usually are limited to a fixed selection of analysis algo- 
rithms. In this paper, we argue in favor of extensibility as a 
key feature of data mining systems, and discuss the require- 
ments that this entails for system architecture. We identify in 
which points existing data mining systems fail to meet these 
requirements, and then describe a new integration architec- 
ture for data mining systems that addresses these problems 
based on the concept of “plug-ins”. KEPLER, our data mining 
system built according to this architecture, is presented and 
discussed. 

Keywords: data mining, system architecture, extensibil- 
ity, J&PLER 

Introduction 
Data Mining, or Knowledge Discovery in Databases (KDD) 
aims at finding novel, interesting, and useful information 
in large real-world datasets (Frawley, Piatetsky-Shapiro, & 
Matheus 1991; Fayyad, Piatetsky-Shapiro, & Smyth 1996). 
While building on parent disciplines such as MachineLearn- 
ing and statistics, the field of data mining differs from 
these in its stronger orientation to applications on real-world 
databases. In Machine Learning and statistics, the focus of 
research tends to be mostly on the methods for data analysis, 
whereas in data mining, the process of using such methods 
to arrive at convincing application results is just as impor- 
tant a topic1 . For data mining to be successful in practice, 
good system support for the data mining process can be just 
as crucial as having the right analysis methods. 

Data mining researchers have responded to this challenge 
by creating data mining systems that combine support for all 
steps of the data mining process (Fayyad, Piatetsky-Shapiro, 
& Smyth 1996, p. 10) with a fixed selection of analysis 
algorithms in one integrated environment. 1%‘~ Clemen- 
tine (Integral Solutions Ltd. 1996) and Lockheed’s Recon 
(Simoudis, Livezey, & Kerber 1996) are two commercially 

lIn fact, some authors reserve the term KDD to denote the 
entire process, whereas data mining is used to refer to a single 
analysis step (Fayyad, Piatetsky-Shapiro, & Smyth 1996). 
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available examples of such systems, the former offering de- 
cision trees and neural networks, the latter also including 
clustering and instance-based algorithms. At the same time, 
however, with more and more reported applications of data 
mining, it is becoming increasingly clear that there can never 
be a fixed arsenal of data mining analysis methods that cov- 
ers all problems and tasks. New methods are continually be- 
coming available, and in many cases, algorithms are adapted 
or newly developed specifically for the requirements of 
a particular application (see e.g. (Apte & Hong 1996; 
Ezawa & Norton 1995)). 

In this paper, we examine extensibility, i.e., the capability 
of integrating new analysis methods with as little effort as 
possible, as a central requirement for data mining systems 
to address the above problem. In the following section, we 
motivate the need for extensiblity with reference to the dy- 
namic nature of the data mining process, and examine the 
shortcomings of existing data mining architectures in light 
of extensibility requirements. We then show how an archi- 
tecture based on the concept of “plug-ins” can overcome 
these problems, and describe KEPLER, an integrated data 
mining system developed and implemented as a testbed for 
our architectural concepts. After an evaluation and discus- 
sion of related work, we conclude with pointers to future 
work. 

Motivation and goals of extensibility 
Conducting KDD in a given database or set of databases 
is still an art, perhaps even more so than in KDD’s parent 
disciplines machine learning and statistics. Even in the 
unlikely situation that there are clear-cut goals at the outset, 
it is impossible even for a skilled analyst to predict just which 
analysis method will give the best results. More likely, the 
goals of data mining will not be clear beforehand, but will 
evolve as a result of the data mining process. In practice, 
this means that in many situations, several methods are tried 
and their results compared or combined to get the desired 
results. In some situations, algorithms have actually been 
adapted or developed for a particular application (see e.g. 
(Apte & Hong 1996; Ezawa & Norton 1995)). 

When single-strategy data mining systems are employed, 
the above means that in many cases, analysts will have 
to switch from one system to another during the course 
of working on one data mining problem, incurring all the 
trivial but extremely time-consuming problems of adapting 
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1996) where several modules are linked to a data server. 
Micro-level integration is only beginning to be attempted, 
e.g. in the KESO project, where all search modules use a 
common hypothesis space manager and can share descrip- 
tion generation operators (Wrobel et al. 1996). 

Clearly, it is difficult to make a micro-level integration ar- 
chitecture extensible in the sense defined above, since to in- 
tegrate a new method, the internals of existing methods and 
the system kernel must be known. The architecture we have 
chosen is therefore based on macro-level integration. Each 
tool that is part of the system is an independent software 
module and can be realized e.g. in different programming 
languages. To reach the extensibility goal defined above, 
we have extended the macro-level integration architecture 
into the plug-in architecture shown in Figure 1. 

to different user interfaces and converting data and results 
back and forth. While existing multi-strategy systems like 
RECON (Simoudis, Livezey, & Kerber 1996) or CLEMEN- 
TINE (Integral Solutions Ltd. 1996) alleviate this problem 
somewhat by offering multiple analysis algorithms (see re- 
lated work section below), they still offer a fixed choice of 
algorithms, leaving the unsolved problem of what to do if 
the necessary method happens not to be included. Only an 
extensible system architecture can solve this problem in a 
fundamental way, allowing new methods to be added to the 
system whenever required. 

Of course, in a trivial way, every system is extensible by 
reprogramming the system to implement a desired method, 
so we need to be more precise in the meaning of extensi- 
bility. An extensible system is a system into which new 
methods can be integrated without knowledge of system 
internals and without reprogramming of the system kernel, 
by people other than the system developers. If a system 
is extensible in this fashion, different users can extend the 
system to match the requirements of individual data mining 
problems. In practice, even though end users will not be 
able to perform such extensions since some configuration 
and programming will be required, the concept of exten- 
sibility is important for skilled analysts who can integrate 
new methods without having to switch systems, or for algo- 
rithm developers who can make their methods available to 
end users without having to develop a complete data mining 
system. 

Finally, for extensibility to make sense, it is not sufficient 
to integrate new methods each with their own user interfaces 
and different ways of starting tasks and looking at results. 
Instead, the data mining kernel system must offer mecha- 
nisms that allow the user to manage, in a uniform way, the 
specification of analysis tasks and inspection of results of 
the different methods, Tasks and results must be first-class 
objects in the system kernel to allow the user to restart and 
modify tasks and to compare and combine results. Without 
integrated and uniform access to the tasks and results of new 
methods, a lot of the benefits of extensibility for the data 
mining process are lost: if each new extension has different 
ways of managing tasks and results, switching methods also 
means switching to a different user interface, resulting in an 
unnecessarily high learning overhead for the user. 

Architecture 
Within multi-strategy tool architectures, a popular distinc- 
tion is to separate approaches that integrate at the micro 
level and those that integrate at the macro level (Emde et 
al. 1993). In macro level integration, each method to be 
integrated remains a separate module with its own inter- 
nal representations and storage structures, but is coupled to 
other modules by receiving inputs and passing results back 
across a suitable channel. In micro-level integration, all 
modules directly rely on a common repository of data with- 
out transformation, and cooperate during processing, not 
only when they have finished. Multi-strategy data mining 
systems have so far mostly been realized by macro-level 
integration, e.g. in Recon (Simoudis, Livezey, & Kerber 
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Figure 1: General plug-in architecture 

The major components to realize extensibility in this ar- 
chitecture are the following: 
l a well-defined and open extension API (application pro- 

gramming interface) through which extensions access 
data and communicate results back to the system 

l declarative extension tool description containing infor- 
mation about the data accepted and needed by an analysis 
tool and the kinds of results produced 

l a task and result manager that offers uniform access to 
tasks and results (specification, manipulation, visualiza- 
tion), exploiting the declarative specifications in tools 

l a minimal tool API which the kernel uses to perform 
tool-specific functions 
The extension API is the basic component towards reach- 

ing extensibility. This API must offer hooks for extension 
tools to access the data in the database and to communicate 
results back to the system. By making the definition of this 
API precise and open, it can be ensured that the developer 
of an extension need only know the API; the internals of 
the kernel system can be encapsulated. In domains such as 
image manipulation, this concept of open APIs has led to 
very simple and extensible systems (this is where we have 
borrowed the term “plug-in”). 

As detailed above, however, the situation in data mining 
is more complex since not only does the “plug-in” need to 
access data and return results, but the kernel also needs to 
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provide uniform access to the tasks and results being worked 
on by extensions. Since the tasks of data mining methods 
vary widely, ranging from classification to clustering to pat- 
tern discovery and further, there needs to be a facility with 
which each extension can declare the required inputs and 
kind of results. Furthermore, since result types also vary 
greatly, the extension must be able to declare in which way 
its results need to be visualized, choosing from the available 
visualization facilities in the kernel. Alternatively, the API 
can include visualization operations as well. 

Third, the proposed architecture contains a task and re- 
sult manager that makes use of the declarative information 
described above to ensure uniform access to tools, whether 
they be included with the system from the start or added 
later on. Ideally, based on the declarative specification in 
the extension, the kernel should be capable of dynamically 
generating an appropriate graphical user interface to allow 
the same comfort of usage for all tools. Tasks specifica- 
tions and results are managed by the analysis task manager, 
allowing the user to redo and modify each task, check and 
interrupt tasks that are running (perhaps in parallel), and 
inspect, test and compare results. 

Note that in general, results will not be interpretable to 
the task manager. This is why in such an architecture, there 
must be a fourth component, a minimal tool API containing 
functions that each tool must supply to the kernel. Besides 
the analysis functionality proper, each tool primarily has to 
offer hooks for dealing with its results, ranging from simple 
things like producing printed output to hooks for testing 
and visualizing results. To simplify this functionality, the 
kernel’s API should include libraries of common testing 
and visualization functions (e.g. for common results such 
as decision trees). 

The rest of the plug-in architecture contains the standard 
components that are found in most data mining systems, 
namely facilities for importing, exporting, selecting, and 
transforming data. 

Kepler 
At a general level, the architecture described in the preced- 
ing section contains the components that are necessary to 
make extensibility work: with knowledge of only the API 
and the tool declaration language, an extension developer 
can produce a tool that can be plugged in and will be fully 
supported by the kernel - provided that such APIs (i.e., 
declarations and facilities) can be designed in such a way 
and still support more than a narrow class of plug-in tools. 
We have constructed and fully implemented a data mining 
system termed KEPLER~ to prove the feasibility of the pro- 
posed architecture. Given the data mining applications we 
are working on (market study data, lo4 objects, ecological 
system analysis, lo5 objects, protein structure prediction 
(Dzeroski et al. 1996), lo4 objects), we decided to target 
KEPLER to medium-range data mining problems (lo4 to lo6 
objects). Our choice was also motivated by the fact that 
many other published data-mining applications fall into this 

2K~~~~~ will be demonstrated at the conference. 

class (e.g. (Apte & Hong 1996) 104, (Dvzeroski & Gr- 
bovic 1995) 103, (Feelders, le Loux, & van? Zand 1995) 
lo5 objects, (Li & Biswas 1995) 105, (Sanjeev & Zytkow 
1995) 103, (Simoudis, Livezey, & Kerber 1995) lo6 ), and 
by the fact that this application size, there exists a number 
of available ML and KDD algorithms (from our own group 
and others) that could be used to test the feasibility of the 
plug-in concept. 

KEPLER's general architecture is based on the concept of 
a workspace that stores all data, tasks, and results of a data 
mining problem domain. Data are represented as relations 
(with associated key and schema information) and can be 
organized in different da&sets (subsets of relations). Tuples 
are stored in a data management layer which is currently 
mapped to a main memory based storage scheme with disk 
write-through to compiled files, opening the possibilility 
of “swapping out” currently unused data. For the target 
application size, this has turned out to be a good choice. 
Nonetheless, in future versions of the kernel, the data man- 
agement layer will map down to a database management 
system to gain scalability and security. 

The extension API of Kepler contains only the elementary 
calls that are necessary for extensions to access data on a 
set-oriented or tuple-oriented basis, and to pass back results. 
When called, each extension receives a data specijkation 
that it passes back to the kernel whenever it wants to access 
data; the kernel then maps this to the actual data. This 
scheme protects extensions from details of data access while 
still allowing reasonable efficiency since even direct read- 
through to a database can be realized. A second set of calls 
is available to pass back results to the kernel as soon as they 
are generated. 

As a tool description language, KEPLER uses parameter 
and result declarations. Parameter declarations come in two 
types: inputs and algorithm parameters. Input parameters 
state what kinds of inputs a tool expects in terms of sup- 
plied primitives such as “relation name” or “attribute name” 
or general parameter types such as “integer”, “boolean” 
or “oneof’. These are employed by the task manager in 
KEPLER to automatically generate the appropriate interface 
masks to allow the user to specify an analysis task. Simi- 
larly, algorithm parameters state the available parameters to 
influence algorithm behavior, indicating the allowed values 
in a similar fashion by using predefined parameter types. 
Here also, KEPLJB automatically generates input masks 
with radio-buttons, sliders, pop-up menus etc. to let the 
user specify the tool parameters. Hence, KEPLER offers a 
uniform interface style for all extension tools, minimizing 
the user’s effort to become familiar with a new tool (see Fig- 
ure 2, next page, for an example of a task window generated 
from a tool description). Through the task manager, tasks 
can be created, edited, started and stopped. Cross-validation 
and other analysis scripts will be possible in the future. 

As for analysis results, each tool can declare several result 
types. However, currently these are only utilized for user 
information and help. Each extension can pass back to the 
system kernel as many results of each type as desired; the 
task manager stores them on disk and allows the user to 
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Figure 2: Task window for an EXPLORA task 

select and manipulate them. It is also possible for tools to 
pass back a pointer to a binary results file which is from 
then on managed by the task manager. As indicated in the 
previous section, whenever a result needs to be tested on 
different data or needs to be visualized, the kernel calls the 
appropriate hooks in the extension tool which in turn can 
rely again on testing and visualization AFIs that the kernel 
offers as a library. 

To test the feasibility of the plug-in concept, we decided to 
integrate as wide a selection of plug-ins as possible, ranging 
not only across different methods, but also across different 
tasks. At first, we chose to include as plug-ins for internal 
use at our site: 
l for classification tasks, the decision tree algorithm C4.5 

in the original C version available from Ross Quinlan 
(Quinlau 1993), a backpropagation neural network real- 
ized using SNSS (Zell1994), as well as our own instance- 
based method KNN (Wettschereck 1994) and Salzberg’s 
NGE (Salzberg 1991; Wettschereck & Dietterich 1995)). 

l for clustering tasks, the AUTOCLASS algorithm (Cheese- 
man & Stutz 1996) as available from the authors 

l for regression tasks, the MARS (multiple adaptive re- 
gresssion spline) algorithm of (Friedman 1991), in our 
own implementation 

l the pattern discovery algorithmEXPLORA (Klijsgen 1996) 
developed at GMD (ported from Macintosh to Sun) 

All of these are operational in KEPLER at present. To mini- 
mize programming overhead, all algorithms were taken as is 
(except for porting to other platforms as indicated) and used 
in a compiled form, implementing communication through 
files which is feasible for the chosen target application size. 
Summarizing this first experiment with the plug-in concept, 
we can state that except for reimplementation or porting 
efforts, the integration of an algorithm of one of the above 

types or tasks into KEPLER as a plug-in takes at most one 
day3, since all that is involved is the simple parameter dec- 
laration and the writing of grammars for file creation and 
reading. 

Given this kind of encouraging evidence, we have ex- 
tended the plug-in idea to other areas of the system as well. 
In KEPLER, the user can plug new input formats and new data 
transformation operators into the system in a very similar 
fashion. It is therefore no problem to handle applications 
that require e.g. an unusual aggregation of tuples, a par- 
ticular re-representation of time series, or some other pre- 
processing operation for a particular analysis method. For 
example, a specific transformation (from DINUS (DZeroski, 
Muggleton, & Russell 1992)) is available for transform- 
ing first-order representations (across several relations) into 
a manageable propositional representation in one relation. 
These plug-ins complement the standard ASCII input for- 
mats and predefined transformation operators like sampling 
and discretization. 

Evaluation 
KEPLER has been evaluated on three data mining applica- 
tions: analysis of retail data, ecological system analysis, 
and protein structure prediction (Dzeroski et al. 1996). 
In the retail data application (roughly 15.000 tuples), the 
primary goal was discovery of interesting customer groups 
(carried out with EXPLORA). In addition, certain customer 
groups were characterized using C4.5. In the ecosystem 
domain (roughly 120.000 tuples), the primary goal was 
to derive ecological conditions for the occurence of cer- 
tain plants, a secondary goal being clustering of plants into 
ecological groups. In the protein structure application (ca. 
10.000 tuples), the goal was to predict protein structure from 
spectography data, mostly performed using ILP techniques 
(Dzeroski et al. 1996). 

In these applications, all of which required multiple tasks 
to be solved from the same pool of data, we have found our 
speed of turning up results to be greatly increased, since all 
the time usually spent in preprocessing data and changing 
formats when the method first chosen turns out inappropriate 
was eliminated. Furthermore, through the automatic gener- 
ation of graphical interfaces for plug-in tools, even relative 
newcomers to data analysis (students) produce first results 
fast. Thus, from an application perspective, KEPLER has 
reached its goals of offering multiple tools in an integrated, 
easy-to-use environment. 

From the development perspective, in our view, KEPLER 
has shown that indeed it is possible to realize an extensible 
data mining system architecture based on the idea of plug- 
ins. For ourselves as system developers, the concept has 
resulted in integration times in the order of hours, meaning 
that new methods (once they are available) can be integrated 
very fast, resulting in a choice of methods in one system 
that even with the set of methods described above appears 
unmatched in any other system. 

3Not including the time it takes to get to know the extension 
algorithm. 
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The limits of the present design are in scalability due to 
the way tools are integrated. To allow this kind of extremely 
rapid integration, we have used existing code (our own and 
code made available by others) unchanged, using operating- 
system level file communication. For the kinds of dataset 
sizes for which KEPLER is targeted, this has turned out ap- 
propriate; it will not, however, scale well much beyond lo6 
objects. To go to these scales would require algorithms to 
be rewritten to use the kernel’s data access facilities directly. 
When looking at our own and published applications, how- 
ever, a large number of problems seem to fall in the size 
range below lo6 objects. 

Related Work 
The architectural concepts used here are most closely re- 
lated to the idea of “external tools” that was realized in the 
MOBAL knowledge acquisition system (Morik et al. 1993; 
Emde et al. 1993). In MOBAL, a number of ILP learning 
algorithms could be used from within the same graphical en- 
vironment. However, compared to KEPLER and the general 
architecture discussed here, MOBAL is lacking in important 
respects. Analysis tasks and results are not first class ob- 
jects in MOBAL, making it very difficult for the user to keep 
track of what was done when and with which tool. Runs 
cannot be repeated. There is no declarative tool description 
and no general way of passing inputs and storing results, 
since it is implicitly assumed that all algorithms are ILP 
algorithms that always take the entire database as input and 
always produce first-order Horn clauses as output. 

At the general level of multistrategy data mining, there 
are several tools which can be usefully compared to the 
work presented here. For commercial tools, there is ISL’s 
CLEMENTINE system (Integral Solutions Ltd. 1996), in- 
tegrating decision trees and neural networks. This system 
offers an excellent user interface, but appears limited to clas- 
sification and clustering tasks. Lockheed’s Recon system 
(Simoudis, Livezey, & Kerber 1996) addresses a wider range 
of problems, including also instance based methods. Both 
systems, however, seem to lack the extensibility that charac- 
terizes the architecture presented here, and seem to require 
kernel reprogramming to add new algorithms. Thinking 
Machine’s Darwin system (Thinking Machines Corp. 1996) 
appears to be more a collection of tools than an integrated 
system. 

Among other multi-strategy systems, there is DBMINER 
(previously DBLEARN) (Han et af. 1992; Han & Fu 1996) 
which discovers multiple kinds of knowledge, but is based 
on a single attribute-oriented discovery methods and is not 
extensible. MLC++ (Kohavi et al. 1994) is a collection 
of C++ programs designed to be configured by a user into 
a working Machine learning algorithm. Since the source 
code is available, MLC++ is an extensible system. Extensi- 
bility, however, is achieved purely at the programming and 
algorithm level, as MLC++ is a more a library than a sys- 
tem, not offering the system kernel and user interface sup- 
port discussed here. The INLEN system (Michalski 1992; 
Ribeiro, Kaufman, & Kerschberg 1995) is related to the 
work presented here since it also conceptualizes data man- 

agement and analvsis as ooerators. however without a focus 
0; extensibility and closely tied to AQ and related methods. 
Similarly, GLS (Zhong & Ohsuga 1995), is a multi-strategy 
system with four fixed analysis methods without extension 
facilities. 

Finally, a useful comparison is with the architectural con- 
cepts of the KESO data mining project in which we are also 
involved (Wrobel et al. 1996). In PESO, the very explicit 
goal at the outset was to create a data mining system ca- 
pable of handling the very large scale problems (>>106 
objects). Consequently, a macro-level integration as was 
used in KEPLER was excluded, as it would not have offered 
the required efficiency. Instead, PESO uses a micro-level in- 
tegration architecture based on a common hypothesis space 
manager that maintains a persistent representation of the 
search space in a database. Different search modules can 
share subcomponents like the description generator (refine- 
ment operator). Since KESO is designed for a particular 
class of problems (finding interesting subgroups) and ex- 
treme efficiency, extensibility across wide task ranges was 
not of concern. Extending I&SO requires reexpressing an 
algorithm in I&SO’s framework, but of course (these are the 
benefits of rewriting and micro-level integration) the newly 
written search module may use e.g. facilities used in the 
construction of other methods, like the description generator 
or a quality computation module. 

Conclusion 
Based on our own experience and other reported applica- 
tions, we believe extensibility to be a key feature of any data 
mining system to keep up with the variability of datamining 
tasks which does not allow to design a system once and for 
all that has the right methods for all situations. The key 
to extensibility is extensibility without system core repro- 
gramming, which allows third parties other than developers 
to extend a system in their direction without knowing the 
system’s internals. This requires carefully designed exten- 
sion APIs and declarative tool descriptions so that the kernel 
may support extensions tools in the same fashion as possible 
in non-extensible systems. Due to the variety of methods 
and tasks that could be present in an extensible system, a 
task manager is a central component of such a system. 

With KEPLER, we have realized an extensible system that 
offers a very wide range of methods and tasks for medium 
sized data mining problems. The experience of integrating 
all these different methods shows that the KEPLER’S plug- 
in architecture indeed is a basis for a very rapid extension 
of the system that does not require kernel reprogramming. 
Even though we have not proved it in implementation, we 
nonetheless believe that the plug-in concept can be scaled up 
to even larger problems with some more effort in designing 
tool interfaces. Our own future work may move into this 
direction, but most likely will first concentrate on integrating 
more extension tools and further refining the system in other 
applications than the ones it was already tested on. For 
the distant future, we hope to have the system in a state 
that allows us to make it available to others and to publish 
the API specification. This would give developers of new 
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data mining algorithms a simple platform for delivering 
their methods to uses without having to worry about user 
interfaces or data access. 
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