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Abstract

We have been working on two different KDD systems for
scientific data. One system involves comparative genomics,
where the database contains more than 60,000 plant gene
and protein sequences plus results extracted from similarity
searches against public sequence databases. The second
system supports a severa-decades long longitudina field
study of chimpanzee behavior. Both systems have
components for the storing of raw data and for cleaning data
before querying begins and for displaying data extractions.
Both systems use a relationa DBMS. In this paper we
report on @) the extensons we made to the DBMS to
support our analysis of the data, and b) the way that we used
those extensions as, with users, we developed a thought
from an initial idea to aricher analysis. We have found that
as a user’s initial thought develops, he or she makes finer
distinctions and looks to explain anomalies seen in coarse
caculations. In the queries to accomplish those explorations
we have found it valuable to move pieces of SQL
commands into attribute values, and to accomplish severa
smaller queries dl a once via a command relation. Thus
there is a blurring of the distinction between command and
data. This blurring allowed us to formulate and accomplish
more sophisticated analyses than we had been doing
previously.

1. Background

As part of our collaboration with scientists who must
explore and analyze large data collections, we are
developing an environment to support their labor-intensive
analysis efforts. Our scientist users currently include
researchers who are conducting a several-decades long
field study of the behavior of chimpanzees, and others who
are conducting comparative genomics studies across
several plant species.

In both of these projects we have gathered data from
various sources and generated new data, then cleaned and
stored it using Oracle relational DBMS. We reported on an
automated method for this part of the process for the
genomics project in [5]. We have developed visualization
methods for these data sources [6, 7] and are working on
methods to closely couple them to the DBMS. As
described in [8], for the genomics project, we are
incorporating clustering techniques for determining
patterns of similarity between genes and proteins. Thus our
scientific exploration environment includes several pieces
that are recognized as essential parts of knowledge
discovery in databases (KDD) systems [2,3].

We liken our system for scientific data exploration and

discovery to that delineated by Brachman and Anand [4],
because it fosters a human-centered process of knowledge
discovery that they describe as "consisting of complex
interactions, protracted over time, between a human and a
large database, possibly supported by a heterogeneous suite
of tools."

During the course of our development of the databases and
tools to enhance this discovery process, we work closely
with our users to determine their needs. We observe their
actions as they explore the data and look for patterns. As
has been widely recognized [2,3,4], this process is iterative
and users often return to prior steps (including new data
generation and cleaning) after evaluating the results of
their analyses.

In this paper, we will describe some of the actions of our
users as they develop increasingly complex analyses. We
will show how certain common nations in their queries get
reused often, yet are difficult to reuse in current relationa
systems. We will present several powerful DBMS
extensions, which we have implemented in Oracle, that
enable more effective exploration of data during the
knowledge discovery process. In contrast to an extension
like that proposed in [1], which is focused on the particular
data mining task of finding association rules, the
extensions that we have developed are designed for use
during the iterative and human-centered process of
exploration. We also will illustrate how the extended
DBMS can be used to manage the querying process.

What impelled us to make these extensions was that users
don't merely ask queries, they think. They start with
simple questions and react. They ask lots of one-time
guestions, look over the results and then ask for more.
Some lines of thought quickly die, while others develap,
that is, lead to insights and deeper anayses. Simple
guestions evolve into more complex ones as they include
more variables to help explain anomalies that appear with
simple queries.

2. Extensionsfor Categorization
This section tells a story of biological and computer
scientists working together. For the purposes of this paper
we do not need to relate just what particular biology
research was undertaken. Instead we motivate the SQL
extensions that we have made, and describe the way we
work as ateam. The story proceeds as a series of Situation
- Problem — Solution triples. Each triple begins with what



the user needs, continues with the problem those needs
cause us, and ends with our solution to the problem.

Situation A.

Users begin with simple questions that map readily to
SQL. These queries touch only a small portion of the
schema and only a few instances. For example, 1) “how
often was Fifi seen in 19787, 2) “find each chimp with an

age between 5 and 157", 3) "how many hits (similar

sequences) did each sequence have that had a score
between 120 and 170 and a P-value < .0000017", and 4)

“how many hits did each sequence have that had a score
between 80 and 120 and a P-value between .000001 and
.0001?7" Each of these queries has a simple WHERE
clause, for example, the last query it would be “80 < score
and score =< 120 and P-value > .000001 and P-value =<

.0001”

Problem There are three things to notice about the result
of an SQL SELECT statement, which by default is an

anonymous, displayed table. First, it is anonymous rather

than named. Users may or may not call it something, but in

either case the database contains no name for it. Second, by
default, it is displayed, that is, it is lost after display rather
than saved for possible reuse. In order to save a result for
later use an explicit CREATE TABLE clause must be
used, or the result must be saved as a non-DBMS file.
Third, it is a table and not a relation. By default an SQL

SELECT allows the result to have duplicate rows and to
not have a primary key (an identifier). In order to produce

a relation one must use a DISTINCT clause and declare a
primary key.

Displayed, anonymous tables do not trouble a user if there
are only a few of them and the user’s work task is of short
duration. However, users who save results to files quickly
find themselves overburdened with managing lots of fairly
small files — they have to make up names for them and

create a mechanism for remembering what is in them.

Furthermore they find themselves frustrated with being
unable to perform additional analyses of the saved results,
for example, simply asking how many of a particular kind

of result there are. We have found that saving results in
named relations is an improvement in the eyes of the users,
but only for awhile.

Users find that precisely naming those result relations is a
valuable exercise, but often, for a set of queries, two things
happen. First, result names are so distressingly similar that
users must be very careful that they are actually accessing
the relation that they intend to access. (How would you
name the results from queries 3 and 4? What if there were
over a hundred such results? See Situation F.) Second,
while it is easy to get statistics about any single relation,
they want to get and assemble statistics about the set of
relations.

Solution  Our solution to this kind of problem is to
create what we call category relations and to use them to
determine which category or categories an instance
matches. With simple category relations we can answer
many useful queries without extending SQL. However, we
need to be careful about coverage and singularity.

Consider the relations shown in Figure 1. The chimp age
category relation is quite simple. The age dimension is
covered, i.e., exhaustively partitioned, into 3 categories
(assuming no chimp can live a millenium). The relational
algebrato find each chimp’s age category is a composition
of Times, Select and Project. The Select’s condition is “
lo_age < age and age =< hi_age.” Each chimp gets placed
in exactly one category or “bin” (Fifi isan adult, Kevin is
an infant), but a bin can be empty (no chimp is ajuvenile).
Now it is easy to determine how many chimps are in each
category.

Little_chimp Age_category
Chimpname | Age Age stage | Lo age | Hi_age
Fifi 21 Infant 0 5
Kevin 3 Juvenile 6 15
Adult 16 999

Expanded_little_chimp

Chimpname | Age | Age stage
Fifi 21 Adult
Kevin 3 Infant

Figure 1. A Simple Categorization

For the genomic data each hit has numeric results for a
score and a P-value (P for probability). However, the users
want the masses of raw data reduced; for example, they ask
to categorize results onto an ordina scale of hit-strength.

The four-variable hit-strength category relation in Figure 2

differs from the age category relation in that @) it does not
cover all possihilities, so a hit may not be assigned any hit
strength, and b) that the categories overlap, so a hit can
match two or more categories and the result relation will

include the category’s primary key as part of its primary
key. The WHERE dause is straightforward and includes
“.. Lo_score < Score and .. Hit_algorithm = Algorithm ..”

Hit_strength_category

HSC HSC Lo_ Hi_ Lo_ Hi_ Algor- Scoring

id name score | score | P-val Pva | ithm metrix

12 marg. | 80 120 .0001 | .01 Blastx | 250

23 marg. | 120 170 .005 .05 Blastx | 250

55 strong | 150 9999 | .001 A Blastx | 120

Figure 2. A Portion of a Hit Strength Category Relation

There are several noteworthy items about these two
examples. First, a string such as “80" sometimes is a
portion of an SQL command and sometimes is an attribute
value in arelation. Thus the distinction between command
and data gets blurred. Note that this blurring does not
phase users. Indeed they are quite willing to create
category relations, thereby maintaining closer control over
the analyses. Second, we take advantage of SQL’s dynamic
schema capability and use the DBMS to manage both
categories and results. Users decide upon a vocabulary for
their research. The meaning of words and phrases like “hit
strength” and “juvenile” was accessible and openly
decided by users, and was not the property of just one user.
Sometimes those decisions occurred after extensive, lively
discussions. Third, when users develop several category
relations they can then get mutli-dimensional histograms,



and count, e.g., how many well-traveled, healthy, juvenile
chimps there are. Third, our approach contrasts with the
convenient but hard-coded categories in the Red Brick
Data Warehouse RISQL extension which allows categories
to be expressed in a “CASE” portion of the projection
clause. Fourth, our approach requires a Times, which can
be an expensive operation. However, neither we nor our
users care much about machine use as long it is reasonable.
People are the scarce resource, and we worry about
computing inefficiency only when we must. Fifth, category
relations enable users to easily experiment with different
categorization schemes. We do this simply by adding
another column (see Figure 3) and then dlightly modifying
the SQL. (We picked dull names for the age schemes. Can
you find good ones? In general naming things is hard and
we highly prize articul ate users.)

Age _scheme _category

Age Age stage | Lo | Hi_

scheme age age
X Infant 0 5
X Juvenile 6 15
X Adult 16 999
y Y oungster 0 30
y Oldster 31 999

Figure 3. An expanded Age Category Relation

To end this situation we note that using SQL one can
readily accomplish several kinds of tasks. For example,
“find the members of one category, that is, instances
satisfying a condition, and compute some simple statistics,
for example, find the count of over-budget departments’,
“compute a column, for instance, each department’s budget
less its expenses’ and “compute a histogram, for example,
how many departments had each budget amount.”
However, many obviously useful and easily stated (in
English) queries are awkward or impaossible to answer with
SQL. In the next five situations we address those problems.

Situation B.

Users quickly expand their querying demands. For
example, “compare, by gender combination, the age
relationship of pairs of chimps’ and “compare, by
sequence_batch_id, the quality of raw sequence with and
without vector removed.”

Problem Asin Situation A, here users produce lots of little
result relations. However, thereisasurprising holein SQL.
We find it strange that while users can select two chimps
with the same gender — using “ Genderl = Gender2” —
they cannot display nor save whether the genders are the
same or different. Users also could save the difference
between chimp ages, but not how they are related (see
Figure 4 where the italicized columns cannot be found with
SQL).

Solution We addressed this problem by adding two
functions to SQL. They are called E NE and L_E G,
which are short for  Equa_Not Equal  and
Less than_Equal_to Greater than. Each function takes
two column names as arguments. Each attribute value

produced by E_NE is either “=" or “<>". Similarly, L_E_G
produces “<”, “=" or “>". For example, to get the above
relation the SQL would include: “... SELECT ...
L_E G(Agel, Age?) as Age relationship, E_NE(genderl,
gender?2) as Gender_relationship ...” Given the attributes
produced by E_ NE and L_E G, users can use group to get
stetistics about the frequency of grooming by age and
gender relationships. Notice the blurring here. Command
comparison operators like “<” now appear as result relation
attribute values.

little pair_of_chimps

Chimp Gen- | Age | Chimp Age | Gen- | 1Grooms
namel derl | 1 name2 2 der2 2 count
Fifi f 21 Kevin 3 m 456
Kevin m 3 Ruth 32 f 789
Fifi f 21 Ruth 32 f 123
Columns added to the little_pair_of _chimps
Age Age_ Gender_
difference | relationship relationship
18 > <>
-29 < <>
-11 < =
Figure 4. A Pair of Chimp Relations
Situation C.

Users want to remember whether or not instances satisfy
lots of conditions, some of which are more complex than
those in Situation B. For example, “was the percentage of
the sequences of each quality category in each species that
had an unknown open reading frame above the threshold
for that category?’ and “did Fifi travel differently during
the rainy season when she was in the company of a small
group of males than when she was not?’

Problem There are three problems with this situation. One
problem with this situation is that the projection clause of
the SELECT statement becomes rather cumbersome if we
start adding in lots of derived attributes. They get long and
tedious to manage, especially when we answer different
gueries with different subsets of derived attributes. A
second problem is that we want “yes’ or “no’ as
categories, that is we want to test conditions, and SQL
cannot give us such answers. A third problem is that the
conditions we want to test can be arbitrarily complex.

Columns added to

Logical_category little pair_of _chimps
Result_col- Condition Same_ Gobs _of _
umn_name gender grooming
Same_gender | Genderl = Gender2 N Y

N Y
Gobs_of_gro | 1grooms2_count / Y N
oming (agel * age2) > 1.0

Figure5Another pair of chimp relations

Solution Our solution is to use a different kind of category
relation and a new operator, that we call Project_Logical. It
takes two relations as arguments and returns the first



relation with some additional attributes (see Figure 5). It
has an extra attribute for each row of the second argument
relation. That second relation must have two attributes, one
containing result relation attribute names and the other
containing conditions that SQL can evaluate. There is no
[imit to the number of rows in the second relation. Each
derived attribute value is either “Y” o “N.”

In SQL we can separately select those instances that satisfy
a condition and those that do not, and save results into two
relations. Project_Logical allows us to create one result
relation for an arbitrarily large set of conditions. We
further blur the distinction between command and data by
representing conditions and derived attribute names as data
in a category relation.

Situation D.

Users ask relationship questions, that is, they compare
instances of the same type. For example, “can | see the
chimps ordered by their travel 7, “save chimp travel rank”,
“can | see strong hits in each quartile by P-value?’ and
“how does grooming vary by travel _distance dectile?’
Problem The first query can be answered readily in SQL.
However, while SQL allows one to display instances in
order by some attributes, it does not allow it to be saved
and used later. SQL does not support N-tiles at al. (Of
course one can always revert to manually drawing lines on
printouts.)

Solution Our solution is to extend SQL with simple rank
and N-tile operators. A result with rank is shown in Figure
6. Our solution is not novel, since others, including Red
Brick in its RISQL have implemented them (see
www.redbrick.com).

Extended_little chimp

Chimp name Age Age rank
Fifi 21 2
Kevin 3 1

Figure 6. An Extended Chimp Relation

We think it odd that SQL omits N-tile and (the specia case
of N-tile) rank. They, like E_NE and L_E_G, are merely
other kinds of derived, categorization attributes.
Furthermore, they are quite easy to implement.

Situation E.

Users create lots of little category relations rather than a
few large ones because they do not want to use the same
conditions for all categories. For example, “in chimp travel

scheme X the amount of rain is not a factor but it is in
scheme Y” and “in EST sequences the percent of ‘N’

valuesisafactor but in BAC sequencesit is not.”

Problem The problem here is that the tests, such as the
WHERE clause of “ lo_age < age and age =< hi_age”, gets
applied to every category. Placing the condition in the
command limits what a user can ask.

Solution Our solution isa procedure called Vary Select. It
takes two relations as arguments, the second of which is a
new kind of category relation and returns a result relation
much like in Situation A. The category relation has a
condition attribute where each value is the condition to be
applied to that category.

Consider the category relation in Figure 7. Each category
has its own WHERE clause condition, which vary in their
set of attributes tested and are not identical in their
comparisons.

Age category plus condition

Age stage | Lo age | Hi_age | Age stage condition

Infant 0 5 Age=<Hi_age

Juvenile 5 15 Lo age<Ageand Age=< Hi_age
Adult 16 999 Lo age=<Age

Figure 7. An Age Category Relation with Condition

Providing for varying selection once again blurs the
distinction between command and data. It lessens the
burden on the user since there are fewer command strings
and category tables to manage.

Situation F.

Users ask lots of queries about the same relation.

Problem The problem with this is that managing lots of
SQL commands becomes a burden.

Solution Our solution is an operator call Fan_Select. It
takes two relations as arguments, the second of which is a
new kind of category relation and returns one result
relation after applying each row in the category relation to
the first argument relation. The category relation (see
Figure 8) has 3 attributes: a result relation name attribute, a
condition attribute, and a project clause attribute.

Chimp_select

Result name Condition

Infant Age=<5

Young female | Gender =f and Age =< 15
Female age Gender =f

Figure 8. AnFan_Select Category Relation

Once again we have blurred the distinction between
command and data. Fan_Select allows us to use the DBMS
to manage our queries.

3. Implementation Notes

We used the Oracle DBMS (Version 7.3) and its PL/SQL
programming language interface (Release 2.1) to
implement the operators described in the previous section.
PL/SQL is a programming language whose primary

purpose is to alow developers to extend the DBMS by
building triggers, enhancing Oracle Forms functionality,

and incorporating functions and procedures for specific
applications that access specific tables. We have used
PL/SQL to extend Oracle in a more general way, with
operators for query management during data exploration.

In this section, we present some basic information about
the use of PL/SQL in this situation, and discuss a
restriction that was an impediment to our use in this
context.

Creating new operators sometimes requires creating
"dynamic" code. For our projects, we must be able to
create a result relation whose name, structure and data is
based on factors unknown until run-time. Use of dynamic
SQL in procedures enables us as developers to construct



SQL at runtime as character strings and execute it in the
Oracle SQL engine. We accomplish this using Oracl€'s
pre-existing PL/SQL package called DBMS_SQL.

Here is a significant fact: to preclude possible misbehavior
by the function, a PL/SQL function that is used in an SQL
statement is prohibited from using the DBMS SQL
package. We could implement two of our extensions,
L_E G and E_NE, as PL/SQL functions. They are like
other SQL functions where the scope of data access is the
data in one row and no misbehavior is possible. However,
our other five extensions, Rank, N-tile, Vary Select,
Project_Logical, and Fan_Select, cannot be implemented
as PL/SQL functions, because each needs to use dynamic
SQL. Therefore, we implemented them as procedures and
use them in applications designed for data exploration.
(Red Brick added Rank and N-tile as functions.)

Our extensions do not alter any existing relations, but
instead only read existing ones and return new relations.
We would thus have preferred to use dynamic SQL in a
read-only, create-new relation, fashion to create functions
that we could then re-use in an ad-hoc manner in SQL.
However, the procedures, as we had to write them, have
still been very useful as toolkits for the data exploration
toolsin our KDD system.

4. L essons
We end this paper by stating some lessons we learned in
these two KDD projects.
Lesson 1. We need closer coupling between DBMS and
external categorization tools. In addition to the above
situations, for which we had general, content-neutral
solutions, we also found that users extract data from the
database and categorize it with non-DBMS software. For
example, chimp sleep nest sites are exported to a “kernel”
finding program. The result is a set of kernels, each of
which has a percentage and a set polygon that delimit the
area within which a chimp sleeps that percentage of nights.
Hits are exported to a clustering program that returns
groups of sequences that are related to each other.
The results of these programs are outside the database.
However, to be useful the results must be brought back
into the database and incorporated into analyses.
Unfortunately, our responses to this situation are
idiosyncratic. Because no useful, general purpose tools
were available we wrote Perl scripts to parse and reformat
the results from these programs.
Lesson 2. More data leads to automated data cleaning.
Lots of computing power became available and changed
our computing. For example, we did in a weekend the
same amount of sequence similarity computing that we had
previously done in a whole summer. At first glance such
capacity might not seem a problem, but it was. We became
overwhelmed with the amount of checking of results that
we had to do. It forced the users to articulate the checks
that were being done so that they could be automated. Our
horizons were extended so we considered new analyses
and then faced the situations that we listed above but at a
larger and faster scale. We found ourselves driven to

develop visualization techniques to alow us to
comprehend our raw and result data on this larger scale.
Work on chimp visuaization is underway. Genomic
sequence visualization results have been reported [6,7].
Lesson 3. People are the limiting resource. Programming
to answer queries is bad because it takes much more
human time than issuing SQL command or making
category relations. So we use SQL when we can and make
content neutral extensions so we can program less. Also,
efficiency is not just machine time but includes scarce
people time. Like Franklin Roosevelt in WWII we are
willing to expend materiel in order to save people.

Lesson 4. Naming things is hard but valuable. While it can
be a shock at first, users grow to appreciate the clarity and
power of naming categories and result relations. They must
think about what something means and cannot merely
point at it. They much prefer to build category relations
than to have anything to do with SQL.

Lesson 5. Blurring command and data is useful. When we
blur the distinctions between command and data, we find
that commands and categories are data to be managed with
the DBMS. The aternative is a nightmare.

Lesson 6. KDD categorization tasks like ours have no
specifications.  We work with smart people who are
constantly striving. When we solve a hard query for them,
their reaction is “ Great! Cool! Thanks! ... Now listen, I've
been thinking about ..."
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