Event Recognition in Airborne Motion Imagery

J. B. Burns, C. 1. Connolly, J. F. Thomere, M. J. Wolverton

Artificial Intelligence Center

SRI International

333 Ravenswood Ave.
Menlo Park, CA
burns @ai.sri.com, connolly @ai.sri.com, thomere @ai.sri.com, mjw @ai.sri.com

Abstract

A system is described that detects high-level events of
interest in airborne motion imagery. The system starts by
automatically extracting the tracks of movers from the
imagery. It then uses tracks combined with context (cultural
features, for example) to automatically detect low-level
events. High-level events can be defined as patterns of low-
level events. Exact or partial matches to these patterns of
interest can be presented to an operator for further analysis.

Introduction

Airborne motion imagery is providing data at a rate that is
several orders of magnitude greater than that of traditional
imagery sources. Timely human analysis of this data is
becoming increasingly difficult. Thus, there is a need to
process this data rapidly using semi-automated analysis
tools. The issue addressed in this paper is the rapid
extraction and analysis of events from activity observed in
airborne video (although the ideas described here apply to
ground-based video as well).

Events arise through the actions of movers in the video
scene. Any attempt at semi-automated analysis therefore
begins by segmenting movers in the incoming video
frames and organizing these observations into
spatiotemporal track objects (sequences of spatial samples
taken over time). Tracks can be further segmented into
time points or periods that define events taken from some
primitive vocabulary. For example, a mover might stop for
a period of time, and this period can be marked as a STOP
event. Each such primitive event can be thought of as a
(possibly ephemeral) relationship among scene elements.

This paper addresses some of the challenges inherent in
detecting primitive events in airborne video and
assembling groups of these primitive events into more
abstract composite events that are meaningful to an
analyst. The process of composite event recognition
should be automated in such a way as to relieve the analyst
of the burden of tedious inspection, and allow more time to
be devoted to the most relevant analysis tasks. The
approach taken here relies in part on previously
constructed event ontologies for video that define
composite events using a variant on first order logic

[Nev04]. Composite events are defined in terms of the
relationships among scene movers, objects, zones of
interest and primitive events. The extraction of composite
events is compounded by the often noisy and intermittent
nature of incoming data. The paper provides a look at the
architecture that is used to go from pixels to composite
events. The system is illustrated by the detection of an
example pattern of behavior: vehicle convoying.

Architecture

The infrastructure for detecting video events consists of
components for video processing, mover detection and
tracking. Once tracks have been established, primitive
events are extracted using site context. These events are
entered into a database, where they are used by SRI’s Link
Analysis Workbench (LAW) to search for patterns of
primitive events than match descriptions of composite
events as defined by an onotology.

Vidés Light Table: V4V100005.007

Figure 1: Video Light Table™, showing orthographic
image (top left), video (top right), timeline (lower left) and
synthetic view (lower right).

The video, tracks, and events can be browsed in SRI’s
Video Light Table™ (VLT), which is shown in Figure 1.

The VLT offers a synoptic view of the video and
associated context. The VLT can display video, still
imagery, and synthesized views, along with a timline
showing tracks and events. In the timeline (lower left
window in Figure 1), tracks appear as narrow green bars,
while events show up as thicker multicolored rectangles.
All geometry (including the UAYV trajectory, the video’s
ground footprint, tracks and other ground features) can be
selectively overlaid on the imagery. By scrolling the
timeline window, the user can browse the video as well as
all detected tracks and events. All objects are mouse-
selectable; this allows easy retrieval of information
associated with the selected object. For example, selection
of an event rectangle in the timeline causes all associated
tracks and objects to be highlighted in the other views.

Pixels to Tracks

We have developed and integrated a video processing
system capable of detecting and tracking moving ground
objects viewed from a moving airborne video camera.
SRI's Moving Target Detector (MTD) system can handle
general camera motions, zooms, and changes in image
contrast and brightness [HelO5]. It is routinely capable of
detecting moving objects with sizes down to 12 pixels (less
than 2% of the linear dimension of the image). This
capability can be important for detecting events such as
vehicle convoys that are spread out over a large area and
require a large field of view.

To detect small, low contrast moving objects, it is
crucial to determine the camera motion to subpixel
accuracy and the photometric changes (contrast and
brightness) to within a few grey-levels. For long-standoff
airborne cameras, the image motion induced by the camera
can be approximated to sub-pixel accuracy by an affine
transformation with six degrees of freedom. The sum of
the squared pixel differences as a function of the affine
parameters, using a reasonable resampling process, is
sensitive to and accurately reflects very small changes in
the affine parameters. Using an extension of the Lucas and
Kanade method [Shi and Tomasi94] and image resolution
pyramids, our target accuracy can be achieved with two or
three iterations of the method at the highest resolution. Our
system is further speeded up by only computing the camera
motion in regions of the image with the high image texture
and using integral tables for fast image inner product
operations [Viola and Jones01].

The photometric changes in the camera are computed
using a non-parametric technique, since the classic affine
model of contrast and brightness change [Yal05] can break
down near the extremes of the grey-level range. There are
routinely pixels at these extremes; ground points in deep
shadow and glare off of bright structures are common
examples. Our method constructs a grey-level mapping
between the images by computing the median mapped-to
value for each grey-level and then filtering the resulting
mapping function.

Ground motion is detected in a frame by comparing it to
two other frames after compensating for the camera motion
and photometric changes. Motion is detected at a pixel if
there is sufficient change relative to both of the other
frames. This ensures that the system filters out change due
to disoccluded background and noise [CutOO]. Further
filtering is performed using morphological operations, and
the detections are grouped in space and time into
trajectories of moving regions.

The moving object detection and tracking system can
process 640 by 480 pixel video at eighteen frames at
second on a dual processor PC. Since object motion is
readily observable at much lower rates (down to 10 frames
per second), our system can process video and populate a
database in real time. The system has been tested on
airborne video containing a total of 2,071 moving vehicles.
In this test, our system achieved a detection rate for
vehicles of 96% and a false alarm rate of one every two
minutes. Even with these results, however, tracking
remains a difficult problem due to low resolution and
occlusion. Hence, a single vehicle can give rise to multiple
track fragments. This underscores the importance of
designing event recognition algorithms that are robust in
the presence of noise and track fragmentation.

Geolocation and Site Context

The processing pipeline described in the previous section is
used to construct coherent 3D tracks on the ground. SRI’s
FREEDIUS system is an Image Understanding system that
can represent sensor models, tracks, and geospatial features
in a common framework (FREEDIUS is the open-source,
portable successor to similar systems developed under the
DARPA TU and RADIUS programs). FREEDIUS is used
for assembling MTD detections into coherent tracks, for
low-level event detection, and for populating the track and
event database for use by LAW. Each track is first
collected and represented as a 2D curve in the image plane.
Imaging geometry is obtained for each frame by using a
bundle adjustment algorithm to compute camera
parameters in the video. USGS or other terrain data can be
used to provide a terrain model, and can be used to refine
the geolocation of tracks. Once camera models have been
computed, 2D tracks are projected down to the ground by
intersecting the corresponding camera rays with the terrain
model.

3D tracks on the ground can be processed in isolation,
but this often leads to an impoverished event vocabulary
for analysis. Although intrinsic track properties can be
used to detect events like TURN or STOP, many events
can only be detected or understood when the tracks are
placed in some larger context. For example, entry into a
restricted zone requires a geometric model of the zone of
interest. To provide context, we use geometric site models
with semantic attachment. For example, it may be
desirable to create events when tracks enter a building, or
traverse secure areas on the ground. This kind of

information is difficult to provide without site models and
functional annotation of ground features. Non-geometric
information can also be important. Entry of a person into
an office building carries a different set of implications
than the entry of a person into an aircraft hangar. The
addition of this kind of functional knowledge to a site
model provides a rich source of additional context for
primitive (and composite) event detection.

Primitive Event Detection

Events are divided into two broad classes according to
the ontology specified in [Nev04]. Type I events are those

in which a mover interacts with a zone or object in the
environment. Events of this type include picking up or
dropping off a package, entering a building, or moving
inside a restricted area. Site models are used to provide the
necessary context for Type I events. Type II events consist
of mover-mover interactions. Two people walking side by
side is one example of a type II event. One car following
another is also an example of a type II event. Composite
events are constructed using relationships among movers
and objects in a scene that are derived from primitive
events, subject to the rules provided by an ontology.

Figure 2: Convoy video example. Tracks shown in red
are overlaid on the video. The window above the video
shows a timeline. Small bars on the timeline show
detected tracks, while large rectangles show detected
FOLLOW events.

We generally define primitive events to be those events
that can be extracted from a video sequence using track
data and site context (including geometry). These events
are detected by bottom-up processing of raw data. In
contrast, composite events are detected in a top-down
fashion, using patterns of interest to assemblee
combinations of primitive events into composite events.

Primitive events are detected by scanning tracks, either
in real-time or in a batch processing mode, and segmenting
the tracks by comparing track positions with other
geometric or track features in the site model. By
implication, tracks themselves are considered to be
spatiotemporal features entered into the site database. The
track segments so generated are primitive events that are
kept in the database as temporal features that define
relationships among site features (either track-to-track or
track-to-object).

Figure 2 shows a control panel that contains an 1800-
frame video sequence of cars moving along a road. In this
sequence, a stream of primitive FOLLOW events is
detected using tracks obtained from the video sequence. A
FOLLOW event is defined as a sequence involving two
movers, separated in time, but traversing the same curve on
the ground. The FOLLOW event is therefore robust in the
face of arbitrary turns made by the movers.

High-Level Event Recognition

To detect higher-level events (e.g., multiple vehicles
traveling in a convoy) from our database of primitive
events, we are experimenting with the Link Analysis
Workbench (LAW) system. LAW is a graphical pattern
matcher, capable of finding inexact as well as exact
matches to its patterns. A pattern in LAW’s representation
language, GEM (Graph Edit Model), represents two things:
(1) a general description of the situation of interest, and (2)
allowable deviations to that situation of interest. The
situation of interest is represented in GEM as a semantic
graph, and the allowable deviations are represented
through parameters to LAW’s similarity metric. LAW uses
a graph edit distance metric to determine whether an
inexact match is “close enough” to be returned to the user.
The pattern author assigns costs to elements of the graph
(nodes, links, and constraints)—representing the
importance of finding those elements in the matching
data—along with a maximum total cost—defining how
inexact a match can be. The GEM language is
hierarchical—each pattern may contain one or more
subpatterns—and supports cardinality (requiring N or more
matches to a subpattern) and disjunction. LAW's back end
is a RDBMS—we have integrated it with both MySQL and
Oracle—providing scalability to large data sets. LAW and
its pattern language and matching approach are described
more fully in [Wol03] and [Wol05].

As with many representation languages, GEM provides
multiple alternative ways of representing a given situation.
None of these alternatives is imperfect, and each has its
own advantages and disadvantages. Here we use the
problem of high-level video event detection of one
particular situation—that of a convoy of vehicles—to
illustrate two alternative representations and discuss their
advantages and disadvantages.

Flat fixed-vehicle convoy pattern

Figure 3 shows a simple flat (non-hierarchical) pattern
of a convoy involving a fixed number of vehicles, in this
case five. The pattern looks for five actors related to one
another through Follow events—Actorl followed by
Actor2 followed by Actor3 and so on. The Follow events
are required through the “same-time” constraints to occur

creating and matching a separate pattern.

Recursive convoy pattern

Many kinds of patterns that involve sequencing, either
of events or of entities. Examples include a convoy of
vehicles or a chain of phone calls (person A calls person B

SIndirectConvov

actor2 actor

Figure 3: Flat convoy pattern with a fixed number of vehicles (5)

in overlapping time periods. In addition to the primary
Follow events, the pattern also includes secondary Follow
events—for example, Actorl followed by Actor3.

This representation, combined with LAW’s inexact
matching criterion, supports detecting convoys in the face
of incomplete data—for example, when one of the vehicles
is occluded. For example, even if Actor2 becomes
occluded in the video and the matcher finds no match for
it, it may still be able to connect Actorl and Actor3
through the secondary following relations. If the secondary
relations were not there, there would be no contiguous
matching subgraph of data to the pattern, and LAW would
find no matches.

The primary advantages of this pattern stem from its
simplicity. It is easy for the LAW user to understand, both
the pattern and the matches from it. Additionally, it would
be relatively quick pattern to author. One disadvantage of
this approach to searching for convoys is that it is specific
to a fixed number of vehicles; detecting any convoy of less
than or (especially) more than five vehicles would require

RecurseConvov

Convoy

CompleteConvoy

| 1
Recjusel r?)\'or =

[Awon | | | Aesez

[acwn

Figure 4: Graphical representation of ‘“‘convoy”’, defined in
terms of primitive ‘“follow” events.

calls person C...). These kinds of patterns require either (1)
fixing the number of participants, as does the pattern in
Figure 3, or (2) some construct in the pattern language and
matcher for supporting arbitrary-length iteration. LAW's
mechanism for dealing with (2) is to support pattern
recursion.

Figure 4 shows a recursive pattern representing a convoy
of two or more vehicles. It defines a primitive convoy as
either a vehicle by itself (the base case), or a vehicle
following a primitive convoy (the recursive case).

This approach has the advantage of defining a convoy
more realistically, in that it does not require the pattern
author to specify the exact number of vehicles in the
convoy ahead of time. At the same time, this pattern and
matches to it will be more difficult for an end-user to
understand. Further, because it is comprised of a number of
small subpatterns, it is more difficult to specify to LAW
how inexact matches should be treated; for this reason, this
pattern will be less tolerant of occlusion and other sources
of incompleteness in the data.

Experiments

We have applied the patterns in both Figure 3 and Figure
4 to three motion imagery datasets. The example in Figure
2 gives rise to two high-level convoy events. LAW returns
a summary web page for these results as shown in Figure
5.

Convov

actoil

[Fotew2]
skl

2 Matches
Convoy
Node Value Score
Actorl L15320207065]256338 {
Actor2 115320267961 7702007 |1
Actor3 1532020706534 10223 | 1.0
Followl J075.0(16.0 ("
Follow2 1071.0(6.0) 0 @' |
Link Score |

10755 (160} — setor] — [I53202079655256338 | 1.0 S - :
TU71 0 {6.0) — actor2 — 1153202979653419223 |10

1071 06.0) - actor] — 115320297961 7702007 | 1.0 Convov

J075.0 {16.0) — actor2 — 115320207961 7702007 | 1.0) i
Constraint Nodes Score

SAME-TIME 1.0

Figure 5: Two CONVOY matches for the dataset in
Figure 2.

One frame of a second dataset is shown in Figure 6, and
the corresponding convoy event detection is shown in
Figure 7. The frame in Figure 6 is part of the interval for
the convoy detection. In this example, the convoy vehicles
are about to turn a corner. Figure 7 illustrates the fact that
resolution can affect detection. In this case, the lead car is
dropped for several frames as it decelerates around the
corner. Note also that there is an extensive tree canopy in
this area that can obscure the convoy at times.

In Figure 8§, a third dataset is shown that illustrates convoy
detection through a turn. In this case, four vehicles in the
convoy are correctly detected, triggering the recursive
convoy definition. One of the vehicles is obscured by tree
canopy, but is detected before and after this interval. A
summary of LAW detection results is shown in Figure 9.

The experiments described here represent initial steps
toward an activity recognition system that is ontology-
based and can flag events of interest for more detailed
analysis. Many factors contribute to the correct
identification of events in motion imagery. For example,
the convoy pattern can be augmented to accomodate
knowledge of driving patterns and cultural features.
Information about ground geospatial features (such as
those provided by the NGA FACC codes) can be
incorporated into the system. This could allow LAW to
distinguish between a genuine convoy and a line of cars at
a rail crossing, for example. Knowledge of special events
(e.g., parades for special occasions) could further inform
LAW as to the appropriate classification of low-level
events seen in video sequences.

Figure 6: Convoy turning a corner. Three vehicles
(highlighted) are detected as part of a CONVOY pattern.

One major benefit of using an approximate pattern
matching system such as LAW is that this approach can
compensate for the often noisy and fragmented quality of
data coming from a visual tracker. While the tracker used
in these experiments is quite robust, any tracker will fail
when imaging resolution is sufficiently low, or when
obscuration of the target occurs. In these cases, higher-
level mechanisms can be employed to fill the gaps and to
recognize and flag coherent activity in the presence of
noise.

Convev

Actar
1 Matches
Convoy
Node Value Score|
|Actorl 1153202980105617540
EActurz LIS3Z02980433 Rﬁzﬂ 21
| Actor3 1153202980435525850 '
T 13
(Followl |12900.0 (5235.0) ©.]
|Follow2 12967.0 (366.0)
| Link

| 129000 (523300 = actorl — 115320298010561 7540

E 129670 (366.0) = actor2 — 1153202980435525850

; 12967.0 (366.0) = actorl — [1532029804332974.

| 12900.0 (523300 = ACTOr2 — 1153702980433297421| 1.

@ |
]

Convoy

Nodes

Score|
o

Figure 7: Match results for the dataset shown in Figure 6.

Figure 8: Convoy turning a corner in a wooded area.
Four out of five vehicles are detected by the tracker. The
fifth vehicle is only intermittently detected.

1 Matches

_4Convoy

| Node | Vaue _score|
|Actorl |1153202982065144026 11.0 |
Actord

|Actord |
Actord |
Follow] | 41100.0(1533.0) [10|
\Follow2 | 41433.0 (534.0)) |
|Follow3 |#1633.0 (3657.0) |

Link Scare|
41100.0 (1533.00 = actorl — 1153202982065 14 |
| 41633.0 (367.0)~ AC10F2 ~ 115320296231418082
:Uﬁﬁ'.afiﬁ}'.d-l + actorl —« 1153202882301073542
|41433.0 (534.0) = actor2 ~ 1153202982301073542

SI433,0(539.00 ~ ACWOr] ~ 1I53202982285640884
| 41100,0 (1533.0)~ ACtQr2 — 115320298228364088
| Constraint | Nodes
|SAME-TIME

[SAME-TIME

iConvay

Figure 9: Details for the CONVOY match of activity

shown in Figure 8.

References

[Cut00] R. Cutler and L. Davis, "Robust real-time periodic
motion detection, analysis and applications", IEEE PAMI,
22(8):781-796, August, 2000.

[HelO5] A. Heller, B. Burns, et al, "Collateral Damage
Avoidance and Moving Target Detection", in VIVID:
Automated video processing for unmanned aircraft, T.
Strat and L. Hollan, eds., DARPA, 2005.

[Nev04] J. H. R. Nevatia and B. Bolles. An ontology for
video event representation. In Proc. IEEE Workshop on
Event Detection and Recognition, June 2004.

[Shi94] J. Shi and C. Tomasi, "Good features to track",
IEEE Conf. Computer Vision and Pattern Recognition,
June 1994.

[VioO1] P. Viola, and M. Jones, "Rapid object detection
using a boosted cascade of simple features, In IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition, Dec. 2001.

[Wol03] Wolverton, M. and Berry, P. and Harrison, 1. and
Lowrance, J. and Morley, D. and Rodriguez, A. and
Ruspini, E. and Thomere, J. “LAW: A Workbench for
Approximate Pattern Matching in Relational Data.” in The
Fifteenth Innovative Applications of Artificial Intelligence
Conference (IAAI-03), 2003.

[Wol05] Wolverton, M. and Thomere, J. The Role of
Higher-Order Constructs in the Inexact Matching of
Semantic Graphs, in Proceedings of the AAAI Workshop
on Link Analysis, 2005.

[YalO5] H. Yalcin, R. Collins, and M. Herbert,
"Background estimation under rapid gain change in
thermal imagery", in VIVID: Automated video processing
for unmanned aircraft, T. Strat and L. Hollan, eds.,
DARPA, 2005.

