
Building Human-Level AI for Real-Time Strategy Games

Ben G. Weber
Expressive Intelligence Studio

UC Santa Cruz
bweber@soe.ucsc.edu

Michael Mateas
Expressive Intelligence Studio

UC Santa Cruz
michaelm@soe.ucsc.edu

Arnav Jhala
Computational Cinematics Studio

UC Santa Cruz
jhala@soe.ucsc.edu

Abstract

Video games are complex simulation environments with
many real-world properties that need to be addressed in
order to build robust intelligence. In particular, real-
time strategy games provide a multi-scale challenge
which requires both deliberative and reactive reason-
ing processes. Experts approach this task by studying
a corpus of games, building models for anticipating op-
ponent actions, and practicing within the game environ-
ment. We motivate the need for integrating heteroge-
neous approaches by enumerating a range of competen-
cies involved in gameplay and discuss how they are be-
ing implemented in EISBot, a reactive planning agent
that we have applied to the task of playing real-time
strategy games at the same granularity as humans.

Introduction

Real-time strategy (RTS) games are a difficult domain for
humans to master. Expert-level gameplay requires per-
forming hundreds of actions per minute in partial informa-
tion environments. Additionally, actions need to distributed
across a range of in-game tasks including advancing re-
search progress, sustaining an economy, and performing tac-
tical assaults. Performing well in RTS games requires the
ability to specialize in many competencies while at the same
time working towards high-level goals. RTS gameplay re-
quires both parallel goal pursuit across distinct competen-
cies as well as coordination among these competencies.

Our work is motivated by the goal of building an agent
capable of exhibiting these types of reasoning processes in a
complex environment. Specifically, our goal is to develop an
RTS agent capable of performing as well as human experts.
Paramount to this effort is evaluating the agent in an environ-
ment which resembles the interface provided to human play-
ers as closely as possible. Specifically, the agent should not
be allowed to utilize any game state information not avail-
able to a human player, such as the locations of non-visible
units, and the set of actions provided to the agent should be
identical to those provided through the game’s user inter-
face. Enforcing this constraint ensures that an agent which
performs well in this domain is capable of integrating and
specializing in several competencies.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Real-time strategy games demonstrate the need for het-
erogeneous agent architectures, because reducing the deci-
sion complexity of the domain is non-trivial. One possi-
ble approach is to split gameplay into isolated subproblems
and to reason about each subproblem independently. This
approach is problematic, because RTS gameplay is non-
hierarchical resulting in contention for in-game resources
across different subproblems. A second approach is to de-
velop an abstraction of the state space and use it for reason-
ing about goals. This approach is also problematic, because
different types of abstractions are necessary for the differ-
ent tasks that need to be performed. RTS gameplay requires
concurrent and coordinated goal pursuit across multiple ab-
stractions. We refer to AI tasks that have these requirements
as multi-scale AI problems (Weber et al. 2010).

Our domain of analysis is the real-time strategy game
StarCraft. High-level StarCraft gameplay requires special-
izing in several different competencies of varying complex-
ity. One such competency is micromanagement, which is
the task of controlling individual units in combat scenarios
in order to maximize the utility of a squad of units. This area
of expertise focuses on reactive behavior, because it requires
split-second timing of actions. Another competency is strat-
egy selection, which is the task of determining which types
of units to produce and which upgrades to research. This
area of expertise focuses on planning and opponent model-
ing, and involves formulating strategies in order to counter
opponent strategies. We also selected this game because it is
played at a professional level, resulting in a large number of
high-quality replays being available for analysis, and there
is a large player base for evaluating our system.

Our approach for managing the complexity of StarCraft is
to partition gameplay into domains of competence and de-
velop interfaces between these competencies for resolving
goal conflicts. It is based on the integrated agent framework
proposed by McCoy and Mateas (2008), which partitions the
behaviors in a reactive planning agent into managers which
specialize in distinct aspects of gameplay. The decomposi-
tion of gameplay into managers is based on analysis of ex-
pert gameplay.

EISBot is a heterogeneous agent for playing StarCraft
which incorporates many of these competencies. The core
of the agent is a reactive planner that supports real-time ac-
tion execution and concurrent goal pursuit. A large num-

Advances in Cognitive Systems: Papers from the 2011 AAAI Fall Symposium (FS-11-01)

329



ber of competencies are implemented in the ABL reactive
planning language (Mateas and Stern 2002). The reactive
planner interfaces with external components which perform
prediction and planning tasks. These components are imple-
mented using case-based reasoning, machine learning, and
particle filters. The components are connected together by
applying several integration idioms, including using work-
ing memory as a blackboard, instantiating new goals for the
agent to pursue, and suspending and resuming the execu-
tion of tasks. We have performed evaluation of EISBot on a
competitive StarCraft tournament ladder.

The remainder of this paper is structured as follows. In
section 2 we discuss related work. Section 3 provides an
overview of the EISBot architecture. Next, we discuss Star-
Craft gameplay and competencies in Section 4, and present
the competencies in EISBot in Section 5. In section 6 we
present an evaluation of EISBot. We provide conclusions in
Section 7 and discuss future work in Section 8.

Related Work
Our agent builds on ideas from commercial game AI, cogni-
tive architectures, and heterogeneous agent designs. It also
continues the tradition of using games as an AI testbed.

Video games are ideal for AI research, because they pro-
vide a domain in which incremental and integrative advances
can be made (Laird and VanLent 2001). RTS games in
particular are interesting because they provide several chal-
lenges including decision making under uncertainty, spatial
and temporal reasoning, and adversarial real-time planning
(Buro 2003). Previous work has also shown that the deci-
sion complexity of RTS games is enormous (Aha, Molin-
eaux, and Ponsen 2005).

Cognitive architectures provide many of the mechanisms
required for integrating heterogeneous competencies. The
ICARUS architecture is capable of reasoning about concur-
rent goals, which can be interrupted and resumed (Langley
and Choi 2006). The system has components for perception,
planning, and acting which communicate through the use of
an active memory. One of the main differences from our
approach is that our system works towards modeling game-
play actions performed by players, as opposed to modeling
the cognitive processes of players.

SOAR is a cognitive architecture that performs state ab-
straction, planning, and multitasking (Wintermute, Xu, and
Laird 2007). The system was applied to the task of playing
real-time strategy games by specifying a middleware layer
that serves as the perception system and gaming interface.
RTS games provide a challenge for the architecture, because
gameplay requires managing many cognitively distant tasks
and there is a cost for switching between these tasks. The
main difference from our approach is that we decompose
gameplay into more distinct modules and have a larger fo-
cus on coordination across tasks.

Darmok is an online case-based planner that builds a
case library by learning from demonstration (Ontañón et al.
2010). The system can be applied to RTS games by sup-
plying a collection of game replays that are used during the
planning process. The decision cycle in Darmok is similar to
the one in EISBot, in which each update checks for finished

steps, updates the world state, and picks the next step. Be-
haviors selected for execution by Darmok can be customized
by specifying a behavior tree for performing actions (Palma
et al. 2011). The main difference from our approach is that
Darmok uses a case library to build a collection of behav-
iors, while EISBot uses a large collection of hand-authored
behaviors.

Heterogeneous agent architectures have also been applied
to the task of playing RTS games. Bakkes et al. (2008)
present an approach for integrating an existing AI with case-
based reasoning. The AI is able to adapt to opponents by
using a case retriever which selects the most suitable pa-
rameter combination for the current situation, and modify-
ing behavior based on these parameters. Baumgarten et al.
(2009) present an RTS agent that uses case-based reasoning,
simulated annealing, and decision tree learning. The system
uses an initial case library generated from a set of randomly
played games, and refines the library by applying an evalua-
tion function to retrieved cases in order to evolve new tactics.
Our system differs from this work, because components in
EISBot interface using goals and plans rather than parameter
selection.

Commercial game AI provides an excellent baseline for
agent performance, because it must operate within a com-
plex environment, as opposed to an abstraction of a game.
However, the goal of commercial game AI is to provide the
player with an engaging experience, as opposed to playing
at the same granularity as a player. Both deliberative and re-
active planning approaches have been applied to games. Be-
havior trees are an action selection technique for non-player
characters (NPCs) in games (Isla 2005). In a behavior tree
system, an agent has a collection of behaviors available for
execution. Each decision cycle update, the behavior with
the highest priority that can be activated is selected for exe-
cution. Behavior trees provide a mechanism for implement-
ing reactive behavior in an agent, but require substantial do-
main engineering. Goal-oriented action planning (GOAP)
addresses this problem by using a deliberative planning pro-
cess (Orkin 2003). A GOAP agent has a set of goals, which
upon activation trigger the agent to replan. The planning
operators are similar to those in STRIPS (Fikes and Nils-
son 1971), but the planner uses A* to guide the planning
process. The main challenge in implementing a GOAP sys-
tem is defining representations and operators that can be rea-
soned about in real time. One of the limitations of both of
these approaches is that they are used for action selection for
a single NPC and do not extend to multi-scale problems.

EISBot Architecture

EISBot is an extension of McCoy and Mateas’s (2008) inte-
grated agent framework. We have extended the framework
in several ways. While the initial agent was applied to the
task of playing Wargus (Ponsen et al. 2005), we have trans-
ferred many of the concepts to StarCraft. Additionally, we
have implemented several of the competencies that were pre-
viously identified, but stubbed out in the original agent im-
plementation. Finally, we have interfaced the architecture
with external components in several ways.

330



StarCraft 

Brood War API 

Control process Proxybot

Sensor1 Act

WME1

Working Memory 

Sensors

ABT

ABL

Figure 1: EISBot-StarCraft interface

The core of the agent is a reactive planner which inter-
faces with the game environment, manages active goals, and
handles action execution. It is implemented in the ABL
(A Behavior Language) reactive planning language (Mateas
and Stern 2002). ABL is similar to BDI architectures such
as PRS (Rao and Georgeff 1995), a hybrid architecture for
planning and decision making. The main strength of reactive
planning is support for acting on partial plans while pursu-
ing goal-directed tasks and responding to changes in the en-
vironment (Josyula 2005).

EISBot interfaces with StarCraft through the use of sen-
sors which perceive game state and actuators which enable
the agent to send commands to units. The ABL interface
and agent components are shown in Figure 1. The Brood
War API, Control Process, and ProxyBot components pro-
vide a bridge between StarCraft and the agent. The agent
also includes a working memory and an active behavior tree
(ABT). The ABT pursues active goals by selecting behaviors
for expansion from the behavior library, which is a collection
of hand-authored behaviors.

Our agent is based on a conceptual partitioning of game-
play into areas of competence. It is composed of managers,
each of which is responsible for a specific aspect of game-
play. A manager is implemented as a collection of behaviors
in our system. We used several reactive planning idioms to
decompose gameplay into subproblems, while maintaining
the ability to handle cross-cutting concerns such as resource
contention between managers. EISBot is composed of the
following managers:

• Strategy manager: responsible for the strategy selection
and attack timing competencies.

• Income manager: handles worker units, resource collec-
tion, and expanding.

• Construction manager: responsible for managing re-
quests to build structures.

• Tactics manager: performs combat tasks and microman-
agement behaviors.

• Recon manager: implements scouting behaviors.

Further discussion of the specific managers and planning

idioms is available in previous work (McCoy and Mateas
2008; Weber et al. 2010).

Each of the managers implements an interface for inter-
acting with other components. The interface defines how
working memory elements (WMEs) are posted to and con-
sumed from working memory. This approach enables a
modular agent design, where new implementations of man-
agers can be swapped into the agent. It also supports the
decomposition of tasks, such as constructing a structure.
In EISBot, the decision process for selecting which struc-
tures to construct is decoupled from the construction pro-
cess, which involves selecting a construction site and mon-
itoring execution of the task. This decoupling also enables
specialized behavior to be specified in a manager, such as
unit specific movement behaviors in the tactics manager.

Integration Approaches

We have integrated the reactive planner with external com-
ponents. The following approaches are used to interface
components with the reactive planner:
• Augmenting working memory
• External goal formulation
• External plan generation
• Behavior activation
These approaches are not specific to reactive planning and
can be applied to other agent architectures.

The agent’s working memory serves as a blackboard
(Hayes-Roth 1985), enabling communication between dif-
ferent managers. Working memory is also used to store be-
liefs about the game environment. External components in-
terface with EISBot by augmenting working memory with
additional beliefs about the game environment. These be-
liefs include predictions about the opponents’ strategy and
unit locations. The agent incorporates these predictions in
the preconditions of specific behaviors, such as selecting lo-
cations to attack.

Another way EISBot interfaces with components is by
pursuing goals that are selected outside of the reactive plan-
ning process. Goals that are formulated external to the
agent can be added to the reactive planner by modifying the
structure of the active behavior tree, or by triggering ABL’s
spawngoal functionality, which causes the agent to pursue a
new goal in parallel with the currently active goals. We have
used this approach to integrate the reactive planner (Weber,
Mateas, and Jhala 2010a) with an instantiation of the goal-
driven autonomy conceptual model (Molineaux, Klenk, and
Aha 2010).

We have also integrated the agent with an external plan-
ning process (Weber, Mateas, and Jhala 2010b). Plans gen-
erated by the planning component are executed in the reac-
tive planner by adding elements to working memory which
activate a sequence of actions to be executed. This approach
is similar to the plan expansion mechanism. Interfacing with
external planners enables the agent to incorporate delibera-
tive reasoning components.

ABL agents can be interfaced with components which
modify the activation conditions of behaviors. ABL behav-
iors contain a set of preconditions, which specify activation

331



Figure 2: A screenshot of StarCraft showing Protoss (green)
and Terran (yellow) players engaged in combat.

conditions. These conditions can contain procedural pre-
conditions (Orkin 2006), which query an external compo-
nent about activation. We have explored the use of case-
based reasoning for behavior activation (Weber and Ontañón
2010), while Simpkins et al. (2008) present a reinforcement
learning approach for behavior activation.

StarCraft

StarCraft1 is a real-time strategy game where the player
takes the role of a commander in a military scenario. The
single objective given to players is to destroy all oppo-
nents. Achieving this objective requires performing numer-
ous tasks which at a minimum are gathering resources, pro-
ducing structures and units, and attacking enemy forces. To
gain an advantage over the opponent, a player may per-
form additional tasks including scouting and upgrading. A
screenshot of combat in StarCraft is shown in Figure 2.

There are several properties that make StarCraft gameplay
a challenging task. Actions are performed in real-time, re-
quiring both deliberative and reactive reasoning. Also, the
game enforces imperfect information through a fog-of-war,
which limits visibility of the map to areas where the player
controls units. There are simultaneous tasks to perform, and
focusing too much attention on a single task is detrimen-
tal. Another challenge is issuing orders to hundreds of units,
which may have distinct tasks.

Learning to play StarCraft is difficult for additional rea-
sons. There is a steep learning curve to StarCraft, because
making a mistake early in the game can have drastic conse-
quences. However, it is difficult to evaluate the reward of
individual commands due to the long game length. Also,
inaction is extremely detrimental, because failing to issue
orders results in opponents gaining a strategic or economic
advantage.

1StarCraft and its expansion StarCraft: Brood War were devel-
oped by Blizzard EntertainmentTM.

There are three diverse races in StarCraft: Protoss, Ter-
ran, and Zerg. Each race has a unique technology graph
(tech tree) which can be expanded to unlock new unit types,
structures, and upgrades. Additionally, each race supports
different styles of gameplay. Mastering a single race re-
quires a great deal of practice, and experts in this domain
focus on playing a single race.

Effective StarCraft gameplay requires specializing in sev-
eral distinct competencies. Micromanagement is the task
of controlling individual units in combat in order to maxi-
mize the utility of a unit. Terrain analysis is another area
of competence which determines where to place units and
structures to gain tactical advantages. Strategy selection is
the task of determining which unit types to produce and up-
grades to research, in order to counter to opponent strategies.
Attack timing determines the ideal moment to launch an at-
tack against the opponent.

StarCraft Gameplay

StarCraft gameplay involves performing tasks across multi-
ple scales. At the strategic scale, StarCraft requires decision-
making about long-term resource and technology manage-
ment. For example, if the agent is able to control a large
portion of the map, it gains access to more resources, which
is useful in the long term. However, to gain map control, the
agent must have a strong combat force, which requires more
immediate spending on military units, and thus less spend-
ing on economic units in the short term.

At the economic scale, the agent must also consider how
much to invest in various technologies. For example, to de-
feat cloaked units, advanced detection is required. But the
resources invested in developing detection are wasted if the
opponent does not develop cloaking technology.

At the tactical scale, effective StarCraft gameplay requires
both micromanagement of individual units in small-scale
combat scenarios and squad-based tactics such as forma-
tions. In micromanagement scenarios, units are controlled
individually to maximize their utility in combat. For exam-
ple, a common technique is to harass an opponent’s melee
units with fast ranged units that can outrun the opponent. In
these scenarios, the main goal of a unit is self-preservation,
which requires a quick reaction time.

Effective tactical gameplay also requires well coordinated
group attacks and formations. For example, in some situa-
tions, cheap units should be positioned surrounding long-
ranged and more expensive units to maximize the effective-
ness of an army. One of the challenges in implementing
formations in an agent is that the same units used in micro-
management tactics may be reused in squad-based attacks.
In these different situations, a single unit has different goals:
self-preservation in the micromanagement situation and a
higher-level strategic goal in the squad situation.

Micromanagement

Expert players issue movement and attack commands to in-
dividual units to increase their effectiveness in combat. The
motivation for performing these actions is to override the
default low-level behavior of a unit. When a unit is given
a command to attack a location, it will begin attacking the

332



first enemy unit that comes into range. The default behavior
can lead to ineffective target selection, because there is no
coordination between different units.

Target selection and damage avoidance are two forms of
micromanagement applied to StarCraft. To increase the ef-
fectiveness of units, a player will manually select the targets
for units to acquire. This technique enables units to focus
fire on specific targets, which reduces the enemy unit’s dam-
age output. Another use of target selection is to select spe-
cific targets which are low in health or high-profile targets.
Dancing is the process of commanding individual units to
flee from battle while the squad remains engaged. Running
away from enemy fire causes the opponent units to acquire
new targets. Once the enemy units have acquired new tar-
gets, the fleeing unit is brought back into combat. Dancing
increases the effectiveness of a squad, because damage is
spread across multiple units, increasing the average lifespan
of each unit.

Micromanagement is a highly reactive process, because it
requires a large number of actions to be performed. During
peak gameplay, expert players often perform over three hun-
dred actions per minute (McCoy and Mateas 2008). Effec-
tive micromanagement requires a large amount of attention
and focusing too much on micromanagement can be detri-
mental to other aspects of gameplay, since the overall ad-
vantage gained by micromanaging units is bounded. Due
to the attention demands of micromanagement, it is more
common earlier in the game when there are fewer tasks to
manage and units to control.

Terrain Analysis

Expert players utilize terrain in a variety of ways to gain
tactical advantages. These tasks include determining where
to build structures to create bottlenecks for opponents, se-
lecting locations for engaging enemy forces, and choosing
routes for force movements. High ground plays an important
role in StarCraft, because it provides two advantages: units
on low ground do not have vision of units on high ground
unless engaged, and units on low ground have a 70% chance
of hitting targets on high ground. Players utilize high ground
to increase the effectiveness of units when engaging and re-
treating from enemy units.

Terrain analysis in RTS games can be modeled as a qual-
itative spatial reasoning task (Forbus, Mahoney, and Dill
2002). While several of the terrain analysis tasks such as
base layout are deliberative, a portion of these tasks can be
performed offline using static map analysis. This compe-
tency also requires the ability to manage dynamic changes
in terrain caused by unit creation and destruction.

Strategy Selection

Strategy selection is a competency for determining the order
in which to expand the tech tree, produce units, and research
upgrades. Expert players approach this task by developing
build orders, which are sequences of actions to execute dur-
ing the opening stage of a game. As a game unfolds, it is
necessary to adapt the initial strategy to counter opponent
strategies. In order to determine which strategy an opponent
has selected, it is necessary to actively scout to determine

which unit types and upgrades are being produced. Players
also incorporate predictions of an opponent’s strategy during
the strategy selection process. Predictions can be built by
studying the player’s gameplay history and analyzing strate-
gies favored on the selected map.

Strategy selection is a deliberative process, because it in-
volves selecting sequences of actions to achieve a particular
goal. Strategy planning can be performed both offline and
online. Build order selection is an offline process performed
before the start of a game, informed by the specific map and
anticipated opponent strategies, while developing a counter
strategy based on the opponent strategy during a game is an
online task.

Attack Timing

Attack timing is a critical aspect of StarCraft gameplay, be-
cause there is a large commitment involved. There are sev-
eral conditions that are used for triggering an attack. A tim-
ing attack is a planned attack based on a selected build order.
Timing attacks are used to take advantage of the selected
strategy, such as attacking as soon as an upgrade completes.
An attack can also be triggered by observing an opportunity
to damage the opponent such as scouting units out of place
or an undefended base. There are several other conditions
which are used to trigger attacks, such as the need to place
pressure on the opponent.

The attack timing competency is deliberative and reactive.
Timing attacks can be planned offline and incorporated into
the strategy selection process. The online task of determin-
ing when to attack based on reactive conditions is complex,
because a player has only partial observability.

Competencies in EISBot

EISBot incorporates several AI techniques for implementing
the previously described gameplay competencies. We are
using a variety of approaches for implementing these tasks
and utilizing multiple sources of domain knowledge.

Micromanagement

Micromanagement is a complex task, because it requires
precise timing and several unit-specific techniques. We have
implemented micromanagement in EISBot by hand author-
ing several ABL behaviors which are specific to individual
unit types. These additional behaviors augment the tactics
manager’s general attack behaviors with specialized combat
behaviors. Implementation of these behaviors is discussed
in previous work (Weber et al. 2010).

Hand authoring micromanagement behaviors requires a
substantial amount of domain engineering. We selected
this approach because creating emergent or explorative tech-
niques capable of the necessary level of sophistication for
micromanagement is an open challenge. To reduce this engi-
neering effort, we focused on implementing micromanage-
ment techniques that have been identified by the StarCraft
gaming community2.

2http://wiki.teamliquid.net/

333



Figure 3: EISBot’s perception of the game includes unit lo-
cations (green), estimations of opponent locations (blue), re-
gions (gray), and chokepoints (orange). The locations of en-
emy units (red) are not observable by the agent.

Terrain Analysis

Terrain analysis is critical for effective tactical gameplay.
Our system uses Perkin’s (2010) terrain analysis library,
which identifies qualitative spatial features in StarCraft
maps including regions, chokepoints, and expansion loca-
tions. The features recognized by the library are added to
EISBot’s working memory, augmenting that agent’s knowl-
edge of the terrain. A portion of the agent’s perception of the
environment in an example scenario is shown in Figure 3.

The qualitative features identified by Perkin’s library are
used to specify activation conditions for several behaviors:
the reconnaissance manager uses the list of expansion loca-
tions to select target locations for scouting opponents, the
tactics manager uses the list of chokepoints to determine
where to place forces for defending bases, and the construc-
tion manager uses the list of regions to determining where
to place structures. The list of chokepoints is also used to
improve the agent’s estimation of the game state. EISBot
uses a particle model to track the location of an encountered
unit based on its trajectory and nearby chokepoints (Weber,
Mateas, and Jhala 2011).

Strategy Selection

We have implemented strategy selection in EISBot using a
combination of reactive and deliberative techniques. During

the initial phase of the game, the agent selects and executes a
build order, which is a sequential list of actions for pursuing
a strategy. The agent reacts to unanticipated situations by in-
corporating a model for goal-driven autonomy (Molineaux,
Klenk, and Aha 2010).

The strategy manager includes a collection of hand-
authored behaviors for executing specific build orders. We
are using goal-driven autonomy to decouple strategy selec-
tion from strategy execution in EISBot. In our system, each
build order contains a list of expectations which must remain
true throughout the execution of the strategy. If an expecta-
tion becomes violated, then a discrepancy is created and the
agent selects a new strategy to pursue. This approach en-
ables the agent to react to unforeseen game situations (We-
ber, Mateas, and Jhala 2010a).

After executing an initial strategy, the agent transitions
to new strategies using a case-based planner. The case-
based planner is used for both strategy selection and oppo-
nent modeling (Weber, Mateas, and Jhala 2010b). It selects
actions to execute by retrieving the most similar situation
from a library of examples, which are extracted from a cor-
pus of expert replays. Plans include actions for producing
units, building structures, and researching upgrades. The
case-based planner interfaces with the reactive planner by
adding sequences of actions to perform to working memory.

Attack Timing

There are several ways in which attacks are triggered in EIS-
Bot. A build order selected by the strategy selector can con-
tain a timing attack annotation that specifies when to first
assault the opponent. The strategy manager triggers a tim-
ing attack by adding an element to working memory, which
is used in precondition checks for attack behaviors. Attacks
can also be triggered based on reaching a specific army size.
A collection of hand-authored behaviors are included in the
agent to ensure that pressure is frequently placed on the op-
ponent.

Evaluation

To determine the performance of EISBot, we have carried
out an initial evaluation against human opponents on the
International Cyber Cup (ICCup). ICCup is a competitive
StarCraft tournament ladder with over ten thousand active
StarCraft players. The skill of players on the ladder ranges
from novice to professional, where the majority of players
are amateur players with a strong understanding of the game.

ICCup assigns players a letter grade based on a point sys-
tem, which is similar to the Elo rating system used in chess.
Players start with a provisional 1000 points which is in-
creased after wins and decreased after loses. Novices, or
D- ranked players, quickly fall below the 1000 point barrier
after a few matches, while amateurs, or D ranked players
maintain a score in the range of 1000 to 2000 points. Scores
of 2000 points and higher are achieved by highly competi-
tive and expert players.

We have classified the performance of EISBot by running
250 games against human opponents on ICCup. The oppo-
nents had an average score of 1205 with a standard deviation

334



0

500

1000

1500

0 50 100 150 200 250

P
oi

nt
s

Number of Games Played

Figure 4: The point progression of EISBot on ICCup indi-
cates that the bot is a D ranked (amateur) player.

of 1660. EISBot had an average win rate of 32% against hu-
man opponents and achieved a score of 1063 points, which
outranks 33% of players on the ladder. The point progres-
sion of EISBot is shown in Figure 4. While there were
several instances where EISBot’s score dropped below 1000
points, the agent achieved an average score of 1027 points.
Since EISBot was able to reach an average score above 1000
points after a large number of games, it is classified as a D
ranked, or amateur StarCraft player.

Since we are working towards the goal of achieving
human-level competency, our evaluation of EISBot is fo-
cused on performance against human opponents. In previ-
ous work, we report a win rate of 78% against the built-in
AI of StarCraft and bots from the AIIDE 2010 StarCraft
AI competition (Weber, Mateas, and Jhala 2011). To our
knowledge, EISBot is the only system that has been evalu-
ated against humans on ICCup.

Conclusion

We have presented an approach for building a human-level
agent for StarCraft. We analyzed the domain and identi-
fied several of the competencies required for expert Star-
Craft gameplay. Our analysis motivated the need for a het-
erogeneous agent architecture, because gameplay requires a
combination of reactive, deliberative, and predictive reason-
ing processes, which are performed both offline and online
by players. We are developing an agent that interacts with
RTS games at the same granularity as humans and exploring
approaches for emulating these processes in an agent.

Our agent architecture is further motivated by the prop-
erties of the task environment. In addition to being real-
time and partially observable environments with enormous
decision complexities, RTS games provide a multi-scale AI
challenge. Gameplay requires concurrent and coordinated
goal pursuit across multiple abstractions. Additionally, RTS
games are non-hierarchical and difficult to decompose into
isolated subproblems due to cross cutting concerns between
different aspect of gameplay.

EISBot builds on previous work, which conceptually par-
titioned RTS gameplay into distinct subproblems (McCoy
and Mateas 2008). Additionally, we identified several com-
petencies necessary for expert gameplay. These competen-
cies include micromanagement of units in combat, terrain
analysis for effective unit positioning, strategy selection for
countering opponent strategies, and attack timing for identi-
fying situations to assault the opponent.

The core of the agent is the ABL reactive planner which
manages the active goals, interfaces with the game environ-
ment, and monitors the execution of actions. This compo-
nent was implemented by hand-authoring a large number of
behaviors, requiring a substantial amount of domain engi-
neering. To reduce this effort, we utilized rules-of-thumb
and specific techniques which have been identified by the
StarCraft gaming community.

EISBot integrates with several heterogeneous compo-
nents using multiple integration approaches. These include
adding elements to working memory, formulating goals to
pursue, generating plans to execute, and providing addi-
tional conditions for behavior activation. We have used
these approaches to integrate the reactive planner with case-
based reasoning, goal-driven autonomy, and machine learn-
ing components.

We have performed an initial evaluation of EISBot against
human opponents on the ICCUP tournament ladder. The
agent achieved an average win rate of 32% and outranked
33% of players on the ladder. While there is still a large gap
between the performance of our system and expert players,
EISBot achieved a D ranking which indicates that it’s ability
is above the novice level and on par with amateur competi-
tive players.

Future Work
There are several directions for future work. The agent can
be extended by identifying additional competencies in RTS
games. These competencies could be implemented using re-
active planning behaviors or an external component. Also,
additional external components could be integrated into the
agent for existing competencies. For example, Monte Carlo
tree search could be used to implement the micromanage-
ment competency (Balla and Fern 2009), and would require
less knowledge engineering than our current approach.

Additional forms of evaluation could also be performed
for EISBot. In our evaluation, EISBot played against hu-
man opponents in ladder matches, which consist of a single
game. This form of analysis is insufficient for evaluating
the adaptivity of the agent, because each game is a poten-
tially different opponent. Another way to evaluate agents is
in a tournament setting, where matches consists of multiple
games against the same opponent. Performing well in this
setting requires adapting to the opponent based on the out-
come of previous games. Further evaluation could include
ablation studies as well, to gain further understanding of the
agent’s performance against humans.

Another direction for future work is to further pursue the
goal of interfacing with the game at the same level as a hu-
man player. In the current system, the agent’s perception
system is able to determine the locations and trajectories of

335



units by directly querying the game state. Future work could
explore the use of computer vision techniques for extracting
game state using screen captures (Lucas 2007). Currently,
there is no restriction on the number of actions the agent can
perform. To further mimic human actuation, future work
could evaluate how limiting the number of allowed actions
per minute impacts agent performance.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant Number IIS-1018954. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foun-
dation.

References
Aha, D. W.; Molineaux, M.; and Ponsen, M. 2005. Learning
to Win: Case-Based Plan Selection in a Real-Time Strategy
Game. In Proceedings of ICCBR, 5–20. Springer.
Bakkes, S.; Spronck, P.; and van den Herik, J. 2008. Rapid
Adaptation of Video Game AI. In Proceedings of IEEE Sym-
posium on Computational Intelligence and Games.
Balla, R. K., and Fern, A. 2009. UCT for Tactical Assault
Planning in Real-Time Strategy Games. In Proceedings of
IJCAI, 40–45. Morgan Kaufmann.
Baumgarten, R.; Colton, S.; and Morris, M. 2009. Combin-
ing AI Methods for Learning Bots in a Real-Time Strategy
Game. International Journal on Computer Game Technolo-
gies.
Buro, M. 2003. Real-Time Strategy Games: A New AI
Research Challenge. In Proceedings of IJCAI, 1534–1535.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artificial Intelligence 2:189–208.
Forbus, K.; Mahoney, J.; and Dill, K. 2002. How Qualitative
Spatial Reasoning Can Improve Strategy Game AIs. IEEE
Intelligent Systems 17(4):25–30.
Hayes-Roth, B. 1985. A Blackboard Architecture for Con-
trol. Artificial intelligence 26(3):251–321.
Isla, D. 2005. Handling Complexity in the Halo 2 AI. In
Proceedings of the Game Developers Conference.
Josyula, D. 2005. A Unified Theory of Acting and Agency
for a Universal Interfacing Agent. Ph.D. Dissertation, Uni-
versity of Maryland.
Laird, J., and VanLent, M. 2001. Human-Level AI’s Killer
Application: Interactive Computer Games. AI magazine
22(2):15–25.
Langley, P., and Choi, D. 2006. A Unified Cognitive Archi-
tecture for Physical Agents. In Proceedings of AAAI, 1469–
1474. AAAI Press.
Lucas, S. 2007. Ms Pac-Man Competition. SIGEVOlution
2:37–38.
Mateas, M., and Stern, A. 2002. A Behavior Language for
Story-Based Believable Agents. IEEE Intelligent Systems
17(4):39–47.

McCoy, J., and Mateas, M. 2008. An Integrated Agent
for Playing Real-Time Strategy Games. In Proceedings of
AAAI, 1313–1318. AAAI Press.
Molineaux, M.; Klenk, M.; and Aha, D. W. 2010. Goal-
Driven Autonomy in a Navy Strategy Simulation. In Pro-
ceedings of AAAI, 1548–1553.
Ontañón, S.; Mishra, K.; Sugandh, N.; and Ram, A. 2010.
On-Line Case-Based Planning. Computational Intelligence
26(1):84–119.
Orkin, J. 2003. Applying Goal-Oriented Action Planning to
Games. In Rabin, S., ed., AI Game Programming Wisdom 2.
Charles River Media. 217–228.
Orkin, J. 2006. Three States and a Plan: The AI of FEAR.
In Proceedings of the Game Developers Conference.
Palma, R.; González-Calero, P. A.; Gómez-Martın, M. A.;
and Gómez-Martın, P. P. 2011. Extending Case-Based Plan-
ning with Behavior Trees. In Proceedings of FLAIRS, 407–
412.
Perkins, L. 2010. Terrain Analysis in Real-Time Strategy
Games: Choke Point Detection and Region Decomposition.
In Proceedings of AIIDE, 168–173. AAAI Press.
Ponsen, M.; Lee-Urban, S.; Muñoz-Avila, H.; Aha, D. W.;
and Molineaux, M. 2005. Stratagus: An Open-Source Game
Engine for Research in Real-Time Strategy Games. In IJCAI
Workshop on Reasoning, Representation, and Learning in
Computer Games.
Rao, A., and Georgeff, M. 1995. BDI Agents: From Theory
to Practice. In Proceedings of ICMAS, 312–319.
Simpkins, C.; Bhat, S.; Isbell Jr, C.; and Mateas, M.
2008. Towards Adaptive Programming: Integrating Rein-
forcement Learning into a Programming Language. In Pro-
ceedings of OOPSLA, 603–614. ACM.
Weber, B. G., and Ontañón, S. 2010. Using Automated
Replay Annotation for Case-Based Planning in Games. In
Proceedings of the ICCBR Workshop on Computer Games.
Weber, B. G.; Mawhorter, P.; Mateas, M.; and Jhala, A.
2010. Reactive Planning Idioms for Multi-Scale Game AI.
In Proceedings of IEEE CIG, 115–122. IEEE Press.
Weber, B. G.; Mateas, M.; and Jhala, A. 2010a. Apply-
ing Goal-Driven Autonomy to StarCraft. In Proceedings of
AIIDE, 101–106.
Weber, B. G.; Mateas, M.; and Jhala, A. 2010b. Case-Based
Goal Formulation. In Proceedings of the AAAI Workshop on
Goal-Driven Autonomy.
Weber, B. G.; Mateas, M.; and Jhala, A. 2011. A Particle
Model for State Estimation in Real-Time Strategy Games.
In Proceedings of AIIDE (To Appear).
Wintermute, S.; Xu, J.; and Laird, J. 2007. SORTS: A
Human-Level Approach to Real-Time Strategy AI. In Pro-
ceedings of AIIDE, 55–60. AAAI Press.

336




