
Data Complexity of Query Answering in Description Logics

Diego Calvanese1, Giuseppe De Giacomo2, Domenico Lembo2, Maurizio Lenzerini2, Riccardo Rosati2

1 Faculty of Computer Science
Free University of Bozen-Bolzano

Piazza Domenicani 3
I-39100 Bolzano, Italy

calvanese@inf.unibz.it

2 Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Salaria 113
I-00198 Roma, Italy

lastname@dis.uniroma1.it

Abstract

In this paper we study data complexity of answering conjunc-
tive queries over Description Logic knowledge bases consti-
tuted by an ABox and a TBox. In particular, we are inter-
ested in characterizing the FOL-reducibility and the polyno-
mial tractability boundaries of conjunctive query answering,
depending on the expressive power of the Description Logic
used to specify the knowledge base. FOL-reducibility means
that query answering can be reduced to evaluating queries
over the database corresponding to the ABox. Since first-
order queries can be expressed in SQL, the importance of
FOL-reducibility is that, when query answering enjoys this
property, we can take advantage of Data Base Management
System (DBMS) techniques for both representing data, i.e.,
ABox assertions, and answering queries via reformulation
into SQL. What emerges from our complexity analysis is that
the Description Logics of the DL-Lite family are the maximal
logics allowing conjunctive query answering through stan-
dard database technology. In this sense, they are the first De-
scription Logics specifically tailored for effective query an-
swering over very large ABoxes.

Introduction
The idea of using ontologies as a conceptual view over data
repositories is becoming more and more popular. For ex-
ample, in Enterprise Application Integration(Lee, Siau, &
Hong 2003), Data Integration (Lenzerini 2002), and the Se-
mantic Web (Heflin & Hendler 2001), the intensional level
of the application domain can be profitably represented by
an ontology, so that clients can rely on a shared conceptu-
alization when accessing the services provided by the sys-
tem. In these contexts, the set of instances of the concepts
in the ontology is to be managed in the data layer of the
system architecture (e.g., in the lowest of the three tiers of
the Enterprise Software Architecture), and, since instances
correspond to the data items of the underlying information
system, such a layer constitutes a very large (much larger
than the intensional level of the ontology) repository, to be
stored in secondary storage (see (Borgida et al. 1989)).

When clients access the application ontology, it is very
likely that one of the main services they need is the one of
answering complex queries over the extensional level of the

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

ontology (obviously making use of the intensional level as
well in producing the answer). Here, by complex we mean
that it does not suffice to ask for the instances of concepts,
but we need at least expressing conjunctive conditions on the
extensional level. Given the size of the instance repository,
when measuring the computational complexity of query an-
swering (and reasoning in general) the most important pa-
rameter is the size of the data. In other words, we are inter-
ested in the so-called data complexity of query answering.

In this paper we consider conjunctive queries (CQs) spec-
ified over ontologies expressed in Description Logics (DL),
and study the data complexity of the query answering prob-
lem. Since an ontology in DL is essentially a knowledge
base (KB) constituted by a TBox and an ABox, the problem
we address is the one of computing the answers to a CQ that
are logical consequences of the TBox and the ABox, where
complexity is measured with respect to the size of the ABox
only. Note that we borrow the notion of data complexity
from the database literature (Vardi 1982), on the premise that
an ABox can be naturally viewed as a relational database.

We are interested in characterizing the FOL-reducibility
and the polynomial tractability boundaries of conjunctive
query answering, depending on the expressive power of the
DL used to specify the KB. We say that query answering is
FOL-reducible in a DL L, if for every conjunctive query q
over an L TBox T , there is a first-order query q ′ such that
for all ABoxes A the answers to q with respect to the KB
(T ,A) are the same as the answers to q ′ over the database
corresponding to the ABox A. Since first-order queries can
be expressed in SQL, the importance of FOL-reducibility is
that, when query answering enjoys this property, we can take
advantage of Data Base Management System (DBMS) tech-
niques for both representing data, i.e., ABox assertions, and
answering queries via reformulation into SQL1. Notably, in
this case, the data complexity of conjunctive query answer-
ing over ontologies is the one of FOL queries over databases,
i.e., LOGSPACE.

We are also interested to know for which DLs we go be-
yond FOL. For this purpose, we consider the LOGSPACE
boundary of the problem. Indeed, we single out those
DLs for which query answering becomes NLOGSPACE-

1We consider here the kernel of the SQL-92 standard, i.e., we
see SQL as an implementation of relational algebra.

260

hard and PTIME,-hard respectively. From the complexity
characterization of query languages, it follows that those
DLs require at least the power of linear recursive Data-
log (NLOGSPACE), and general recursive Datalog (PTIME).
Note that, although very interesting and promising Datalog
engines exist, query optimization strategies for this query
language are not sufficiently mature yet to deal with com-
plex applications with millions of instances in the exten-
sional level. Finally, we address the problem of going even
beyond PTIME, by exhibiting DLs for which query answer-
ing is polynomially intractable.

More precisely, the contributions of the paper are the fol-
lowing.

• We discuss DLs for which conjunctive query answering
is FOL-reducible. In this class, we essentially find the
family of DL-Lite (Calvanese et al. 2005) languages. No-
tably, the two simplest DLs of this family (namely, DL-
LiteF ,� and DL-LiteR,�) are rich enough to express basic
ontology languages, e.g., extensions of (the DL subset of)
RDFS2 or fragments of OWL-DL3; conceptual data mod-
els, e.g., Entity-Relationship (Abiteboul, Hull, & Vianu
1995); and object-oriented formalisms, e.g., basic UML
class diagrams4. We also show that we can extend these
two languages by adding n-ary relations, and still retain
FOL-reducibility. We show that the DLs of the DL-Lite
family are maximally expressive DLs for which query an-
swering is FOL reducible.

• We show that minimal additions to the languages consid-
ered above bring data complexity of conjunctive query an-
swering to NLOGSPACE-hardness and PTIME-hardness,
thus losing the possibility of reformulating queries in first-
order logic. In spite of the fact that we conjecture that for
such languages query answering is polynomially tractable
(in NLOGSPACE and PTIME, respectively), these hard-
ness results tell us that in query answering we cannot take
advantage of state-of-the-art database query optimization
strategies, and this might hamper practical feasibility for
very large ABoxes.

• Finally, we establish coNP-hardness of conjunctive query
answering with respect to data complexity for surprisingly
simple DLs. In particular, we show that we get intractabil-
ity as soon as the DL is able to express simple forms of
union.

What emerges from our complexity analysis is that the
DLs of the DL-Lite family are “maximal” DLs which allow
for answering conjunctive queries through standard database
technology. In this sense, they are the first DLs specifically
tailored for effective query answering over large amounts of
data.

The paper is organized as follows. In the next section we
introduce some preliminaries which will be useful for the
subsequent discussion. In the sections on FOL-reducibility
of DL-Lite and DLR-Lite we present DLs for which query
answering is FOL-reducible. Then, we deal with DLs for

2http://www.w3.org/TR/rdf-schema/
3http://www.w3.org/TR/owl-features/
4http://www.omg.org/uml/

which query answering goes beyond LOGSPACE: we first
identify DLs for which query answering is NLOGSPACE-
hard; then we characterize DLs for which query answer-
ing is PTIME-hard; and finally we identify DLs for which
query answering is coNP-hard. In the last two sections we
overview related work, and we draw some conclusions.

Preliminaries
Description Logics (DLs) (Baader et al. 2003) are logics
that represent the domain of interest in terms of concepts,
denoting sets of objects, and roles, denoting binary rela-
tions between (instances of) concepts. Complex concept and
role expressions are constructed starting from a set of atomic
concepts and roles by applying suitable constructs. Different
DLs allow for different constructs. In this paper, we distin-
guish between the constructs that are allowed in the concepts
in the left-hand side (Cl) and those in the right-hand side
(Cr) of inclusion assertions (see later).

As a concrete example of a DL, we focus on DL-Litecore ,
which serves as core language for the family of DL-Lite lan-
guages discussed in the rest of the paper. The language for
DL-Litecore concepts and roles is defined as follows:

Cl −→ A | ∃R
Cr −→ A | ∃R | ¬A | ¬∃R
R −→ P | P−

where Cl (resp., Cr) denotes a concept used in the left-hand
side (resp., right-hand side) of an inclusion assertion, A de-
notes an atomic concept, P an atomic role, and P − its in-
verse.

We observe that we might include Cl 1 � Cl2 in the con-
structs for the left-hand side of the inclusion assertions and
Cr1 � Cr2 in the constructs for the right-hand side. In this
way, however, we would not extend the expressive capabil-
ities of the language, since these constructs can be simu-
lated by considering that Cl 1 � Cl2 � Cr is equivalent to
the pair of assertions Cl 1 � Cr and Cl2 � Cr , and that
Cl � Cr1 � Cr2 is equivalent to Cl � Cr 1 and Cl � Cr 2.
Similarly, we might add ⊥ to the constructs for the left-hand
side and � to those for the right-hand side.

The semantics of a DL is given in terms of interpreta-
tions, where an interpretation I = (ΔI , ·I) consists of an
interpretation domain ΔI and an interpretation function ·I
that assigns to each concept C a subset CI of ΔI , and to
each role R a binary relation over ΔI . In particular for the
constructs of DL-Litecore we have:

AI ⊆ ΔI

P I ⊆ ΔI × ΔI

(P−)I = {(o2, o1) | (o1, o2) ∈ P I}
(∃R)I = {o | ∃o′. (o, o′) ∈ RI}
(¬A)I = ΔI \ AI

(¬∃R)I = ΔI \ ∃RI

A DL knowledge base (KB) K = (T ,A) represents the
domain of interest and consists of two parts, a TBox T , rep-
resenting intensional knowledge, and an ABox A, represent-
ing extensional knowledge. A TBox is formed by a set of
inclusion assertions of the form

Cl � Cr

261

where Cl and Cr are formed using the constructs allowed
by the particular DL used, e.g., for DL-Litecore we can have
the constructs described above. Such an inclusion assertion
expresses that all instances of concept Cl are also instances
of concept Cr . Apart from the above inclusion assertions,
some DLs that we consider in this paper, and that go beyond
DL-Litecore allow for other forms of assertions in the TBox
(see later).

An ABox is formed by a set of membership assertions on
atomic concepts and on atomic roles:

A(a), P (a1, a2)

stating respectively that the object (denoted by the constant)
a is an instance of A and that the pair (a1, a2) of objects is
an instance of the role P . Other forms of ABoxes have also
been proposed (Baader et al. 2003), but we will not consider
them in this paper.

We now specify the semantics of both inclusion and mem-
bership assertions. An interpretation I is a model of an in-
clusion assertion Cl � Cr if ClI ⊆ CrI . To specify the se-
mantics of membership assertions, we extend the interpreta-
tion function to constants, by assigning to each constant a a
distinct object aI ∈ ΔI . Note that this implies that, as usual
in DLs, we enforce the unique name assumption on con-
stants (Baader et al. 2003). An interpretation I is a model of
a membership assertion A(a) (resp., P (a1, a2)) if aI ∈ AI
(resp., (aI

1 , aI
2) ∈ P I). A model of a KB K = (T ,A) is

an interpretation I that is a model of all assertions in T and
A. A KB is satisfiable if it has at least one model. A KB
K logically implies (an assertion) α, written K |= α, if all
models of K are also models of α.

We can extract information from the extensional level of a
KB K expressed in a DL, by using queries. In particular we
will concentrate on conjunctive queries: a conjunctive query
q(�x) over a KB K is an expression of the form

{ �x | conj (�x, �y) }
where �x are the so-called distinguished variables (which
will be bound with objects in the KB), �y are the non-
distinguished variables (which are existentially quantified),
and conj (�x, �y) is a conjunction of atoms of the form A(z)
or P (z1, z2) where A and P are respectively atomic con-
cepts and roles of K and z, z1, z2 are either constants in K
or variables in �x or �y.

Given an interpretation I, the conjunctive query q(�x) =
{�x | conj (�x, �y)} is interpreted as the set qI of tuples �o of ob-
jects such that, when assigning �o to �x, the first-order formula
∃�y.conj (�x, �y) evaluates to true in I.

The reasoning service we are interested in is (conjunctive)
query answering: given a knowledge base K and a conjunc-
tive query q(�x) over K, return all tuples �a of constants in
K such that, when substituted to the variables �x in q(�x), we
have that K |= q(�a), i.e., such that �aI ∈ qI for every model
I of K. We observe that query answering (properly) general-
izes a well known reasoning service in DLs, namely instance
checking, i.e., logical implication of an ABox assertion. In
particular, instance checking can be expressed as the prob-
lem of answering (boolean) conjunctive queries constituted
by just one ground atom.

Finally, we refer to data complexity of query answering,
which is a notion borrowed from relational database the-
ory (Vardi 1982). First, we note that there is a recognition
problem associated with query answering, which is defined
as follows. We have a fixed TBox T expressed in a DL
L, and a fixed query q: the recognition problem associated
to T and q is the decision problem of checking whether,
given an ABox A, and a tuple �a of constants, we have that
(T ,A) |= q(�a). Note that neither the TBox nor the query is
an input to the recognition problem.

Let S be a complexity class. When we say that query an-
swering for a certain DL L is in S with respect to data com-
plexity, we mean that the corresponding recognition problem
is in S. Similarly, when we say that query answering for a
certain DL L is S-hard with respect to data complexity, we
mean that the corresponding recognition problem is S-hard.

We will also use the notion of Q-reducibility of query an-
swering, where Q is a given query language. To this pur-
pose, we define IA as the interpretation defined as follows:
- aIA = a for each constant a,

- AIA = {a | A(a) ∈ A} for each atomic concept A, and

- P IA = {(a1, a2) | P (a1, a2) ∈ A} for each atomic role
P .

Query answering in a DL L is Q-reducible if for every (con-
junctive) query q and every TBox T expressed in L, there
exists a query q1, over the same alphabet, belonging to the
query language Q, such that for every ABox A, (T ,A) |=
q(�a) iff �aIA ∈ qIA

1 . In other words, q1 is evaluated over the
ABox A considered as a database. One of the most interest-
ing classes of queries is that of FOL queries, i.e., the queries
expressed in first-order logic, since, from the practical point
of view, FOL queries correspond to queries expressed in re-
lational algebra (i.e., in SQL). Observe that every FOL query
can be evaluated in LOGSPACE with respect to data com-
plexity (see e.g., (Abiteboul, Hull, & Vianu 1995)). It fol-
lows that if L is FOL-reducible, then query answering in L is
in LOGSPACE wrt data complexity. Vice-versa, if query an-
swering is S-hard wrt data complexity for some complexity
class S larger than LOGSPACE (e.g., NLOGSPACE, PTIME,
coNP, etc.), then it is not FOL-reducible.

FOL-reducibility for the DL-Lite family
In this section we discuss two new DLs that extend DL-
Litecore , and show that in such DLs query answering is FOL-
reducible (and hence is in LOGSPACE).

The first DL that we consider is DL-LiteF ,�, which ex-
tends DL-Litecore by allowing for

(a) the specification of conjunctions of concepts in the left-
hand side of inclusion assertions, and

(b) the specification of functionality on a role R of the form
(funct R).
More precisely, the language for concepts, roles and TBox

assertions in DL-LiteF ,� is defined as follows:
Cl −→ A | ∃R | Cl1 � Cl2
Cr −→ A | ∃R | ¬A | ¬∃R
R −→ P | P−
TBox assertions : Cl � Cr , (funct R).

262

Given an interpretation I, we have that (Cl 1 � Cl2)I =
ClI1 ∩ ClI2 . Furthermore, I is a model of an assertion
(funct P) if the binary relation P I is a function, i.e.,
(o, o1) ∈ P I and (o, o2) ∈ P I implies o1 = o2. Analo-
gously for (funct P −).

Notice that DL-LiteF ,� is actually an extension of the DL
presented in (Calvanese et al. 2005) (simply called DL-Lite),
which essentially did not have conjunctions in Cl . In (Cal-
vanese et al. 2005) we have presented an algorithm for query
answering based on the idea of expanding the original query
into a set (i.e., a union) of conjunctive queries that can be di-
rectly evaluated over the ABox. The expansion process takes
into account only the original query and the TBox assertions,
and is independent of the ABox, which can be easily man-
aged in secondary storage by a relational DBMS. Therefore,
from the results in (Calvanese et al. 2005) it follows that
query answering in DL-Lite is FOL-reducible. In the fol-
lowing, we show that FOL-reducibility of query answering
still holds in DL-LiteF ,�, as stated by the theorem below.

Theorem 1 Query answering in DL-LiteF ,� is FOL-
reducible and therefore is in LOGSPACE with respect to data
complexity.

Proof (sketch). See appendix.

We remark that DL-LiteF ,� does not enjoy the finite model
property (Baader et al. 2003): indeed, the knowledge base
K = (T ,A) with T = {A � ∃P, ∃P− � A, B �
¬A, (funct P−)} and A = {B(a)} admits only infinite
models. We also remark that a reasoner for the description
logic DL-LiteF ,� has been implemented within the QuOnto
system (Acciarri et al. 2005).

Notice that DL-Litecore only allows for unqualified exis-
tential quantification and inclusions between concepts. One
might ask what happens to query answering if we add qual-
ified existential quantification and inclusions between roles
to the language. To this purpose, we consider a second no-
table extension of DL-Litecore , called DL-LiteR,�. The DL
DL-LiteR,� extends DL-Litecore with the ability of specify-
ing conjunctions of concepts on the left-hand side of inclu-
sion assertions (analogously to DL-LiteF ,�), while on the
right-hand side it allows also for qualified existential quan-
tification. Furthermore, in addition to inclusion assertions
between concepts, DL-LiteR,� allows for inclusion asser-
tions between roles of the form:

R1 � R2

where Ri is either an atomic role or its inverse.
More precisely, the language for concepts and roles and

TBox assertions in DL-LiteR,� is defined as follows:

Cl −→ A | ∃R | Cl1 � Cl2
Cr −→ A | ∃R | ∃R.A | ¬A | ¬∃R
R −→ P | P−

TBox assertions : Cl � Cr , R1 � R2.

For each interpretation I, besides those seen so far, the equa-
tion (∃R.A)I = {o | ∃o′. (o, o′) ∈ RI and o′ ∈ AI} holds.
Furthermore, I is a model of an inclusion assertion of the
form R1 � R2, if RI

1 ⊆ RI
2 .

For the above DL the following result holds.

Theorem 2 Query answering in DL-LiteR,� is FOL-
reducible and therefore is in LOGSPACE with respect to data
complexity.

Proof (sketch). Again, the query answering algorithm
for DL-LiteR,� is obtained by extending the reformulation
technique of DL-Lite presented in (Calvanese et al. 2005).
The extension is similar to the one devised for DL-LiteF ,�,
provided that

(i) inclusion assertions with qualified existential quantifi-
cation on the right-hand side are dealt with by a pre-
processing step that eliminates such inclusions. In partic-
ular, each such a construct is represented through the use
of unqualified existential quantification, auxiliary roles,
and inclusions between roles;

(ii) the normalization step closes the TBox also with respect
to a further rule which takes into account the interaction
between negative inclusions and inclusion assertions be-
tween roles;

(iii) a suitable reformulation rule is added to the algorithm for
taking into account inclusion assertions between roles.

Other logics allowing for different usages of qualified ex-
istential quantification will be analyzed in the next sections.

Extension to n-ary relations
In this section we show that we can extend the FOL-
reducibility results of Theorems 1 and 2 to the case where we
allow for the presence of n-ary relations, similar to the DL
DLR (Calvanese, De Giacomo, & Lenzerini 1998). Given
an interpretation I, an n-ary relation R is interpreted as an
n-ary relation RI over ΔI . For each of the DLs presented in
the above sections, we introduce now a corresponding vari-
ant in which we allow for n-ary relations instead of (binary)
roles. In the following, R denotes an n-ary relation, and we
use �o to denote an n-tuple of objects, and �o[i] to denote the
i-th component of �o.

The DL DLR-Litecore is obtained from DL-Litecore by re-
placing both in Cl and in Cr the construct ∃R with ∃i:R,
where R is an n-ary relation and i ∈ {1, . . . , n}, and by
removing the rule R −→ P | P −. The added construct de-
notes the projection of the relation denoted by R on its i-th
component. More precisely, the language for concepts, roles
and TBox assertions in DLR-Litecore is defined as follows:

Cl −→ A | ∃i:R
Cr −→ A | ∃i:R | ¬A | ¬∃i:R
TBox assertions : Cl � Cr .

Formally, for an interpretation I, we define (∃i:R)I =
{�o[i] | �o ∈ RI}, and (¬∃i:R)I = ΔI \ (∃i:R)I .

Then, DLR-LiteF ,�, analogously to DL-LiteF ,�, is ob-
tained from DLR-Litecore by additionally allowing in the
TBox for specifying conjunctions of concepts in the left-
hand side of inclusion assertions, and for assertions of the
form (funct i:R), stating the functionality of the i-th com-
ponent of R. More precisely, the language for concepts,

263

DL-LiteF ,�

DL-Litecore

DLR-Litecore

DLR-LiteF ,� DLR-LiteR,�

DL-LiteR,�

Figure 1: The DL-Lite family

roles and TBox assertions in DLR-LiteF ,� is defined as fol-
lows:

Cl −→ A | ∃i:R | Cl1 � Cl2
Cr −→ A | ∃i:R | ¬A | ¬∃i:R
TBox assertions : Cl � Cr , (funct i:R).

Formally, an interpretation I is a model of a functionality
assertion (funct i:R) if �o1, �o2 ∈ RI with �o1[i] = �o2[i] im-
plies �o1[j] = �o2[j] for all j ∈ {1, . . . , n}.

Analogously to Theorem 1, we can show FOL-
reducibility of DLR-LiteF ,�.

Theorem 3 Query answering in DLR-LiteF ,� is FOL-
reducible, and therefore is in LOGSPACE with respect to
data complexity.

Proof (sketch). The thesis can be demonstrated by pro-
viding an algorithm for FOL-reduction of query answering
in DLR-LiteF ,�. Such an algorithm is analogous to the one
given in the proof of Theorem 1. The main modification
concerns with the function PerfectRef in which the opera-
tor gr(g, I), which indicates the atom obtained from an atom
g by applying to it a (positive) inclusion I , is now defined as
follows (notice that now a basic concept Bi can be either A
or ∃j:R):

if I = B1 � . . . � Bm � A
(resp., I = B1 � . . . � Bm � ∃k:R)

and if g = A(x)
(resp., g = R(−, . . . ,− , x,− , . . . ,−), where x occurs
as the k-th argument of R and all the other arguments
are unbound)

then gr(g, I) = C1(x) ∧ . . . ∧ Cm(x),

where, for each i ∈ {1, . . . , m},

- Ci(x) = Ai(x) if Bi = Ai, or

- Ci(x) = ∃z1, . . . , z�.Ri(z1, . . . , zj−1, x, zj+1, . . . , z�) if
Bi = ∃j:Ri and � is the arity of Ri.

The other DL allowing for the presence of n-relations that
we consider is DLR-LiteR,�. Analogously to DL-LiteR,�,
such a new DL is obtained from DLR-Litecore by addition-
ally allowing in the TBox for specifying conjunctions of
concepts in the left-hand side of inclusion assertions and by

adding to Cr the construct ∃i:R.A1, . . . , An. Such a con-
struct denotes those objects that participate as i-th compo-
nent to tuples of R in which the j-th component is an in-
stance of Aj , for all j ∈ {1, . . . , n}. Additionally, DLR-
LiteR,� allows in the TBox for inclusion assertions between
projections of relations of the forms:

R1[i1, . . . , ik] � R2[j1, . . . , jk]
R1[i1, . . . , ik] � ¬R2[j1, . . . , jk]

where R1 is an n-ary relation, i1, . . . , ik ∈ {1, . . . , n}, and
ip = iq if p = q; R2 is an m-ary relation, j1, . . . , jk ∈
{1, . . . , m}, and jp = jq if p = q. The language for con-
cepts, roles and TBox assertions in DLR-LiteR,� is therefore
defined as follows:

Cl −→ A | ∃i:R | Cl1 � Cl2
Cr −→ A | ∃i:R | ¬A | ¬∃i:R | ∃i:R.A1, . . . , An

TBox assertions : Cl � Cr , (funct i:R),
R1[i1, . . . , ik] � R2[j1, . . . , jk],
R1[i1, . . . , ik] � ¬R2[j1, . . . , jk].

Formally, for an interpretation I, we define
(∃i:R.A1, . . . , An)I = {�o[i] | �o ∈ RI with �o[j] ∈
AI

j , for j ∈ {1, . . . , n}}. Furthermore, given an n-ary
relation R1 and an m-ary relation R2, I is a model of an
assertion of the form R1[i1, . . . , ik] � R2[j1, . . . , jk], if
for every n-tuple of objects �o1 ∈ RI

1 there is an m-tuple
of objects �o2 ∈ RI

2 such that (�o1[i1], . . . , �o1[ik]) =
(�o2[j1], . . . , �o2[jk]). Also, I is a model of an assertion of
the form R1[i1, . . . , ik] � ¬R2[j1, . . . , jk], if there do not
exist two tuples of objects �o1 ∈ RI

1 and �o2 ∈ RI
2 such that

(�o1[i1], . . . , �o1[ik]) = (�o2[j1], . . . , �o2[jk]).
Analogously to Theorem 2, we can show FOL-

reducibility of DLR-LiteR,�.

Theorem 4 Query answering in DLR-LiteR,� is FOL-
reducible, and therefore is in LOGSPACE with respect to
data complexity.

Finally, we summarize the relationship between the vari-
ous DLs of the DL-Lite family in Figure 1.

NLOGSPACE-hard DLs
In the previous section, we have pointed out the importance
of languages for which query answering is FOL-reducible.
In this section, we show that, as soon as we consider fur-
ther, minimal extensions of DL-Litecore , besides those il-
lustrated in the above sections, we cross the boundary of

264

LOGSPACE data complexity. Going beyond LOGSPACE
data complexity means actually that we lose the property
of FOL-reducibility, and therefore query answering requires
more powerful engines than those available in standard re-
lational database technology. An immediate consequence
of this fact is that we cannot take advantage anymore of data
management tools and query optimization techniques of cur-
rent DBMSs.

The first case of this type is when we add qualified ex-
istential quantification to Cl . The second case is when we
add qualified universal quantification to Cr , and the third
case is when we add qualified existential quantification to
Cr , while keeping the possibility of expressing functionality
constraints. This is formally stated in the following theorem.

Theorem 5 Instance checking (and hence query answering)
is NLOGSPACE-hard with respect to data complexity for the
cases where

1. Cl → A | ∃R.A
Cr → A
R → P
TBox assertions: Cl � Cr

2. Cl → A
Cr → A | ∀R.A
R → P
TBox assertions: Cl � Cr

3. Cl → A
Cr → A | ∃R.A
R → P
TBox assertions: Cl � Cr , (funct R)

Proof (sketch). For Case 1, the proof is by a LOGSPACE
reduction from reachability in directed graphs, which is
NLOGSPACE-complete. For Case 2, the proof follows from
Case 1 and the observation that an assertion ∃P .A1 � A2

is logically equivalent to the assertion A1 � ∀P−.A2, and
that we can get rid of inverse roles by inverting the edges
of the graph represented in the ABox. For Case 3, the
proof is again by a LOGSPACE reduction from reachabil-
ity in directed graphs, and is based on the idea that an as-
sertion ∃P .A1 � A2 can be simulated by the assertions
A1 � ∃P−.A2 and (funct P−). Moreover, the graph can
be encoded using only functional roles, and we can again get
rid of inverse roles by inverting edges.

Note that all the above “negative” results hold for in-
stance checking already, i.e., for the simplest queries pos-
sible. Also, note that in all three cases, we are considering
extensions to a minimal subset of DL-Litecore in order to get
NLOGSPACE-hardness.

PTIME-hard DLs
Next we show that if we consider further extensions to the
logics mentioned in Theorem 5, we get even stronger com-
plexity results. In particular, we consider five different cases
where query answering (actually, instance checking already)
becomes PTIME-hard in data complexity.

Note that the PTIME-hardness result basically means that
we need at least the power of full Datalog to answer queries
in these cases.

Theorem 6 Instance checking (and hence query answering)
is PTIME-hard with respect to data complexity for the cases
where

1. Cl → A | ∃R.A
Cr → A | ∃P
R → P | P−
TBox assertions: Cl � Cr

2. Cl → A
Cr → A | ∃R.A
R → P | P−
TBox assertions: Cl � Cr , (funct R)

3. Cl → A | ∃R.A
Cr → A | ∃R.A
R → P
TBox assertions: Cl � Cr , (funct R)

Proof (sketch). For each of the three cases, the proof is by
reduction from the emptiness problem of context-free gram-
mars to query answering over such DL KBs (the only differ-
ence in the reductions is in the form of the TBox).

Theorem 7 Instance checking (and hence query answering)
is PTIME-hard with respect to data complexity for the cases
where

1. Cl → A | ∃R.A | A1 � A2

Cr → A
R → P
TBox assertions: Cl � Cr

2. Cl → A | A1 � A2

Cr → A | ∀R.A
R → P
TBox assertions: Cl � Cr

3. Cl → A | A1 � A2

Cr → A | ∃R.A
R → P
TBox assertions: Cl � Cr , (funct R)

Proof (sketch). For Case 1, the proof is by a LOGSPACE
reduction from Path System Accessibility, which is PTIME-
complete (Garey & Johnson 1979). For Cases 2 and 3, the
proof follows from Case 1 and observations analogous to the
ones for Theorem 5.

coNP-hard DLs
Finally, we show three cases where the TBox language be-
comes so expressive that the data complexity of query an-
swering goes beyond PTIME (assuming PTIME = NP).

Theorem 8 Query answering is coNP-hard with respect to
data complexity for the cases where

1. Cl → A | ¬A
Cr → A
R → P
TBox assertions: Cl � Cr

2. Cl → A
Cr → A | A1 � A2

R → P
TBox assertions: Cl � Cr

265

3. Cl → A | ∀R.A
Cr → A
R → P
TBox assertions: Cl � Cr

Proof (sketch). In all three cases, the proof is an adapta-
tion of the proof of coNP-hardness of instance checking for
ALE presented in (Donini et al. 1994). The intuition is
that in all three cases query answering requires reasoning
by cases, caused by the presence of simple covering con-
straints (induced by union). Note that, whereas in case 2
covering can be explicitly specified by inclusion assertions
of the form A � A1 � A2, for case 1 (resp. case 3) we can
exploit the fact that A and ¬A (resp.∀R.A and ∃R) cover
the entire domain.

Related work
All the DLs studied in this paper are fragments of expres-
sive DLs with assertions and inverses studied in the 90’s
(see (Baader et al. 2003) for an overview), which are at
the base of current ontology languages such as OWL, and
for which optimized automated reasoning systems such as
Fact5, Racer6 and Pellet7 have been developed. Indeed,
one could use, off-the-shelf, a system like Racer or Pellet
to perform instance checking in such DLs. Also, reason-
ing with conjunctive queries in these DLs has been stud-
ied (see e.g., (Calvanese, De Giacomo, & Lenzerini 1998;
2000)), although not yet implemented in systems. Unfortu-
nately, the known reasoning algorithms for these DLs are in
2EXPTIME with respect to combined complexity, and more
importantly they are not tailored towards obtaining tight
complexity bounds with respect to data complexity (they are
in EXPTIME). Alternative reasoning procedures that allow
for clearly isolating data complexity have recently been pro-
posed, how they will work in practice still needs to be under-
stood. A coNP upper bound for data complexity of instance
checking in the expressive DL SHIQ has been shown
by making use of a reduction to Disjunctive Datalog and
then exploiting resolution (Hustadt, Motik, & Sattler 2004;
2005). It remains open whether such a technique can be
extended to deal efficiently with conjunctive queries. In
(Levy & Rousset 1998), making use of an algorithm based
on tableaux, a coNP, upper-bound with respect to data
complexity is given for a DL with arbitrary inclusion as-
sertions, but lacking inverse roles. Recently, building on
such techniques, coNP-completeness of answering conjunc-
tive queries for SHIQ, which includes inverse roles, and
number restrictions (that generalize functionality) has been
shown (Ortiz de la Fuente et al. 2005). It is interesting to
observe that the results in this paper (Theorem 8) tell us that
we get coNP-completeness already for very small fragments
of SHIQ.

In (Hustadt, Motik, & Sattler 2005), a fragment of
SHIQ, called Horn-SHIQ, which subsumes both DL-

5http://www.cs.man.ac.uk/˜horrocks/FaCT/
6http://www.sts.tu-harburg.de/˜r.f.

moeller/racer/
7http://www.mindswap.org/2003/pellet/

LiteF ,� and DL-LiteR,�, is studied and a PTIME upper
bound in data complexity for instance checking is shown.
The results in the current paper (Theorem 6) tell us that in-
stance checking in Horn-SHIQ is also PTIME-hard. In-
deed, Horn-SHIQ allows for qualified existential quantifi-
cation ∃P .A in both sides of inclusion assertions and (an
extended form) of functionality restrictions.

DL-LiteR,� captures (the DL-subset of) RDFS extended
with participation constraints (i.e., inclusion assertions with
∃R on the right-hand side). Hence, query answering over
an RDFS ontology, even extended with participation con-
straints, is FOL-reducible. Finally, if we move from RDFS
to DLP (Grosof et al. 2003), query answering becomes
PTIME-hard, since DLP is a superset of the DL in case 1
of Theorem 7.

Conclusions
We have presented first fundamental results on the data com-
plexity (complexity with respect to the size of the ABox
only) of query answering in DLs. In particular, we have con-
centrated on the FOL-reducibility boundary of the problem,
based on the observation that, when we go above this bound-
ary, query answering is no longer expressible as a first-order
logic formula (and hence an SQL query) over the data. The
results provided in this paper are summarized in Figure 2.

We are currently following several directions to continue
the work reported in this paper. First, we conjecture that for
all NLOGSPACE and PTIME-hardness results presented here
a matching upper bound holds. Second, although here we fo-
cused on data complexity only, we are also working on char-
acterizing the complexity of query answering with respect to
the size of the TBox, with respect to the size of the query,
and with respect to combined complexity. Finally, while in
this paper we considered conjunctive queries, our general
goal is to come up with a clear picture of how the complex-
ity of query answering is influenced not only by different
TBox languages, but also by different query languages.

Acknowledgments This work has been partially sup-
ported by the EU funded IST-2005-7603 FET Project Think-
ing ONtologiES (TONES), by project HYPER, funded by
IBM through a Shared University Research (SUR) Award
grant, and by MIUR FIRB 2005 project “Tecnologie Orien-
tate alla Conoscenza per Aggregazioni di Imprese in Inter-
net” (TOCAI.IT).

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations
of Databases. Addison Wesley Publ. Co., Reading, Mas-
sachussetts.
Acciarri, A.; Calvanese, D.; De Giacomo, G.; Lembo,
D.; Lenzerini, M.; Palmieri, M.; and Rosati, R. 2005.
QUONTO: QUerying ONTOlogies. In Proc. of the 20th Nat.
Conf. on Artificial Intelligence (AAAI 2005), 1670–1671.
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2003. The Description
Logic Handbook: Theory, Implementation and Applica-
tions. Cambridge University Press.

266

Cl Cr F R Data complexity
of query answering

DL-LiteF ,�
√ − in LOGSPACE

DL-LiteR,� − √
in LOGSPACE

DLR-LiteF ,�
√ − in LOGSPACE

DLR-LiteR,� − √
in LOGSPACE

A | ∃P .A A − − NLOGSPACE-hard
A A | ∀P .A − − NLOGSPACE-hard
A A | ∃P .A

√ − NLOGSPACE-hard
A | ∃P .A | ∃P−.A A | ∃P − − PTIME-hard

A A | ∃P .A | ∃P−.A
√ − PTIME-hard

A | ∃P .A A | ∃P .A
√ − PTIME-hard

A | ∃P .A | A1 � A2 A − − PTIME-hard
A | A1 � A2 A | ∀P .A − − PTIME-hard
A | A1 � A2 A | ∃P .A

√ − PTIME-hard
A | ¬A A − − coNP-hard

A A | A1 � A2 − − coNP-hard
A | ∀P .A A − − coNP-hard

Legenda: A (possibly with subscript) = atomic concept, P = atomic role, Cl /Cr = left/right-hand side of inclusion assertions,
F = functionality assertions allowed, R = role/relationship inclusions allowed. NLOGSPACE and PTIME hardness results hold
already for instance checking.

Figure 2: Data Complexity of Query Answering for various Description Logics

Borgida, A.; Brachman, R. J.; McGuinness, D. L.; and
Resnick, L. A. 1989. CLASSIC: A structural data model
for objects. In Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, 59–67.

Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2005. DL-Lite: Tractable description logics
for ontologies. In Proc. of the 20th Nat. Conf. on Artificial
Intelligence (AAAI 2005), 602–607.

Calvanese, D.; De Giacomo, G.; and Lenzerini, M. 1998.
On the decidability of query containment under constraints.
In Proc. of the 17th ACM SIGACT SIGMOD SIGART
Symp. on Principles of Database Systems (PODS’98),
149–158.

Calvanese, D.; De Giacomo, G.; and Lenzerini, M. 2000.
Answering queries using views over description logics
knowledge bases. In Proc. of the 17th Nat. Conf. on Ar-
tificial Intelligence (AAAI 2000), 386–391.

Donini, F. M.; Lenzerini, M.; Nardi, D.; and Schaerf, A.
1994. Deduction in concept languages: From subsump-
tion to instance checking. J. of Logic and Computation
4(4):423–452.

Garey, M. R., and Johnson, D. S. 1979. Computers and In-
tractability — A guide to NP-completeness. San Francisco
(CA, USA): W. H. Freeman and Company.

Grosof, B. N.; Horrocks, I.; Volz, R.; and Decker, S. 2003.
Description logic programs: Combining logic programs
with description logic. In Proc. of the 12th Int. World Wide
Web Conf. (WWW 2003), 48–57.

Heflin, J., and Hendler, J. 2001. A portrait of the semantic
web in action. IEEE Intelligent Systems 16(2):54–59.

Hustadt, U.; Motik, B.; and Sattler, U. 2004. Reducing
SHIQ-description logic to disjunctive datalog programs.
In Proc. of the 9th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR 2004).

Hustadt, U.; Motik, B.; and Sattler, U. 2005. Data com-
plexity of reasoning in very expressive description logics.
In Proc. of the 19th Int. Joint Conf. on Artificial Intelli-
gence (IJCAI 2005).

Lee, J.; Siau, K.; and Hong, S. 2003. Enterprise integration
with erp and eai. Communications of the ACM 46(2):54 –
60.

Lenzerini, M. 2002. Data integration: A theoretical
perspective. In Proc. of the 21st ACM SIGACT SIG-
MOD SIGART Symp. on Principles of Database Systems
(PODS 2002), 233–246.

Levy, A. Y., and Rousset, M.-C. 1998. Combining Horn
rules and description logics in CARIN. Artificial Intelli-
gence 104(1–2):165–209.

Ortiz de la Fuente, M. M.; Calvanese, D.; Eiter, T.; and
Franconi, E. 2005. Data complexity of answering con-
junctive queries over SHIQ knowledge bases. Technical
report, Faculty of Computer Science, Free University of
Bozen-Bolzano. Also available as CORR technical report
at http://arxiv.org/abs/cs.LO/0507059/.

Vardi, M. Y. 1982. The complexity of relational query
languages. In Proc. of the 14th ACM SIGACT Symp. on
Theory of Computing (STOC’82), 137–146.

267

Appendix
Theorem 1 Query answering in DL-LiteF ,� is FOL-
reducible and therefore is in LOGSPACE with respect to data
complexity.

Proof (sketch). The query answering algorithm for DL-
LiteF ,� is obtained by extending the reformulation tech-
nique of DL-Lite (Calvanese et al. 2005). In the following,
we precisely describe the algorithm for FOL-reducibility of
query answering in DL-LiteF ,� knowledge bases. The algo-
rithm takes as input a DL-LiteR,� TBox T and a conjunctive
query q specified over T , and returns a union of conjunctive
queries (and therefore a FOL query) q1 such that, for each
ABox A, the evaluation of q1 over the ABox A considered
as a database (see Section Preliminaries for details) returns
the set of tuples in the answer to q over the knowledge base
(T ,A), i.e., returns all tuples �a such that (T ,A) |= q(�a).

As usual, with Cl (resp. Cr) we denote a concept used
in the left-hand side (resp. right-hand side) of inclusion as-
sertions between concepts, with A we denote an atomic
concept, with P an atomic role, and with P − its inverse
(whereas R indicates either P or P −). Furthermore, we
use the symbol B (possibly with subscripts) to denote basic
concepts, i.e., we use B to indicate either A, ∃P , or ∃P −.
Also, without loss of generality, we assume that every con-
cept name or role name occurring in an ABox A also occurs
in the corresponding TBox T . Finally, we recall that a FOL
query q(�x) over a KB K is an expression of the form

{ �x | bodyq(�x, �y) }

where �x are the so-called distinguished variables (which
will be bound with objects in the KB), �y are the non-
distinguished variables (which are existentially quantified),
and bodyq(�x, �y) is a FOL formula involving atoms of the
form A(z) or P (z1, z2) where A and P are respectively
atomic concepts and roles of K and z, z1, z2 are either con-
stants in K or variables in �x or �y8.

The algorithm makes use of three main functions, namely
Normalize, Consistent, and PerfectRef, which corre-
spond to three phases called Normalization, Satisfiability
check and Query reformulation, respectively. The first one
performs some preliminary transformations on the TBox T .
The second one computes a portion of the final output query
that properly deals with situations in which the ABox A,
over which the final output query is evaluated, contradicts
the TBox T , i.e., the knowledge base (T ,A) is unsatisfi-
able. Notice that, in these cases, every n-tuple of constants
of A is in the answer to every query of arity n over T . Fi-
nally, the third function computes the remaining portion of
the output query. Roughly speaking, PerfectRef reformu-
lates the input query q into a FOL query in which it compiles
the knowledge of the TBox T that is needed to answer q.

Normalization. The function Normalize takes as input the
TBox T and closes the TBox with respect to the following
inference rule:

8Obviously, for FOL queries that are conjunctive queries,
bodyq(�x, �y) is a conjunction of atoms, that can be also denoted
with ∃y.conj (�x, �y) (see Section Preliminaries).

if B1 � . . . � Bn � B occurs in T
and B′

1 � . . . � B′
m � ¬B occurs in T

or there exists i ∈ {1, . . . , m} such that
B′

1 � . . . � B′
i−1 � B � B′

i+1 � . . . � B′
m � ¬B′

i
occurs in T

then add B1 � . . . Bn � B′
1 � . . . � B′

m−1 � ¬B′
m to T

In the following, we denote with Normalize(T) the TBox
obtained after processing T according to the above closure.
Notice that Normalize(T) contains only assertions of the
form (i) Cl � B and (ii) Cl � ¬B. We call positive in-
clusions (PIs) inclusions of the forms (i) and negative inclu-
sions (NIs) inclusions of form (ii). The aim of normalization
is to expand the input TBox T by computing all (non-trivial)
NIs logically implied by T .

Indeed, it can be shown that, after normalization, for every
sequence B1, . . . , Bn of basic concepts,

T |= (B1 � . . . � Bn−1 � ¬Bn)

iff there exists i ∈ {1, . . . , n} such that

(B1 � . . . � Bi−1 � Bn � Bi+1 � . . . � Bn � ¬Bi)

occurs in Normalize(T).
It is also possible to prove that Normalize(T) is “equiv-

alent” to T , in the sense that, for any ABox A, the set of
models of the knowledge base (T ,A) coincides with that of
the knowledge base (A, Normalize(T)).

In the following, we indicate with TPI the TBox obtained
by dropping all negative inclusions and functionality asser-
tions from Normalize(T), and with TNI the TBox obtained
by dropping all positive inclusions from Normalize(T).
It is easy to see that TNI and TPI are disjoint and that
Normalize(T) = TPI ∪ TNI .

Satisfiability check. The function Consistent is in charge
of properly dealing with situations in which an ABox A con-
tradicts NIs or functionality assertions of the TBox T , i.e.,
(TNI ,A) is unsatisfiable. Observe that in such a case query
answering is meaningless, since, according to the “ex falso
quod libet” principle, every tuple is in the answer to every
query (of the same arity). Therefore, with regards to this is-
sue, the function Consistent takes as input the TBox TNI

and a query q of arity n and proceeds as follows9:

1. for each NI inclusion ι = B1 � . . . � Bm−1 � ¬Bm

belonging to TNI , it computes the FOL query

qι = {x1, . . . , xn | ∃y.C1(y) ∧ . . . ∧ Cm(y)∧
val(x1) ∧ . . . ∧ val(xn)},

where

- for each i ∈ {1, . . . , m}, Ci(y) = Ai(y) if Bi = Ai,
or Ci(y) = ∃zi.Pi(y, zi) if Bi = ∃Pi or Ci(y) =
∃zi.Pi(zi, y) if Bi = ∃P−

i , and
- for each i ∈ {1, . . . , n}, val(xi) = A1(xi) ∨ . . . ∨

A�(xi) ∨ ∃w1.R1(xi, w1) ∨ . . . ∨ ∃wk .Rk(xi, wk) ∨
∃v1.R1(v1, xi) ∨ . . . ∨ ∃vk.Rk(vk, xi), where
A1, . . . , A� and R1, . . . , Rk are all the atomic concepts
and the atomic roles over which inclusions of the TBox
T are asserted;

9Actually, Consistent only makes use of the arity n of q.

268

2. for each functionality assertion (funct P) belonging to
TNI , Consistent computes the FOL query

qφ = {x1, . . . , xn | ∃x, y, z.P (x, y) ∧ P (x, z)∧
y = z ∧ val (x1) ∧ . . . ∧ val (xn)};

3. for each functionality assertion (funct P −) belonging to
TNI , Consistent computes the FOL query

qφ− = {x1, . . . , xn | ∃x, y, z.P (x, y) ∧ P (z, y)∧
x = z ∧ val (x1) ∧ . . . ∧ val (xn)};

4. returns the query

qc = {�x | bodyqα
(�x, �yα) ∨ . . . ∨ bodyqν

(�x, �yν)}
where with body qα

(�x, �yα), . . . , bodyqν
(�x, �yν) we denote

the bodies of queries qα, . . . , qν constructed according to
step 1, 2, and 3.

We remember the reader that, in order to answer the
query q over a DL-LiteF ,� knowledge base (T ,A), the
above query will be evaluated over the ABox A consid-
ered as a database, i.e., over the interpretation IA defined
as follows: aIA = a for each constant a occurring in A,
AIA = {a | A(a) ∈ A} for each atomic concept A, and
P IA = {(a1, a2) | P (a1, a2) ∈ A} for each atomic role
P . Given a knowledge base (T ,A) we will call the inter-
pretation IA defined above, the minimal interpretation of
A. Then, it can be shown that, if an ABox A contradicts a
NI or a functionality assertion in the TBox TNI , i.e., if the
knowledge base (T ,A) is unsatisfiable, then, any n-tuples
constructible from constants occurring in A is returned by
the evaluation of qc over IA (thanks to the use of the con-
junctions of predicates of the form val(x1) ∧ . . . ∧ val(xn)
in the bodies of the queries qι, qφ, and qφ−).

Since Consistent provides the right answers to the query
for all cases in which the ABox contradicts NIs of the TBox,
in the following step we can focus our attention to the re-
maining case, i.e., the case in which the knowledge base is
satisfiable.

Query reformulation. Query reformulation is achieved by
means of the algorithm PerfectRef. The basic idea of our
method is to reformulate the input query expressed over the
TBox T taking into account only the PIs in T . In particular,
given a query q over a DL-LiteF ,� knowledge base (T ,A),
we compile the PIs of T into the query itself, thus obtaining
a new query qr. The evaluation of such a new query qr over
the ABox A considered as a simple relational database, i.e.,
over the minimal interpretation IA of A, returns the answer
to q over (T ,A) (when (T ,A) is satisfiable).

In the following, we illustrate PerfectRef from a techni-
cal point of view.

We say that an argument of an atom in a query is bound if
it corresponds to either a distinguished variable or a shared
variable, i.e., a variable occurring at least twice in the query
body, or a constant, while we say that it is unbound if it
corresponds to a non-distinguished non-shared variable (we
use the symbol − to represent non-distinguished non-shared
variables).

We also say that now specify when a positive inclusion I
is applicable to a query atom g if:

(i) g is of the form A(x), and I is of the form Cl � A, where
A is an atomic concept ;

(ii) g is of the form P1(x1, x2), and one of the two following
conditions holds

(a) x2 =− and I is of the form Cl � ∃P1,
(b) x1 =− and I is of the form Cl � ∃P −

1 .

Roughly speaking, an inclusion I is applicable to an atom g
if all bound arguments of g are propagated by I .

We indicate with gr(g, I) the atom obtained from the
atom g by applying the inclusion I . Let B1 � . . . � Bm

be a set of basic concepts, gr(g, I) is defined as follows:

if I = B1 � . . . � Bm � A
(resp., I = B1 � . . . � Bm � ∃P1

or I = B1 � . . . � Bm � ∃P−
1)

and g = A(x) (resp., g = P1(x,−) or g = P1(−, x))
then gr(g, I) = C1(x) ∧ . . . ∧ Cm(x),

where, for each i ∈ {1, . . . , m},

- Ci(x) = Ai(x) if Bi = Ai, or

- Ci(x) = ∃zi.Pi(x, zi) if Bi = ∃Pi or

- Ci(x) = ∃zi.Pi(zi, x) if Bi = ∃P−
i .

We are now ready to define the algorithm PerfectRef.

Algorithm PerfectRef(q,T)
Input: conjunctive query q of arity n, DL-LiteF,� TBox T
Output: FOL query qr

P := {q};
repeat

P ′ := P ;
for each q ∈ P ′ do
(a) for each g in q do

for each PI I in T do
if I is applicable to g
then P := P ∪ { q[g/gr(g, I)] };

(b) for each g1, g2 in q do
if g1 and g2 unify
then P := P ∪ {τ (reduce(q, g1, g2))};

until P ′ = P ;
let qr be a query in P
for each q ∈ P do

bodyqr
= bodyqr

∨ bodyq;
return qr

end

In the algorithm, q[g/g ′] denotes the query obtained from
q by replacing the atom g with a new atom g ′.

Informally, the algorithm first reformulates the atoms of
each (conjunctive) query q ∈ P ′, and produces a new
(conjunctive) query for each atom reformulation (step (a)).
Roughly speaking, PIs are used as rewriting rules, applied
from right to left, that allow to compile away in the refor-
mulation the knowledge of T that is relevant for answering
the query q.

At step (b), for each pair of atoms g1, g2 that unify, the
algorithm computes the query q ′ = reduce(q, g1, g2), by ap-
plying to q the most general unifier between g1 and g2. Due
to the unification, variables that were bound in q may be-
come unbound in q ′. Hence, PIs that were not applicable to
atoms of q, may become applicable to atoms of q ′ (in the

269

next executions of step (a)). Function τ applied to q ′ re-
places with − each unbound variable in q ′. Then, the for
cycle before the end of the algorithm transforms the set of
conjunctive queries P into a FOL query (union of conjunc-
tive queries) qr.

Finally, we are able to illustrate the algorithm FOL-
Reduction.

Algorithm FOL-Reduction(q,T)
Input: conjunctive query q of arity n, DL-LiteF,� TBox T
Output: FOL query q
T = Normalize(T);
let TNI be the TBox obtained from T by dropping all PIs;
TPI = T \TNI ;
qc = Consistent(TNI , q);
qr = PerfectRef(TPI , q);
bodyqc = bodyqc ∨ bodyqr ;
return qc

end

Notice that in the above procedure, the algorithm Perfec-
tRef is invoked with the knowledge base TPI as input, since
the query reformulation step is performed only according to
positive inclusions, and therefore we can avoid to pass also
negative inclusions and functionality assertions to Perfec-
tRef.

Let A be an ABox, and �a be a tuple of constants of A,
and let q1 = FOL-Reduction(T , q), it ca be shown that
�a ∈ qIA

1 , iff (T ,A) |= q(�a) .

270

