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Abstract

Towards the integration of rules and ontologies in the
Semantic Web, we propose a combination of logic pro-
gramming under the answer set semantics with the de-
scription logics SHIF(D) and SHOIN (D), which
underly the Web ontology languages OWL Lite and
OWL DL, respectively. This combination allows for
building rules on top of ontologies but also, to a limited
extent, building ontologies on top of rules. We intro-
duce description logic programs (dl-programs), which
consist of a description logic knowledge base L and a
finite set of description logic rules (dl-rules) P . Such
rules are similar to usual rules in logic programs with
negation as failure, but may also contain queries to L,
possibly default negated, in their bodies. We define
Herbrand models for dl-programs, and show that sat-
isfiable positive dl-programs have a unique least Her-
brand model. More generally, consistent stratified dl-
programs can be associated with a unique minimal Her-
brand model that is characterized through iterative least
Herbrand models. We then generalize the (unique) min-
imal Herbrand model semantics for positive and strati-
fied dl-programs to a strong answer set semantics for all
dl-programs, which is based on a reduction to the least
model semantics of positive dl-programs. We also de-
fine a weak answer set semantics based on a reduction
to the answer sets of ordinary logic programs. Strong
answer sets are weak answer sets, and both properly
generalize answer sets of ordinary normal logic pro-
grams. We then give fixpoint characterizations for the
(unique) minimal Herbrand model semantics of positive
and stratified dl-programs, and show how to compute
these models by finite fixpoint iterations. Furthermore,
we give a precise picture of the complexity of deciding
strong and weak answer set existence for a dl-program.

Introduction
The Semantic Web initiative (Berners-Lee 1999; Berners-
Lee, Hendler, & Lassila 2001; Fensel et al. 2002) is an ex-
tension of the current World Wide Web by standards and
technologies that help machines to understand the informa-
tion on the Web so that they can support richer discovery,
data integration, navigation, and automation of tasks. The
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main ideas behind are to add a machine-readable mean-
ing to Web pages, to use ontologies for a precise defini-
tion of shared terms in Web resources, to make use of KR
technology for automated reasoning from Web resources,
and to apply cooperative agent technology for processing
the information of the Web. The Semantic Web is con-
ceived in hierarchical layers, where the Ontology layer in
the form of the OWL Web Ontology Language (W3C 2004;
Horrocks, Patel-Schneider, & van Harmelen 2003) is cur-
rently the highest layer of sufficient maturity.

OWL has three increasingly expressive sublanguages,
namely OWL Lite, OWL DL, and OWL Full, where OWL
DL basically corresponds to DAML+OIL (Horrocks 2002a;
2002b), which merges DAML (Hendler & McGuiness 2000)
and OIL (Fensel et al. 2001). OWL Lite and OWL DL are
essentially very expressive description logics with an RDF
syntax (Horrocks, Patel-Schneider, & van Harmelen 2003).
As shown by Horrocks & Patel-Schneider (2003b), ontology
entailment in OWL Lite and OWL DL reduces to knowledge
base (un)satisfiability in the description logics SHIF(D)
and SHOIN (D), respectively, where the latter is closely
related to SHOQ(D) (Horrocks & Sattler 2001).

On top of the Ontology layer, the Rules, Logic, and Proof
layers of the Semantic Web will be developed next, which
should offer sophisticated representation and reasoning ca-
pabilities. A first effort in this direction is RuleML (Rule
Markup Language) (Boley, Tabet, & Wagner 2001), fos-
tering an XML-based markup language for rules and rule-
based systems, while the OWL Rules Language (Horrocks
& Patel-Schneider 2003a) is a first proposal for extending
OWL by Horn clause rules.

A key requirement of the layered architecture of the Se-
mantic Web is to integrate the Rule and the Ontology layer.
In particular, it is crucial to allow for building rules on top
of ontologies, that is, for rule-based systems that use vocab-
ulary specified in ontology knowledge bases. Another type
of combination is to build ontologies on top of rules, which
means that ontological definitions are supplemented by rules
or imported from rules.

In this paper, we propose, towards the integration of rules
and ontologies in the Semantic Web, a combination of logic
programming under the answer set semantics with descrip-
tion logics, focusing here on SHIF(D) and SHOIN (D).
This combination allows for building rules on top of ontolo-
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gies but also, to some extent, building ontologies on top of
rules. The main innovations and contributions of this paper
can be summarized as follows:

(1) We introduce description logic programs (dl-programs),
which consist of a knowledge base L in a description logic
and a finite set of description logic rules (dl-rules) P . Such
rules are similar to usual rules in logic programs with nega-
tion as failure, but may also contain queries to L, possibly
default negated, in their bodies. As an important feature,
such queries also allow for specifying an input from P , and
thus for a flow of information from P to L, besides the flow
of information from L to P , given by any query to L. For
example, concepts and roles in L may be enhanced by facts
generated from dl-rules, possibly involving heuristic knowl-
edge and other concepts and roles from L.
(2) The queries to L are treated, fostering an encapsulation
view, in a way such that logic programming and description
logic inference are technically separated; mainly interfacing
details need to be known. Compared to other similar work,
this increases flexibility and is also amenable to privacy as-
pects for L and P . Moreover, the nondeterminism inherent
in answer sets is retained, supporting brave reasoning and
the answer set programming paradigm in which solutions of
problems are encoded in answer sets of a logic program.
(3) We define Herbrand models for dl-programs, and show
that satisfiable positive dl-programs, in which default nega-
tion does not occur and all queries to L are monotonic,
have a unique least Herbrand model. Furthermore, we show
that more general stratified dl-programs can be associated,
if consistent, with a unique minimal Herbrand model that is
characterized through iterative least Herbrand models.
(4) We define strong answer sets for all dl-programs, based
on a reduction to the least model semantics of positive dl-
programs. For positive and stratified dl-programs, the strong
answer set semantics coincides with the (unique) minimal
Herbrand model semantics associated. We also consider
weak answer sets based on a reduction to the answer sets
of ordinary logic programs. Strong answer sets are weak
answer sets, and both properly generalize answer sets of or-
dinary normal logic programs.
(5) We give fixpoint characterizations for the least model
of a positive dl-program and the canonical minimal model
of a stratified dl-program, and show how to compute these
models by finite fixpoint iterations.
(6) Finally, we give a precise picture of the complexity of
deciding strong and weak answer set existence for a dl-
program KB . From this, the complexity of brave and cau-
tious reasoning is easily derived. We consider the general
case, as well as the restrictions where KB is (a) positive,
(b) stratified and has only monotonic queries, and (c) strat-
ified. We consider SHIF(D) and SHOIN (D), but most
of our results can be easily transferred to other description
logics having the same complexity (EXP resp. NEXP).

Previous work on combining logic programs and descrip-
tion logics can be roughly divided into (i) hybrid approaches,
which use description logics to specify structural constraints
in the bodies of logic program rules, and (ii) approaches that

reduce description logic inference to logic programming.
The basic idea behind (i) is to combine the semantic and
computational strengths of the two systems, while the main
rationale of (ii) is to use powerful logic programming tech-
nology for inference in description logics. However, both
kinds of approaches significantly differ from our work, as we
discuss in more detail in the section on related work later on.

Note that proofs of all results are in (Eiter et al. 2003).

Preliminaries
In this section, we recall normal programs (over classical
literals) under the answer set semantics, and the description
logics SHIF(D) and SHOIN (D).

Normal Programs under the Answer Set Semantics
Syntax. Let Φ be a first-order vocabulary with nonempty
finite sets of constant and predicate symbols, but no func-
tion symbols. Let X be a set of variables. A term is any
variable from X or constant symbol from Φ. An atom is of
form p(t1, . . . , tn), where p is a predicate symbol of arity
n≥ 0 from Φ, and t1, . . . , tn are terms. A classical literal
(or literal) l is an atom p or a negated atom ¬p. A negation
as failure literal (or NAF-literal) is a literal l or a default-
negated literal not l. A normal rule (or rule) r is of form

a← b1, . . . , bk,not bk+1, . . . ,not bm , m≥ k≥ 0 , (1)

where a, b1, . . . , bm are classical literals. We refer to the
literal a as the head of r, denoted by H(r), while the con-
junction b1, . . . , bk,not bk+1, . . . ,not bm is called the body
of r; its positive (resp., negative) part is b1, . . . , bk (resp.,
not bk+1, . . . ,not bm). We denote by B(r) the set of body
literals B+(r) ∪ B−(r), where B+(r)= {b1, . . . , bk} and
B−(r)= {bk+1, . . . , bm}. A normal program (or program)
P is a finite set of rules; P is positive iff it is “not”-free.

Semantics. The Herbrand base of a program P , de-
noted HBP , is the set of all ground (classical) literals with
predicate and constant symbols appearing in P (if no such
constant symbol exists, with an arbitrary constant symbol c
from Φ). The notions of ground terms, atoms, literals, etc.,
are defined as usual. We denote by ground(P ) the ground-
ing of P (with respect to HBP ).

A set of literals X ⊆HBP is consistent iff {p,¬p} 6⊆X
for every atom p∈HBP . An interpretation I relative to P is
a consistent subset of HBP . A model of a positive program
P is an interpretation I ⊆HBP such that B(r)⊆ I implies
H(r)∈ I , for every r∈ ground(P ). An answer set of a pos-
itive program P is the least model of P w.r.t. set inclusion.

The Gelfond-Lifschitz transform of a program P relative
to an interpretation I ⊆HBP , denoted P I , is the positive
program obtained from ground(P ) by (i) deleting every rule
r with B−(r)∩ I 6= ∅, and (ii) deleting the negative body
from every remaining rule. An answer set of a program P is
an interpretation I ⊆HBP that is an answer set of P I .

SHIF(D) and SHOIN (D)

Syntax. We first describe the syntax of SHOIN (D). We
assume a set D of elementary datatypes. Every d∈D has a
set of data values, called the domain of d, denoted dom(d).
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We use dom(D) to denote
⋃

d∈D
dom(d). A datatype is ei-

ther an element of D or a subset of dom(D) (called datatype
oneOf). Let A, RA, RD, and I be nonempty finite and
pairwise disjoint sets of atomic concepts, abstract roles,
datatype roles, and individuals, respectively. We use R−

A to
denote the set of all inverses R− of abstract roles R∈RA.

A role is an element of RA ∪R−

A ∪RD. Concepts are
inductively defined as follows. Every C ∈A is a concept,
and if o1, o2, . . . ∈ I, then {o1, o2, . . .} is a concept (called
oneOf). If C and D are concepts and if R∈RA ∪R−

A, then
(CuD), (CtD), and ¬C are concepts (called conjunction,
disjunction, and negation, respectively), as well as ∃R.C,
∀R.C, ≥nR, and ≤nR (called exists, value, atleast, and at-
most restriction, respectively) for an integer n≥ 0. If d∈D
and U ∈RD, then ∃U.d, ∀U.d,≥nU , and≤nU are concepts
(called datatype exists, value, atleast, and atmost restriction,
respectively) for an integer n≥ 0. We write > and ⊥ to ab-
breviate C t ¬C and C u ¬C, respectively, and we elimi-
nate parentheses as usual.

An axiom is an expression of one of the following forms:
(1) C vD, where C and D are concepts (concept inclusion);
(2) RvS, where either R,S ∈RA or R,S ∈RD (role in-
clusion); (3) Trans(R), where R∈RA (transitivity); (4)
C(a), where C is a concept and a∈ I (concept membership);
(5) R(a, b) (resp., U(a, v)), where R∈RA (resp., U ∈RD)
and a, b∈ I (resp., a∈ I and v ∈dom(D)) (role membership
axiom); and (6) a= b (resp., a 6= b), where a, b∈ I (equal-
ity (resp., inequality)). A knowledge base L is a finite set
of axioms. (For decidability, number restrictions in L are re-
stricted to simple abstract roles (Horrocks et al. 1999)).

The syntax of SHIF(D) is as the above syntax of
SHOIN (D), but without the oneOf constructor and with
the atleast and atmost constructors limited to 0 and 1.

Semantics. An interpretation I =(∆, ·I) with respect to
D consists of a nonempty (abstract) domain ∆ disjoint from
dom(D), and a mapping ·I that assigns to each C ∈A
a subset of ∆, to each o∈ I an element of ∆, to each
r∈RA a subset of ∆×∆, and to each U ∈RD a subset of
∆× dom(D). The mapping ·I is extended to all concepts
and roles as usual (Eiter et al. 2003).

The satisfaction of a description logic axiom F in an inter-
pretation I =(∆, ·I), denoted I |= F , is defined as follows:
(1) I |=C vD iff CI ⊆DI ; (2) I |= RvS iff RI ⊆SI ;
(3) I |=Trans(R) iff RI is transitive; (4) I |=C(a) iff
aI ∈CI ; (5) I |=R(a, b) iff (aI , bI)∈RI ; (6) I |=U(a, v)
iff (aI , v)∈UI ; (7) I |= a= b iff aI = bI ; and (8) I |= a 6= b
iff aI 6= bI . The interpretation I satisfies the axiom F , or I
is a model of F , iff I |= F . I satisfies a knowledge base L,
or I is a model of L, denoted I |=L, iff I |=F for all F ∈L.
We say that L is satisfiable (resp., unsatisfiable) iff L has a
(resp., no) model. An axiom F is a logical consequence
of L, denoted L |= F , iff every model of L satisfies F .
A negated axiom ¬F is a logical consequence of L, de-
noted L |=¬F , iff every model of L does not satisfy F .

Description Logic Programs
In this section, we introduce description logic programs
(or simply dl-programs), which are a novel combination of

normal programs and description logic knowledge bases.

Syntax
Informally, a dl-program consists of a description logic
knowledge base L and a generalized normal program P ,
which may contain queries to L. Roughly, in such a query,
it is asked whether a certain description logic axiom or its
negation logically follows from L or not.

A dl-query Q(t) is either

(a) a concept inclusion axiom F or its negation ¬F ; or

(b) of the forms C(t) or ¬C(t), where C is a concept and t
is a term; or

(c) of the forms R(t1, t2) or ¬R(t1, t2), where R is a role
and t1, t2 are terms.

A dl-atom has the form

DL[S1op1p1, . . . , Smopm pm;Q](t) , m≥ 0, (2)

where each Si is either a concept or a role, opi ∈{], −∪, −∩},
pi is a unary resp. binary predicate symbol, and Q(t) is a dl-
query. We call p1, . . . , pm its input predicate symbols. Intu-
itively, opi =] (resp., opi = −∪) increases Si (resp., ¬Si) by
the extension of pi, while opi = −∩ constrains Si to pi. A dl-
rule r has the form (1), where any literal b1, . . . , bm ∈B(r)

may be a dl-atom. We denote by B̃+(r) (resp., B̃−(r))
the set of all dl-atoms in B+(r) (resp., B−(r)). A dl-pro-
gram KB =(L, P ) consists of a description logic knowl-
edge base L and a finite set of dl-rules P .

We use the following example to illustrate our main ideas.

Example 1 (Reviewer Selection) Suppose we want to as-
sign reviewers to papers, based on certain information about
the papers and the available persons, using a description
logic knowledge base LS (partially given in the appendix),
which contains knowledge about scientific publications.

We assume not to be aware of the entire structure and con-
tents of LS , but of the following aspects. LS classifies pa-
pers into research areas, depending on keyword information.
The research areas are stored in a concept Area. The roles
keyword and inArea associate with each paper its relevant
keywords and the areas it is classified into (obtained, e.g., by
reification of the classes). Furthermore, a role expert relates
persons to their areas of expertise, and a concept Referee
contains all referees. Finally, a role hasMember associates
with a cluster of similar keywords all its members.

Consider then the dl-program KBS=(LS , PS), where PS

contains in particular the following dl-rules:
(1) paper(p1); kw(p1,Semantic Web);
(2) paper(p2); kw(p2,Bioinformatics);

kw(p2,Answer Set Programming);
(3) kw(P, K2)← kw(P, K1), DL[hasMember ](S, K1),

DL[hasMember ](S, K2);
(4) paperArea(P, A)←DL[keyword ] kw ; inArea](P, A);
(5) cand(X, P )← paperArea(P, A), DL[Referee](X),

DL[expert ](X, A);
(6) assign(X, P )← cand(X, P ),not ¬assign(X, P );
(7) ¬assign(Y, P )← cand(Y, P ), assign(X, P ), X 6= Y ;
(8) a(P )← assign(X, P );
(9) error(P )← paper(P ),not a(P ).
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Intuitively, rules (1) and (2) specify the keyword informa-
tion of two papers, p1 and p2, which should be assigned to
reviewers. Rule (3) augments, by choice of the designer, the
keyword information with similar ones. Rule (4) queries the
augmented LS to retrieve the areas that each paper is clas-
sified into, and rule (5) singles out review candidates based
on this information from experts among the reviewers ac-
cording to LS . Rules (6) and (7) pick one of the candidate
reviewers for a paper (multiple reviewers can be selected
similarly). Finally, rules (8) and (9) check if each paper is
assigned; if not, an error is flagged. Note that, in view of
rules (3)–(5), information flows in both directions between
the knowledge encoded in LS and the one encoded in PS .

To illustrate the use of −∩, a predicate poss Referees may
be defined in the dl-program, and “Referee−∩poss Referees”
may be added in the first dl-atom of (5), which thus con-
strains the set of referees.

The dl-rule below shows in particular how dl-rules can be
used to encode certain qualified number restrictions, which
are not available in SHOIN (D). It defines an expert as an
author of at least three papers of the same area:

expert(X, A)←DL[isAuthorOf ](X, P1),
DL[isAuthorOf ](X, P2),
DL[isAuthorOf ](X, P3),
DL[inArea](P1, A),
DL[inArea](P2, A),
DL[inArea](P3, A),
P1 6= P2, P2 6= P3, P3 6= P1.

Semantics
We first define Herbrand interpretations and the truth of
dl-programs in Herbrand interpretations. In the sequel, let
KB =(L, P ) be a dl-program.

The Herbrand base of P , denoted HBP , is the set of all
ground literals with a standard predicate symbol that occurs
in P and constant symbols in Φ. An interpretation I relative
to P is a consistent subset of HBP . We say I is a model of
l∈HBP under L, denoted I |=L l, iff l∈ I , and of a ground
dl-atom a=DL[S1op1 p1, . . . , Smopmpm;Q](c) under L,
denoted I |=L a, iff L∪

⋃m
i=1

Ai(I) |= Q(c), where

• Ai(I)= {Si(e) | pi(e)∈ I}, for opi =];

• Ai(I)= {¬Si(e) | pi(e)∈ I}, for opi = −∪;

• Ai(I)= {¬Si(e) | pi(e)∈ I does not hold}, for opi = −∩.

We say that I is a model of a ground dl-rule r iff I |=L

H(r) whenever I |=L l for all l∈B+(r) and I 6|=L l for all
l∈B−(r), and of a dl-program KB = (L,P ), denoted I |=
KB , iff I |=L r for all r∈ ground(P ). We say KB is satis-
fiable (resp., unsatisfiable) iff it has some (resp., no) model.

Least Model Semantics of Positive dl-Programs. We
now define positive dl-programs, which are “not”-free dl-
programs that involve only monotonic dl-atoms. Like or-
dinary positive programs, every positive dl-program that is
satisfiable has a unique least model, which naturally charac-
terizes its semantics.

A ground dl-atom a is monotonic relative to KB =(L,P )
iff I ⊆ I ′⊆HBP implies that if I |=L a then I ′ |=L a. A

dl-program KB =(L,P ) is positive iff (i) P is “not”-free,
and (ii) every ground dl-atom that occurs in ground(P ) is
monotonic relative to KB .

Observe that a dl-atom containing −∩may fail to be mono-
tonic, since an increasing set of pi(e) in P results in a reduc-
tion of ¬Si(e) in L, whereas dl-atoms containing ] and −∪
only are always monotonic.

For ordinary positive programs P , it is well-known that
the intersection of two models of P is also a model of P .
The following theorem shows that a similar result holds for
positive dl-programs KB .

Theorem 1 Let KB = (L,P ) be a positive dl-program. If
the interpretations I1, I2⊆HBP are models of KB , then
I1 ∩ I2 is also a model of KB .

Proof. Suppose that I1, I2⊆HBP are models of KB . We
show that I = I1 ∩ I2 is also a model of KB , i.e., I |=L r
for all r∈ ground(P ). Consider any r∈ ground(P ), and
assume that I |=L l for all l∈B+(r)= B(r). That is, I |=L

l for all classical literals l∈B(r) and I |=L a for all dl-
atoms a∈B(r). Hence, Ii |=L l for all classical literals
l∈B(r), for every i∈{1, 2}. Moreover, Ii |=L a for all
dl-atoms a∈B(r), for every i∈{1, 2}, since every dl-atom
in ground(P ) is monotonic relative to KB . Since I1 and I2

are models of KB , it follows that Ii |=L H(r), for every
i∈{1, 2}, and thus I |=L H(r). This shows that I |=L r.
Hence, I is a model of KB . 2

As an immediate corollary of this result, every satisfiable
positive dl-program KB has a unique least model, denoted
MKB , which is contained in every model of KB .

Corollary 2 Let KB = (L,P ) be a positive dl-program. If
KB is satisfiable, then there exists a unique model I ⊆HBP

of KB such that I ⊆ J for all models J ⊆HBP of KB .

Example 2 Consider the dl-program comprising rules (1)–
(5) from Example 1. Clearly, this program is “not”-free.
Moreover, since the dl-atoms do not contain occurrences
of −∩, they are all monotonic. Hence, the dl-program is pos-
itive. As well, its unique least model contains all review
candidates for the given papers p1 and p2.

Iterative Least Model Semantics of Stratified dl-Pro-
grams. We next define stratified dl-programs, which are
intuitively composed of hierarchic layers of positive dl-
programs linked via default negation. Like for ordinary
stratified programs, a canonical minimal model can be sin-
gled out by a number of iterative least models, which nat-
urally describes the semantics, provided some model ex-
ists. We can accommodate this with possibly non-monotonic
dl-atoms by treating them similarly as NAF-literals. This
is particularly useful, if we do not know a priori whether
some dl-atoms are monotonic, and determining this might be
costly; recall, however, as noted above, that the absence of
−∩ in (2) is a simple syntactic criterion which implies mono-
tonicity of a dl-atom (cf. also Example 2).
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For any dl-program KB = (L,P ), we denote by DLP the
set of all ground dl-atoms that occur in ground(P ). We as-
sume that KB has an associated set DL+

P ⊆ DLP of ground
dl-atoms which are known to be monotonic, and we denote
by DL?

P =DLP−DL+

P the set of all other dl-atoms. An input
literal of a∈DLP is a ground literal with an input predicate
of a and constant symbols in Φ.

A stratification of KB = (L,P ) (with respect to DL+

P ) is
a mapping λ :HBP ∪DLP→{0, 1, . . . , k} such that

(i) λ(H(r))≥λ(l′) (resp., λ(H(r))> λ(l′)) for each r ∈
ground(P ) and l′ ∈ B+(r) (resp., l′ ∈ B−(r)), and

(ii) λ(a)≥λ(l) (resp., λ(a)> λ(l)) for each input literal l

of each a ∈ DL+

P (resp., a ∈ DL?
P ),

where k≥ 0 is the length of λ. For i∈{0, . . . , k}, let

KB i = (L,Pi)= (L, {r∈ ground(P ) | λ(H(r)) = i}),

and let HBPi
(resp., HB?

Pi
) be the set of all l∈HBP such

that λ(l)= i (resp., λ(l)≤ i).
A dl-program KB =(L,P ) is stratified iff it has a strati-

fication λ of some length k≥ 0. We define its iterative least
models Mi⊆HBP with i∈{0, . . . , k} as follows:

(i) M0 is the least model of KB0;

(ii) if i> 0, then Mi is the least model of KB i such that
Mi|HB?

Pi−1
=Mi−1|HB?

Pi−1
.

We say KB is consistent, if every Mi with i∈{0, . . . , k} ex-
ists, and KB is inconsistent, otherwise. If KB is consistent,
then MKB denotes Mk. Observe that MKB is well-defined,
since it does not depend on a particular λ (cf. Corollary 7).

The following theorem shows that MKB is in fact a mini-
mal model of KB .

Theorem 3 Let KB =(L, P ) be a stratified dl-program.
Then, MKB is a minimal model of KB .

Proof (sketch). The statement can be proved by induction
along a stratification of KB . 2

Example 3 Consider the dl-program KB = (L,P ) given by
the rules and facts from Example 1, but without rules (6)
and (7). This program has a stratification of length 2, with
the associated set DL+

P comprising all dl-atoms occurring
in P . The minimal model MKB contains all review candi-
dates of the given papers, together with error flags for them,
because no paper is assigned so far.

Strong Answer Set Semantics of dl-Programs. We now
define the strong answer set semantics of general dl-pro-
grams KB , which is reduced to the least model semantics
of positive dl-programs. We use a generalized transforma-
tion that removes all NAF-literals and all dl-atoms except
for those known to be monotonic. If we ignore this knowl-
edge and remove all dl-atoms, then we arrive at the weak
answer set semantics for KB , which associates with KB a
larger set of models (cf. next subsection).

In the sequel, let KB = (L,P ) be a dl-program and let
DLP , DL+

P , and DL?
P be as above.

The strong dl-transform of P relative to L and an inter-
pretation I ⊆HBP , denoted sP I

L, is the set of all dl-rules
obtained from ground(P ) by

(i) deleting every dl-rule r such that either I 6|=L a for some
a∈B+(r)∩DL?

P , or I |=L l for some l∈B−(r), and

(ii) deleting from each remaining dl-rule r all literals in
B−(r)∪ (B+(r)∩DL?

P ).

Notice that (L, sP I
L) has only monotonic dl-atoms and

no NAF-literals anymore. Thus, (L, sP I
L) is a positive dl-

program, and by Corollary 2, has a least model if satisfiable.

Definition 1 Let KB =(L, P ) be a dl-program. A strong
answer set of KB is an interpretation I ⊆HBP such that I
is the least model of (L, sP I

L).

The following result shows that the strong answer set se-
mantics of a dl-program KB =(L,P ) without dl-atoms co-
incides with the ordinary answer set semantics of P .

Theorem 4 Let KB = (L, P ) be a dl-program without dl-
atoms. Then, I ⊆HBP is a strong answer set of KB iff it is
an answer set of the ordinary program P .

Proof. Let I ⊆HBP . If KB does not contain any dl-
atoms, then sP I

L=P I . Thus, I is the least model of (L, sP I
L)

iff I is the least model of P I . Thus, I is a strong answer set
of KB iff I is an answer set of P . 2

The next result shows that, as desired, strong answer sets
of a dl-program KB are also models, and, moreover, mini-
mal if all dl-atoms are monotonic (and known as such).

Theorem 5 Let KB =(L, P ) be a dl-program, and let M
be a strong answer set of KB . Then, (a) M is a model of
KB , and (b) M is a minimal model of KB if DLP = DL+

P .

Proof. (a) Let I be a strong answer set of KB . To show
that I is also a model of KB , we have to show that I |=L r for
all r∈ ground(P ). Consider any r∈ ground(P ). Suppose
that I |=L l for all l∈B+(r) and I 6|=L l for all l∈B−(r).
Then, the dl-rule r′ that is obtained from r by removing all
the literals in B−(r)∪ (B+(r)∩DL?

P ) is contained in sP I
L.

Since I is the least model of (L, sP I
L) and thus in particular

a model of (L, sP I
L), it follows that I is a model of r′. Since

I |=L l for all l∈B+(r′) and I 6|=L l for all l∈B−(r′)= ∅,
it follows that I |=L H(r). This shows that I |=L r. Hence,
I is a model of KB .

(b) By part (a), every strong answer set I of KB is a model
of KB . Assume that every dl-atom in DLP is monotonic
relative to KB . We show that I is a minimal model of KB .
Towards a contradiction, suppose the contrary. That is, there
exists a model J of KB such that J ⊂ I . Since J is a model
of KB , it follows that J is also a model of (L, sP J

L ). As ev-
ery dl-atom in DLP is monotonic relative to KB , it then fol-
lows that sP I

L⊆ sP J
L . Hence, J is also a model of (L, sP I

L).
But this contradicts that I is the least model of (L, sP I

L).
Hence, I is a minimal model of KB . 2
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The following theorem shows that positive and stratified
dl-programs have at most one strong answer set, which co-
incides with the canonical minimal model MKB .

Theorem 6 Let KB be a (a) positive (resp., (b) stratified)
dl-program. If KB is satisfiable (resp., consistent), then
MKB is the only strong answer set of KB . If KB is not satis-
fiable (resp., consistent), then KB has no strong answer set.

Proof. (a) If KB =(L,P ) is satisfiable, then MKB is de-
fined. A strong answer set of KB is an interpretation
I ⊆HBP such that I is the least model of (L, sP I

L). Since
KB is a positive dl-program, it follows that sP I

L coincides
with ground(P ). Hence, I ⊆HBP is a strong answer set of
KB iff I =MKB . If KB is unsatisfiable, then KB has no
model. Thus, by Theorem 5, KB has no strong answer set.

(b) Let λ be a stratification of KB of length k≥ 0. Suppose
that I ⊆HBP is a strong answer set of KB . That is, I is the
least model of (L, sP I

L). Hence,

• I|HB?
P0

is the least of all models J ⊆HB?
P0

of (L, sP0
I
L);

• if i> 0, then I|HB?
Pi

is the least among all models
J ⊆HB?

Pi
of (L, sPi

I
L) with J |HB?

Pi−1
= I|HB?

Pi−1
.

It thus follows that

• I|HB?
P0

is the least of all models J ⊆HB?
P0

of KB0; and

• if i> 0, then I|HB?
Pi

is the least among all models
J ⊆HB?

Pi
of KB i with J |HB?

Pi−1
= I|HB?

Pi−1
.

Hence, KB is consistent, and I = MKB . Since the above
line of argumentation also holds in the converse direction,
it follows that I ⊆HBP is a strong answer set of KB iff
KB is consistent and I =MKB . 2

Since the strong answer sets of a stratified dl-program KB
are independent of the stratification λ of KB , we thus obtain
that consistency of KB and MKB are independent of λ.

Corollary 7 Let KB be a stratified dl-program. Then, the
notion of consistency of KB and the model MKB do not
depend on the stratification of KB .

Example 4 Consider now the full dl-program from Exam-
ple 1. This dl-program is not stratified, in view of the
rules (6) and (7), which take care of the selection between
the different candidates for being reviewers. Every strong
answer set that contains no error flags corresponds to an ac-
ceptable review assignment scenario.

Weak Answer Set Semantics of dl-Programs. We finally
introduce the weak answer set semantics, which associates
with a dl-program a larger set of models than the strong an-
swer set semantics. It is based on a generalized transforma-
tion that removes all dl-atoms and NAF-literals, and reduces
to the answer set semantics of ordinary programs.

In the sequel, let KB =(L,P ) be a dl-program. The
weak dl-transform of P relative to L and to an interpreta-
tion I ⊆HBP , denoted wP I

L, is the ordinary positive pro-
gram obtained from ground(P ) by

(i) deleting all dl-rules r where either I 6|=La for some dl-
atom a∈B+(r), or I|=Ll for some l∈B−(r); and

(ii) deleting from every remaining dl-rule r all the dl-atoms
in B+(r) and all the literals in B−(r).

Observe that wP I
L is an ordinary ground positive program,

which does neither contain any dl-atoms, nor any NAF-
literals. We thus define the weak answer set semantics by
reduction to the least model semantics of ordinary ground
positive programs as follows.

Definition 2 Let KB = (L, P ) be a dl-program. A weak an-
swer set of KB is an interpretation I ⊆HBP such that I is
the least model of the ordinary positive program wP I

L.

The following result shows that the weak answer set se-
mantics of a dl-program KB =(L,P ) without dl-atoms co-
incides with the ordinary answer set semantics of P .

Theorem 8 Let KB = (L, P ) be a dl-program without dl-
atoms. Then, I ⊆HBP is a weak answer set of KB iff it is
an answer set of the ordinary normal program P .

Proof. Let I ⊆HBP . If KB does not contain any dl-
atoms, then wP I

L = P I . Thus, I is the least model of wP I
L

iff I is the least model of P I . Hence, I is a weak answer set
of KB iff I is an answer set of P . 2

The next result shows that every weak answer set of a dl-
program KB is also a model of KB . Note that differently
from strong answer sets, the weak answer sets of KB are
in general not minimal models of KB , even if KB has only
monotonic dl-atoms.

Theorem 9 Let KB be a dl-program. Then, every weak an-
swer set of KB is also a model of KB .

Proof. Let I ⊆ HBP be a weak answer set of KB =
(L,P ). To show that I is also a model of KB , we have
to show that I |=L r for all r∈ ground(P ). Consider any
r∈ ground(P ). Suppose that I |=L l for all l∈B+(r) and
I 6|=L l for all l∈B−(r). Then, the dl-rule r′ that is ob-
tained from r by removing all the dl-atoms in B+(r) and
all literals in B−(r) is in wP I

L. As I is the least model of
wP I

L, and thus in particular a model of wP I
L, it follows that

I |=L r′. Since I |=L l for all l∈B+(r′) and I 6|=L l for
all l∈B−(r′)= ∅, it follows that I |=L H(r′)= H(r). This
shows that I |=L r. Thus, I is a model of KB . 2

The following result shows that the weak answer set se-
mantics of dl-programs can be expressed in terms of the an-
swer set semantics of ordinary normal programs.

Theorem 10 Let KB =(L, P ) be a dl-program. Let I ⊆
HBP and let P I

L be obtained from ground(P ) by

(i) deleting every dl-rule r where either I 6|=L a for a dl-
atom a∈B+(r), or I |=L a for a dl-atom a∈B−(r), and

(ii) deleting from every remaining dl-rule r every dl-atom
in B+(r)∪B−(r).
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Then, I is a weak answer set of KB iff I is an answer set
of P I

L.

Proof. Immediate by observing that wP I
L = (P I

L)I . 2

Finally, the next result shows that the set of all strong an-
swer sets of a dl-program KB is contained in the set of all
weak answer sets of KB . Intuitively, the additional informa-
tion about the monotonicity of dl-atoms that we use for spec-
ifying strong answer sets allows for focusing on a smaller set
of models. Thus, the set of all weak answer sets of KB ap-
proximates the set of all strong answer sets of KB .

Theorem 11 Every strong answer set of a dl-program KB
is also a weak answer set of KB .

Proof. Let I ⊆ HBP be a strong answer set of KB =
(L,P ). That is, I is the least model of (L, sP I

L). Hence,
I is also a model of wP I

L. We show that I is in fact the
least model of wP I

L. Towards a contradiction, assume the
contrary. That is, there exists a model J ⊂ I of wP I

L. Hence,
J is also a model of (L, sP I

L). But this is contradicts the
fact that I is the least model of (L, sP I

L). Hence, I the least
model of wP I

L, and so I is a weak answer set of KB . 2

Note that the converse of the above theorem does not hold
in general. That is, there exist dl-programs KB which have
a weak answer set that is not a strong answer set.

Computation and Complexity
In this section, we give fixpoint characterizations for the
strong answer set of satisfiable positive and consistent strat-
ified dl-programs, and we show how to compute it by fi-
nite fixpoint iterations. We then draw a precise picture of
the complexity of deciding strong and weak answer set ex-
istence for a dl-program, respectively.

Fixpoint Semantics

The answer set of an ordinary positive resp. stratified normal
logic program P has a well-known fixpoint characterization
in terms of an immediate consequence operator TP , which
easily generalizes to dl-programs. This can be exploited for
a bottom-up computation of the strong answer set of a posi-
tive resp. stratified dl-program.

For a dl-program KB = (L,P ), define the operator TKB

on the subsets of HBP as follows. For every I ⊆HBP , let

TKB (I) =

{
HBP , if I is not consistent;
{H(r) | r∈ ground(P ), I |=L `

for all `∈B(r)} , otherwise.

The following lemma shows that, if KB is positive, then
TKB is monotonic, which is immediate from the fact that in
ground(P ), each dl-atom is monotonic relative to KB .

Lemma 12 For any positive dl-program KB=(L,P ), TKB

is monotonic (i.e., I⊆I ′⊆HBP implies TKB (I)⊆TKB (I ′)).

Proof. Let I ⊆ I ′⊆HBP . Consider any r∈ ground(P ).
Then, for every classical literal l∈B(r), it holds that I |=L l
implies I ′ |=L l. Furthermore, for every dl-atom a∈B(r),
it holds that I |=L a implies I ′ |=L a, since a is monotonic
relative to KB . This shows that TKB (I)⊆TKB (I ′). 2

Since every monotonic operator has a least fixpoint, also
TKB has one, denoted lfp(TKB ). Moreover, lfp(TKB ) can
be computed by finite fixpoint iteration (given finiteness
of P and the number of constant symbols in Φ).

For every I ⊆HBP , we define Ti
KB (I) = I , if i = 0, and

T i
KB (I) = TKB (T i−1

KB (I)), if i > 0.

Theorem 13 For every positive dl-program KB = (L,P ),
it holds that (a) lfp(TKB ) = MKB , if KB is satisfiable, and
(b) lfp(TKB ) = HBP , if KB is unsatisfiable. Furthermore,

lfp(TKB )=
⋃n

i=0
T i
KB (∅)= T n

KB (∅), for some n≥ 0.

Example 5 Suppose that P in KB=(L,P ) consists of the
rules r1: b←DL[S ] p;C](a) and r2: p(a)← , and L con-
tains only the axiom SvC. Then, KB is positive, and we
have lfp(TKB ) = {p(a), b}, where T 0

KB (∅) = ∅, T 1
KB (∅) =

{p(a)}, and T 2
KB (∅) = {p(a), b}.

We finally describe a fixpoint iteration for stratified dl-
programs. Using Theorem 13, we can characterize the strong
answer set MKB of a stratified dl-program KB as follows.
Let T̂ i

KB (I) = T i
KB (I) ∪ I , for all i ≥ 0.

Theorem 14 Suppose KB = (L,P ) has a stratification λ
of length k≥ 0. Define Mi⊆HBP , i∈{−1, 0, . . . , k}, as
follows: M−1 = ∅, and Mi = T̂ni

KBi
(Mi−1) for i≥ 0, where

ni≥ 0 such that T̂ni

KBi
(Mi−1)= T̂ni+1

KBi
(Mi−1). Then, KB

is consistent iff Mk 6= HBP , and in this case, Mk =MKB .

Notice that M0 = lfp(TKB0
) and Mi−1 = T̂

j
KBi

(Mi−1)∩

HB?
Pi−1

, for any j≥ 0, if T̂
j
KBi

(Mi−1) is consistent, which
means that ni≥ 0 always exists.

Example 6 Assume that also the dl-rule r3: q(x)←not ¬b,
not DL[S](x) is in P of Example 5. Then, the λ assigning 1
to q(a), 0 to DL[S](a), and 0 to all other atoms in HBP ∪
DLP stratifies KB , and M0 = lfp(TKB0

) = {p(a), b} and
M1 = {p(a), b, q(a)} = MKB .

Complexity
The complexity of deciding whether a given dl-program has
a strong (resp., weak) answer set is summarized in Table 1.
There, “mon-dl” means that all dl-atoms in DLP are mono-
tonic and treated as such in case of strong answer sets. Re-
sults on cautious and brave reasoning are easily derived from
them by simple reductions (except for positive KB with L
in SHOIN (D)); cf. (Eiter et al. 2003) for more details.

The complexity results are based on the previous re-
sults that deciding answer set existence for a (non-ground)
normal program P is complete for NEXP (nondeterminis-
tic exponential time) (Dantsin et al. 2001), and that de-
ciding satisfiability of a knowledge base L in SHIF(D)
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Table 1: Complexity of deciding strong / weak answer set
existence for dl-programs KB (completeness results)

KB = (L, P ) L in SHIF(D) L in SHOIN (D)

positive EXP NEXP
stratified, mon-dl EXP PNEXP / NPNEXP

stratified EXP NPNEXP

general NEXP NPNEXP

(resp., SHOIN (D)) is complete for EXP (exponential
time) (Tobies 2001; Horrocks & Patel-Schneider 2003b)
(resp., NEXP, assuming unary number encoding; cf. (Hor-
rocks & Patel-Schneider 2003b) and the NEXP-hardness
proof for ACLQIO by Tobies (2001), which implies the
NEXP-hardness). Thus, evaluating a ground dl-atom a of
form (1) given an interpretation Ip of its input predicates
p = p1, . . . , pm (i.e., deciding I |=L a for each I that co-
incides on p with Ip) is complete for EXP (resp., co-NEXP)
for L from SHIF(D) (resp., SHOIN (D)).

The following theorem shows that deciding the existence
of strong (resp., weak) answer sets of dl-programs with L
in SHIF(D) is NEXP-complete in the general case, and
EXP-complete in the positive and the stratified case.

Theorem 15 Given Φ and a dl-program KB=(L,P ) with
L in SHIF(D), deciding whether KB has a strong (resp.,
weak) answer set is complete for NEXP in the general case,
and complete for EXP when KB is positive or stratified.

Proof (sketch). Observe first that for each dl-program KB ,
the number of ground dl-atoms a is polynomial, and a has
exponentially many different concrete inputs Ip in general,
but each of them has polynomial size.

For positive KB , we can compute lfp(TKB ) in expo-
nential time. Note that any ground dl-atom a needs to be
evaluated only polynomially often, as its input can increase
only that many times. From lfp(TKB ), it is then immediate
whether KB has a strong (resp., weak) answer set, namely
iff lfp(TKB ) 6=HBP . For other KB , we can, one by one,
explore the exponentially many possible inputs of those dl-
atoms which disappear in the transform sP I

L (resp., wP I
L).

For each input, evaluating these dl-atoms and building sP I
L

(resp., wP I
L) is feasible in exponential time. If we are left

with a positive or stratified KB′, we aim to compute MKB

by (a sequence of) fixpoint iterations as above, and check
compliance with the inputs of the dl-atoms. For unstratified
KB , we need in addition an (exponential size) guess for the
default-negated classical literals, which brings us to NEXP.

The EXP- and NEXP-hardness for positive and general
KB , respectively, is inherited from the complexity of plain
datalog and normal programs (Dantsin et al. 2001). 2

The next theorem shows that deciding the existence of
strong (resp., weak) answer sets of dl-programs with L in
SHOIN (D) ranges from NEXP-completeness in the posi-
tive case to NPNEXP-completeness in the general case.

Theorem 16 Given Φ and a dl-program KB=(L,P ) with
L in SHOIN (D), deciding whether KB has a strong
(resp., weak) answer set is complete for NPNEXP in the gen-
eral and in the stratified case, complete for PNEXP (resp.,
NPNEXP) when KB is stratified and has only monotonic dl-
atoms, and complete for NEXP when KB is positive.

Proof (sketch). We use the following observation: A posi-
tive KB has a strong (resp., weak) answer set, just if there
exists an interpretation I and a subset S ⊆ {a ∈ DLP |
I 6|=L a} such that the positive logic program PI,S , obtained
from ground(P ) by deleting each rule that contains a dl-
atom a∈S and all remaining dl-atoms, has a strong answer
set included in I . A suitable I and S, along with proofs
L 6|=I a for all a∈S, can be guessed and verified in expo-
nential time. The matching NEXP-hardness follows from
co-NEXP-hardness of dl-atom evaluation.

For non-positive KB , we can guess inputs Ip for all dl-
atoms, and evaluate them with a NEXP oracle in polyno-
mial time. For the (monotonic) ones remaining in sP I

L, we
can further guess a chain ∅ = I0

p ⊂ I1
p ⊂ · · · ⊂ Ik

p = Ip,
along which their inputs are increased in a fixpoint compu-
tation for sP I

L, and evaluate the dl-atoms on it in polyno-
mial time with a NEXP oracle. We then ask a NEXP ora-
cle if an interpretation I exists which is the answer set of
sP I

L (resp., wP I
L) compliant with the inputs and valuations

of the dl-atoms and such that their inputs increase in fixpoint
computation. This yields the NPNEXP upper bounds. For a
strong answer set of a stratified, mon-dl KB , guesses can be
avoided by increasing the monotonic dl-atoms along a strat-
ification, and the problem is in PNEXP.

We can show matching lower bounds by a generic reduc-
tion from Turing machines M , exploiting the NEXP-hard-
ness proof for ACLQIO by Tobies (2001). The idea is to
use a dl-atom to decide the result of the i-th oracle call made
by a polynomial-time bounded M with access to a NEXP
oracle, where the results of the previous calls are known
and input to the dl-atom. By a proper sequence of dl-atom
evaluations, the result of M ’s computation on input w can
be obtained; a nondeterministic M is modeled by providing
random bits generated by dl-atoms or unstratified rules. 2

Related Work
The works by Donini et al. (1998), Levy & Rousset (1998),
and Rosati (1999) are representatives of hybrid approaches
using description logic as input. More specifically, Donini et
al. (1998) combine plain datalog (no disjunction and nega-
tion) with the description logic ALC. An integrated knowl-
edge base has a structural component in ALC and a rela-
tional component in datalog; their integration lies in us-
ing concepts from the former as constraints in rule bodies
of the latter. Donini et al. (1998) also present a technique
for answering conjunctive queries (existentially quantified
conjunctions of atoms) with such constraints, where SLD-
resolution is integrated with an inference method for ALC.
Closely related is the approach by Levy & Rousset (1998),
combining Horn rules with the description logic ALCNR.
In contrast to Donini et al.’s approach (1998), it allows for
roles as constraints in rule bodies and does not require safety
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for variables in constraints. Also Levy & Rousset (1998)
present a technique for answering disjunctive queries, i.e.,
disjunctions of conjunctive queries, conditioned on con-
junctive queries. Finally, Rosati (1999) combines disjunc-
tive datalog (with classical and default negation) with ALC
based on a generalized answer set semantics. Like Levy &
Rousset (1998), he allows for roles as constraints in rule
bodies, and, similar to Donini et al. (1998), safety is not
requested. Moreover, answering queries given by ground
atoms is discussed, based on a combination of ordinary an-
swer set programming with inference in ALC.

Some representatives of approaches reducing description
logic inference to logic programming are the works by Van
Belleghem et al. (1997), Baral (2003) (cf. also (Alsaç &
Baral 2001)), Swift (2004), Grosof et al. (2003), and Hey-
mans and Vermeir (2003a; 2003b). In detail, Van Belleghem
et al. (1997) presents a mapping of description logic knowl-
edge bases in ALCN to open logic programs, and shows
how other description logics correspond to sublanguages of
open logic programs. It also explores the computational cor-
respondences between a typical algorithm for description
logic inference and the resolution procedure for open logic
programs. The works by Baral (2003) and Swift (2004) re-
duce inference in the description logicALCQI to query an-
swering from the answer sets of logic programs (with de-
fault negation, but no disjunction and classical negation).
Grosof et al. (2003) shows especially how inference in a
subset of the description logic SHOIQ can be reduced
to inference in a subset of Horn programs (in which no
function symbols, negations, and disjunctions are permit-
ted), and vice versa. Finally, Heymans & Vermeir (2003a;
2003b) extend disjunctive logic programming under the an-
swer set semantics by inverses and an infinite universe. As
shown, this extension is decidable for rules forming a tree
structure, and inference in SHIF extended by transitive
role closures can be simulated in it.

Closest in spirit to our work is perhaps the approach by
Rosati (1999), which also combines description logics and
answer set programming. There are, however, several cru-
cial differences. (1) Rather than ALC, we use the more ex-
pressive description logics SHIF(D) and SHOIN (D),
which underly OWL Lite and OWL DL, respectively. On the
other hand, Rosati (1999) considers disjunctive rule heads;
we refrain from this here, but our approach can be easily ex-
tended in this direction (keeping the main conceptual ideas).
(2) Instead of using roles and concepts from L as constraints
in rule bodies of a logic program P , we allow for queries
to L in rule bodies of P , where every query also allows for
specifying an input from P , and thus for a flow of knowledge
from P to L besides the flow of knowledge from L to P .
Thus, in our approach, inference from L also depends on
what is encoded in P , which is not the case in Rosati’s ap-
proach. Furthermore, in our approach, queries to L are not
subject to any safety condition and can be orthogonally com-
bined with classical and default negation. (3) We allow for a
technical separation and thus a more flexible combination of
description logic inference and logic programming. Namely,
our approach permits cautious as well as brave reasoning
under the answer set semantics, while Rosati (1999) tech-

nically permits only cautious reasoning. Indeed, in Rosati’s
method, an integrated knowledge base KB = (L,P ) repre-
sents all pairs (I, S) of models I of L and answer sets S
of P , while in our work, KB represents all answer sets S
of P , where queries are evaluated relative to each single an-
swer set S and all models I of L compatible with S. Further-
more, the technical separation complies with the impedance
mismatch of the usual interpretations of answer set programs
(finite Herbrand interpretations) and of description logics
(general first-order interpretations over possibly infinite do-
mains). This mismatch cannot be easily eliminated when
combining existing implemented systems.

Finally, we mention recent work by Antoniou (2002),
which deals with a combination of defeasible reasoning with
description logics. Like in other work mentioned above, the
considered description logic serves in that approach only as
an input for the default reasoning mechanism running on
top of it. Also, early work on dealing with default infor-
mation in the context of description logics is the method due
to Baader & Hollunder (1995), where Reiter’s default logic
is adapted to terminological knowledge bases, differing sig-
nificantly from our approach. Less closely related work in-
cludes also the investigations by Baumgartner, Furbach, &
Thomas (2002) and Provetti, Bertino, & Salvetti (2003).

Summary and Conclusion
Towards the integration of rules and ontologies in the Se-
mantic Web, we have proposed a combination of logic pro-
gramming under the answer set semantics with the descrip-
tion logics SHIF(D) and SHOIN (D), which stand be-
hind OWL Lite and OWL DL, respectively. We have in-
troduced dl-programs, which consist of a description logic
knowledge base L and a finite set P of dl-rules, which
may also contain queries to L, possibly default negated,
in their bodies. We have defined Herbrand models for dl-
programs, and shown that satisfiable positive dl-programs
have a unique least Herbrand model. More generally, con-
sistent stratified dl-programs can be associated with a unique
minimal Herbrand model that is characterized through it-
erative least Herbrand models. We have then generalized
the unique minimal Herbrand model semantics for positive
and stratified dl-programs to a strong answer set semantics
for all dl-programs, which is based on a reduction to the
least model semantics of positive dl-programs. We have also
defined a weak answer set semantics based on a reduction
to the answer sets of ordinary logic programs. We have
then given fixpoint characterizations for the unique mini-
mal Herbrand model semantics of positive and stratified dl-
programs, and shown how to compute these models by fi-
nite fixpoint iterations. Furthermore, we have given a pre-
cise picture of the complexity of deciding strong and weak
answer set existence for a dl-program.

On the computational side, we have realized a prototype
implementation for weak answer sets, employing the de-
scription logic engine RACER (Haarslev & Möller 2001)
and the answer set engine DLV (Leone et al. 2002), which is
based on interleaved calls until a fixpoint is reached. An
interesting subject for further research is to find efficient
means for implementing the approach as a whole. To this
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end, one may investigate mappings to answer set program-
ming itself, which may utilize work on mapping description
logics to (disjunctive) logic programs (Grosof et al. 2003;
Motik, Volz, & Maedche 2003; Swift 2004). Note that
the addressed problems of complexity within EXP (resp.,
NEXP) can be polynomially transformed into deciding con-
sequence from an ordinary (negation-free) datalog program
(resp., deciding answer set existence of an ordinary nor-
mal logic program). The problems with higher complex-
ity can be polynomially reduced to disjunctive logic pro-
gramming, since NPNEXP⊆NEXPNP, and for disjunctive
logic programs, deciding answer set existence, as well as
brave reasoning, is NEXPNP-complete (Dantsin et al. 2001).
However, intuitively, NPNEXP has much less computational
power than NEXPNP, and thus the full power of disjunctive
logic programming may not be needed. It thus remains to
find efficient and useful transformations that are tailored to
the complexity of the problems at hand.

Another interesting topic of future research is to extend
our approach to dl-programs with disjunctions, NAF-liter-
als, and dl-atoms in the heads of dl-rules.
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Appendix
We now give some further details on the dl-program KBS =
(LS , PS) of Example 1. In addition to the dl-rules (1)–(9),
the set PS also contains the following dl-rules:

author(per
1
); author(per

2
); author(per

3
); . . .

area(A); area(B); area(C); area(D);
cluster(T1); cluster(T2);
key(Belief Revision);
key(Nonmonotonic Reasoning);
key(Answer Set Programming); . . .

The description logic knowledge base LS is partially given
below (note that in our current prototype implementation
based on RACER, the ontology as well as the logic pro-
gram have to be extended by workarounds since RACER
does not support individuals as part of concept expressions).
Here, Dstring and DN denote the domains of the datatypes
of strings and natural numbers, respectively.

≥ 1 title v Publication; > v ∀title.Dstring ;
≥ 1 year v Publication; > v ∀year .DN;
≥ 1 firstname v Person; > v ∀firstname.Dstring ;

≥ 1 lastname v Person; > v ∀lastname.Dstring ;
≥ 1 keyword v Paper ; > v ∀keyword .Kw ;
≥ 1 cites v Paper ; > v ∀cites.Paper ;
≥ 1 contains v Area; > v ∀contains.Kw ;
≥ 1 hasAuthor v Paper ; > v ∀hasAuthor .Person;
≥ 1 expert v Person; > v ∀expert .Area;
≥ 1 inArea v Paper ; > v ∀inArea.Area;
≥ 1 hasMember v TopicCluster ; > v ∀hasMember .Kw ;
isContainedIn = contains−;
isAuthorOf = hasAuthor−;
isMemberOf = hasMember−;
Paper v Publication;
Referee v Person;
∃inArea.{A} = ∃keyword .(∃isContainedIn.{A});
∃expert .{A} = ∃isAuthorOf .(∃inArea.{A});
∃inArea.{B} = ∃keyword .(∃isContainedIn.{B});
∃expert .{B} = ∃isAuthorOf .(∃inArea.{B});
∃inArea.{C} = ∃keyword .(∃isContainedIn.{C});
∃expert .{C} = ∃isAuthorOf .(∃inArea.{C});
∃inArea.{D} = ∃keyword .(∃isContainedIn.{D});
∃expert .{D} = ∃isAuthorOf .(∃inArea.{D});

Kw(Belief Revision); Kw(Frame Systems);
Kw(Intelligent Agents); Kw(Bioinformatics);
. . .
Area(A); Area(B); Area(C); Area(D);
contains(A,Belief Revision);
contains(A,Default Reasoning);
contains(B,Frame Systems);
contains(B,Ontologies);
contains(C,Semantic Web);
. . .
TopicCluster(T1);
hasMember(T1,Semantic Web);
hasMember(T1,OWL);
hasMember(T1,Ontologies);
TopicCluster(T2);
hasMember(T2,Coherence and Coordination);
. . .
Person(per

1
);

firstname(per
1
, “Vladimir”);

lastname(per
1
, “Lifschitz”);

Person(per
2
);

firstname(per
2
, “Michael”);

lastname(per
2
, “Gelfond”);

. . .
Referee(per

1
);

Referee(per
2
);

. . .
Paper(pub

1
);

title(pub
1
, “Classical Negation in Logic Programs

and Disjunctive Databases”);
year(pub

1
, “1991”);

hasAuthor(pub
1
, per

1
);

hasAuthor(pub
1
, per

2
);

keyword(pub
1
,Answer Set Programming);

keyword(pub
1
,Disjunctive Logic Programming).

. . .
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