
Forgetting in Logic Programs under Strong Equivalence

Yisong Wang
Department of Computer Science,

Guizhou University, China

Yan Zhang and Yi Zhou
Intelligent Systems Laboratory,

University of Western Sydney, Australia

Mingyi Zhang
Guizhou Academy of Sciences,

Guiyang, China

Abstract

In this paper, we propose a semantic forgetting for ar-
bitrary logic programs (or propositional theories) un-
der answer set semantics, called HT-forgetting. The HT-
forgetting preserves strong equivalence in the sense that
strongly equivalent logic programs will remain strongly
equivalent after forgetting the same set of atoms. The re-
sult of an HT-forgetting is always expressible by a logic
program, and in particular, the result of an HT-forgetting
in a Horn program is expressible in a Horn program;
and a representation theorem shows that HT-forgetting
can be precisely characterized by Zhang-Zhou’s four
forgetting postulates under the logic of here-and-there.
We also reveal underlying connections between HT-
forgetting and classical forgetting, and provide com-
plexity results for decision problems.

Introduction
Motivated from Lin and Reiter’s seminal work (Lin and Re-
iter 1994), the notion of forgetting in classical propositional
and first-order logics has attracted extensive interests in KR
community (Lang and Marquis 2010). In recent years, re-
searchers have developed forgetting notions and theories in
other non-classical logic systems from various perspectives,
such as forgetting in logic programs (Zhang and Foo 2006;
Eiter and Wang 2008; Wong 2009), forgetting in descrip-
tion logic (Wang et al. 2010; Lutz and Wolter 2011), and
knowledge forgetting in modal logic (Zhang and Zhou 2009;
Su et al. 2009; Liu and Wen 2011).

It is easy to see that for classical propositional logic,
forgetting preserves logical equivalence. That is, logically
equivalent formulas (theories) will remain logically equiv-
alent after forgetting the same set of atoms. For logic pro-
grams, the issue of logical equivalence is rather complicated
due to its different notions of “equivalence”: (weak) equiva-
lence and strong equivalence.

There have been several attempts to define the notion of
forgetting in logic programs, but none of these approaches
is fully satisfactory. Zhang and Foo (2006) first defined syn-
tax oriented weak and strong forgetting notions for normal
logic programs. But these forgetting notions preserve nei-
ther (weak) equivalence nor strong equivalence. Eiter and

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Wang (2008) then proposed a semantic forgetting for con-
sistent disjunctive logic programs, which preserves equiv-
alence but not strong equivalence. They specifically indi-
cated the importance of preserving strong equivalence in
logic programming forgetting and raised this issue as a fu-
ture work. Wong (2009) proposed two forgetting operators
for disjunctive logic programs. Although Wong’s forgetting
indeed preserves strong equivalence, it may lose the intu-
ition of weakening under various circumstances (see Related
Work for details).

In addition to preserving strong equivalence, expressibil-
ity is another desired criterion for logic programming for-
getting. Ideally we would expect that the result of forgetting
some atoms from a logic program is still expressible by a
logic program. Finally, we believe that as a way of weak-
ening, forgetting in logic programs should obey some com-
mon intuitions shared by forgetting in classical logics. For
instance, forgetting something from a logic program should
lead to a weaker program in certain sense. On the other hand,
such weakening should only be associated to the relevant in-
formation that has been forgotten. For this purpose, Zhang
and Zhou (2009) proposed four forgetting postulates to for-
malize these common intuitions and showed that forgetting
in classical propositional logic and modal logic S5 can be
precisely captured by these postulates. Interestingly, none of
previous forgetting notions in logic programs actually satis-
fies Zhang-Zhou’s postulates.

In summary, we consider the following criteria that a for-
getting notion in logic program should meet:
• Expressibility. The result of forgetting in an arbitrary

logic program should also be expressible via an arbitrary
logic program;

• Preserving strong equivalence. Two strongly equivalent
programs should remain strongly equivalence after forget-
ting the same set of atoms;

• Satisfying common intuitions of forgetting. Preferably,
forgetting in logic programs should be semantically char-
acterized by Zhang-Zhou’s four forgetting postulates.
In this paper we present a comprehensive study on for-

getting in the context of arbitrary logic programs (proposi-
tional theories) under answer set semantics. In our approach,
a program Π is viewed as a theory of the logic of here-and-
there (or simply called HT logic), then forgetting a set V of

643

Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning

atoms from Π, is the theory consisting of the consequences
of Π in HT logic that mention no atoms from V . Our se-
mantic forgetting meets all above criteria, and hence is of
primary advantages comparing to previous logic program
forgetting notions. We also investigate the relationship be-
tween the HT-forgetting and classical forgetting, and the re-
lating computational complexity of HT-forgetting.

Preliminaries
Consider a propositional language L over a finite set A of
propositional atoms (A is also called the signature of L).
Formulas of L are built from L’s signature A and the 0-
place connective ⊥ (“false”) using the binary connectives
∧,∨ and ⊃1. > (“true”) is the shorthand of ⊥ ⊃ ⊥, ¬ϕ for
ϕ ⊃ ⊥, and ψ ↔ φ for (ψ ⊃ φ) ∧ (φ ⊃ ψ). A theory
is a set of propositional formulas. An interpretation is a set
I of atoms from A, where each atom of A is viewed to be
true if it is in I , and false otherwise. Then notions of model
and satisfaction relation |= are defined in a standard way.
For two propositional formulas φ and ψ, φ ≡ ψ is used to
denote φ |= ψ and ψ |= φ.

Forgetting in propositional logic
Let V , M1 and M2 be sets of atoms. We say that M1 and
M2 are V -identical, denoted by M1 ∼V M2, if M1 and M2

agree on everything except possibly on V , i.e. M1 \ V =
M2\V . Given a theory Σ, a theory, denoted as Forget(Σ, V),
is a result of forgetting V in Σ, iff for any set M ′ of atoms,
M ′ is a model of Σ iff there exists a modelM of Σ such that
M ∼V M ′. Alternatively, Σ′ ≡ Forget(Σ, V) iff

Mod(Σ′) = {M ′ | ∃M |= Σ s.t M ∼V M ′},

where Mod(Σ) denotes the set of models of Σ. This
is a semantic forgetting defined in (Lin and Reiter
1994). A syntactic counterpart of the semantic forget-
ting is given in (Lang, Liberatore, and Marquis 2003) as:
Forget(Σ, p) = Σ[p/>]∨Σ[p/⊥], and Forget(Σ, V ∪{p}) =
Forget(Forget(Σ, p), V). These two definitions of forgetting
are equivalent (cf. Corollary 5 of (Lang, Liberatore, and
Marquis 2003)).

Answer sets for propositional theories
Given a formula ψ and a set X of atoms, the reduct ψX

of ψ relative to X is obtained from ψ recursively via the
following steps:

• for each atom p, if X |= p then pX is p, otherwise it is ⊥;
⊥X = ⊥; and

• for each formula ψ and φ, if X |= ψ ⊗ φ then (ψ ⊗ φ)X

is ψX ⊗ φX ; otherwise it is ⊥, where ⊗ ∈ {∨,∧,⊃}.
The reduct ΠX of a propositional theory Π relative to X

is {ψX |ψ ∈ Π}. A setX of atoms is an answer set (or stable
model) of a set of propositional formulas Π if X is a mini-
mal model (in terms of set inclusion) satisfying ΠX (Ferraris

1In the rest of this paper, whenever there is no confusion, we
may not explicitly mention the signature when we talk about for-
mulas of L.

2011). Under this semantics, one should note that ¬¬p is not
“equivalent to” p, as ¬¬p has no answer set while {p} is the
unique answer set of p. Two theories Π1 and Π2 are strongly
equivalent if Π1 ∪Σ and Π2 ∪Σ have the same answer sets
for any theory Σ. Cabalar and Ferraris (2007) showed that
a propositional theory (under answer set semantics) exactly
captures a logic program with nested expressions (Lifschitz,
Tang, and Turner 1999).

The logic of here-and-there
The syntax of HT logic is the same as classical proposi-
tional logic. An HT-interpretation is a pair 〈H,T 〉 such that
H ⊆ T ⊆ A. The satisfiability relation between an HT-
interpretation 〈H,T 〉 and a formula ψ, denoted by 〈H,T 〉 |=
ψ, is recursively defined:
• 〈H,T 〉 |= p if p ∈ H;
• 〈H,T 〉 6|= ⊥;
• 〈H,T 〉 |= ψ1 ∨ ψ2 if 〈H,T 〉 |= ψ1 or 〈H,T 〉 |= ψ2;
• 〈H,T 〉 |= ψ1 ∧ ψ2 if 〈H,T 〉 |= ψ1 and 〈H,T 〉 |= ψ2;
• 〈H,T 〉 |= ψ1 ⊃ ψ2 if both (i) T |= ψ1 ⊃ ψ2, and (ii)
〈H,T 〉 |= ψ1 implies 〈H,T 〉 |= ψ2.
An HT-interpretation 〈H,T 〉 is an HT-model of ψ if

〈H,T 〉 |= ψ. An HT-model 〈T, T 〉 of ψ is an equilib-
rium model of ψ if there is no T ′ such that T ′ ⊂ T and
〈T ′, T 〉 |= ψ. The logic based on this semantics is called
equilibrium logic (Pearce 1996). The satisfiability relation,
HT-model and equilibrium model are extended to theories in
a standard way. We denote Modht(Σ) the set of HT-models
of the theory Σ. In particular, if Σ is a singleton {ψ}, we
simply write it as Modht(ψ). Let Π and Σ be two theo-
ries. By Π |=ht Σ, we mean that every HT-model of Π is
an HT-model of Σ, and by Π ≡ht Σ we mean Π |=ht Σ
and Σ |=ht Π. In the latter case, we call Π and Σ are HT-
equivalent. It has been shown that, a set X of atoms is an
answer set of a logic program Π iff 〈X,X〉 is an equilib-
rium model of Π. In addition, two logic programs Π and
Σ are strongly equivalent iff Π ≡ht Σ (Pearce, Tompits,
and Woltran 2001; Lifschitz, Pearce, and Valverde 2001;
Ferraris 2011). The following proposition shows some basic
properties of HT logic that we will need in our next study.
Proposition 1 Let φ and ψ be two formulas and 〈X,Y 〉 an
HT-interpretation.

(i) If 〈X,Y 〉 |= φ then 〈Y, Y 〉 |= φ (i.e., Y |= φ),
(ii) 〈X,Y 〉 |= ¬φ iff Y |= ¬φ,

(iii) 〈X,Y 〉 |= φ iff X |= φY ,
(iv) If φ ≡ht ψ, then φ ≡ ψ,
(v) ¬⊥ ≡ht ¬¬> ≡ht > and ¬> ≡ht ¬¬⊥ ≡ht ⊥.

HT-Forgetting in Logic Programs
Differently from previous approaches, our forgetting notion
in logic programs will be based on the logic of here-and-
there, which will lead to meet all criteria of forgetting we
addressed earlier. Let K1 = 〈H1, T1〉 and K2 = 〈H2, T2〉
be two HT-interpretations and V a set of atoms. K1 and K2

are said to be V -identical, denoted as K1 ∼V K2, whenever
H1 ∼V H2 and T1 ∼V T2.

644

Definition 1 Let ψ be a formula and V a set of atoms. A
formula φ is called a result of HT-forgetting V in ψ, iff the
following condition holds:
Modht(φ) = {〈H,T 〉 | 〈H,T 〉 is an HT-interpretation s.t.

∃〈X,Y 〉 ∈ Modht(ψ) and 〈X,Y 〉 ∼V 〈H,T 〉}.
As we will see later, the forgetting result always exists and
it is unique (up to the equivalence in here-and-there), we
will denote the forgetting result by Forgetht(Π, V) in what
follows. From Definition 1, it is not difficult to see that HT-
forgetting is independent of the order of forgetting atoms.
Proposition 2 Let ψ be a formula, V1 and V2 two sets
of atoms. Then we have Forgetht(Forgetht(ψ, V1), V2) ≡ht

Forgetht(Forgetht(ψ, V2), V1) ≡ht Forgetht(ψ, V1 ∪ V2).
As HT-interpretations are related to a given signature, in

what follows, we shall assume that the signature of a for-
mula/theory is implicitly given by the atoms occurring in
the formula/theory, unless explicitly stated otherwise.

Semantic Characterizations
Unlike propositional logic, HT logic does not hold a model
characteristic property in general. That is, given a class of
HT-interpretations, there may not exist a formula whose HT-
models exactly correspond to those HT-interpretations. For
example, letM = {〈∅, {a}〉}, we can show that there is no
formula that has a unique HT-model 〈∅, {a}〉. To see this,
suppose that there is a formula ψ such that Modht(ψ) =M,
then we have 〈{a}, {a}〉 |=ht ψ by (i) of Proposition 1. But
this is not the case. Hence, as a semantic forgetting notion,
the study on the expressibility of HT-forgetting is necessary.

Expressibility
To begin with, we first introduce the notion of irrelevance
which has a close connection to forgetting. A formula ψ is
HT-irrelevant to a set V of atoms, denoted as IRht(ψ, V),
if there exists a formula φ mentioning no atoms from V
and ψ ≡ht φ. For convenience, in the following, we will
simply write a singleton set {α} as α, and thus we may de-
note Forgetht(ψ, {p}) as Forgetht(ψ, p), and IRht(ψ, {p}) as
IRht(ψ, p), etc..

Note that Definition 1 is semantic, which does not guar-
antee the existence of a formula φ such that Modht(φ) =
Modht(Forgetht(ψ, V)). However, the following theorem
states that such formula always exists.
Theorem 1 (Expressibility theorem) Let ψ be a formula
and V a set of atoms. There always exists a formula φ such
that φ is a result of HT-forgetting V in ψ.

As one knows that disjunctive programs, positive pro-
grams, normal logic programs and Horn programs are four
types of special cases of (arbitrary) logic programs under
our setting. Then it is interesting to consider whether the ex-
pressibility result also holds for each of these special pro-
grams. For instance, we would like to know whether the
result of forgetting in a disjunctive (positive, normal, and
Horn) program is still expressible by a disjunctive (resp. pos-
itive, normal, and Horn) program. It turns out that the answer
is negative for HT-forgetting in disjunctive, positive and nor-
mal programs.

Example 1 Consider the following normal logic program Π
over signature {p, q}:

¬p ⊃ q, ¬q ⊃ p, p ∧ q ⊃ ⊥.

Π has two HT-models: 〈{p}, {p}〉 and 〈{q}, {q}〉. Then
Modht(Forgetht(Π, p)) contains the HT-interpretations that
are {p}-identical to one of the following HT-interpretations:

〈∅, ∅〉, 〈{q}, {q}〉,

from which we conclude that Forgetht(Π, p) ≡ht q ∨ ¬q.
It is shown that q ∨ ¬q cannot be expressed as a normal or
disjunctive program in the sense that there is no normal or
disjunctive program Π which is strongly equivalent to q∨¬q
(Eiter, Tompits, and Woltran 2005). �

Example 2 Let Π be a positive logic program over signa-
ture {p, q, r} as follows:

p ∨ q ∨ r, p ∧ q ⊃ r, p ∧ r ⊃ q, q ∧ r ⊃ p.

By HT-forgetting q from Π, we have Forgetht(Π, q) ≡ht

(¬r ⊃ p∨¬p)∧ (¬p ⊃ r∨¬r), which cannot be expressed
by any positive logic program. �

HT-forgetting in Horn programs is of special interest, be-
cause unlike disjunctive, positive and normal programs, the
result of HT-forgetting in a Horn program is always express-
ible by a Horn program.

Theorem 2 (Horn program expressibility) Let Π be a
Horn logic program and V a set of atoms. Then there exists
a Horn logic program Π′ such that Forgetht(Π, V) ≡ht Π′.

Strong equivalence and other properties
One can easily see that our HT-forgetting preserves strong
equivalence. From Definition 1 and Theorem 1, the follow-
ing result is obvious.

Proposition 3 Let ψ and ϕ be two formulas and V a set of
atoms. If ψ ≡ht ϕ, then Forgetht(ψ, V) ≡ht Forgetht(ϕ, V).

The property of preserving strong equivalence of HT-
forgetting then immediately follows from the equivalent re-
lationship between strong equivalence and HT-equivalence
(Lifschitz, Pearce, and Valverde 2001). The following
proposition illustrates some essential properties of HT-
forgetting.

Proposition 4 Let ψ and φ be two formula and V a set of
atoms. Then the following results hold.

(i) ψ has an HT-model iff Forgetht(ψ, V) has.
(ii) ψ |=ht Forgetht(ψ, V).

(iii) If ψ |=ht φ then Forgetht(ψ, V) |=ht Forgetht(φ, V).
(iv) Forgetht(ψ ∨ φ, V) ≡ht Forgetht(ψ, V) ∨

Forgetht(φ, V).
(v) Forgetht(ψ ∧ φ, V) |=ht Forgetht(ψ, V) ∧

Forgetht(φ, V).
(vi) Forgetht(ψ ∧ φ, V) ≡ht Forgetht(ψ, V) ∧ φ

if IRht(φ, V).

645

Forgetting postulates
Zhang and Zhou (2009) proposed four forgetting postu-
lates in their work of knowledge forgetting, and showed
that their knowledge forgetting can be precisely character-
ized by these postulates. In the following, we show that HT-
forgetting is exactly captured by these postulates, which we
think is one major advantage over other logic program for-
getting approaches.

The below proposition actually implies the uniform in-
terpolation property (Visser 1996) of the logic of here-and-
there.
Proposition 5 Let ψ and ϕ be two formulas, V a set of
atoms and IR(ϕ, V). Then we have

ψ |=ht ϕ iff Forgetht(ψ, V) |=ht ϕ.

Let ψ and φ be two formulas and V a set of atoms. The
following are Zhang-Zhou’s four postulates under the logic
of here-and-there.
(W) Weakening: ψ |=ht φ.
(PP) Positive persistence: if IRht(ξ, V) and ψ |=ht ξ then

φ |=ht ξ.
(NP) Negative persistence: if IRht(ξ, V) and ψ 6|=ht ξ then

φ 6|=ht ξ.
(IR) Irrelevance: IRht(φ, V).

By specifying φ ≡ht Forgetht(ψ, V), (W), (PP), (NP)
and (IR) are called postulates for HT-forgetting. Weaken-
ing (W) requires that forgetting results in weaker knowl-
edge. The postulates of positive persistence (PP) and neg-
ative persistence (NP) simply state that forgetting a set of
atoms should not affect those positive or negative informa-
tion respectively that is irrelevant to this set of atoms. Fi-
nally, irrelevance (IR) means that after forgetting, the result-
ing knowledge should be irrelevant to those forgotten atoms.
Theorem 3 (Representation theorem) Let ψ and φ be two
formulas and V a set of atoms. Then the following state-
ments are equivalent:

(i) φ ≡ht Forgetht(ψ, V).
(ii) φ ≡ht {ϕ | ψ |=ht ϕ and IRht(ϕ, V)}.

(iii) Postulates (W), (PP), (NP) and (IR) hold.

HT-forgetting and Classical Forgetting
It has been shown that strong equivalence of logic programs
may be related to the equivalence of propositional logic
(Pearce, Tompits, and Woltran 2001). As the HT-forgetting
does preserve strong equivalence, it is worth exploring fur-
ther connections between HT-forgetting and the classical
one.
Proposition 6 Let ψ be a formula and V a set of atoms. The
following results hold.

(i) Forgetht(ψ, V) ≡ Forget(ψ, V).
(ii) Forget(¬ψ, V) |=ht Forgetht(¬ψ, V).

The result (i) in Proposition 6 simply says that HT-
forgetting and classical forgetting are equivalent under the
classical propositional logic. From this result and Theorem
2, we immediately have the following corollary.

Corollary 4 Let Π be a Horn program and V a set of atoms.
Then Forget(Π, V) is expressible by a Horn program.

We also note that the converse of (ii) of Proposi-
tion 6 does not hold. That is, we usually do not have
Forgetht(¬ψ, V) |=ht Forget(¬ψ, V). For example, let ψ =
¬(p ∧ ¬¬q), then we have that Forget(¬ψ, q) ≡ p and
Forgetht(¬ψ, q) ≡ht ¬¬p. Clearly, ¬¬p 6|=ht p.

Nevertheless, together with (i) of Proposition 6, the fol-
lowing result states that for Horn programs, HT-forgetting
and classical forgetting are also equivalent under HT logic.

Proposition 7 Let Π be a Horn program, V a set of atoms
and Π′ a Horn program such that Π′ ≡ Forget(Π, V). Then
Forgetht(Π, V) ≡ht Π′.

Proposition 7 provides a method of computing HT-
forgetting in a Horn program through its corresponding clas-
sical forgetting, since we know that Forget(Π, V ∪ {p}) ≡
Forget(Forget(Π, p), V), and Forget(ψ, p) ≡ ψ[p/⊥] ∨
ψ[p/>] for any formula (program) ψ.

Proposition 8 Let ψ and φ be two formulas and V a set of
atoms. The following results hold.

(i) φ ≡ Forget(ψ, V) iff ¬¬φ ≡ht Forgetht(¬¬ψ, V),
(ii) Forget(φ, V) ≡ Forget(ψ, V) iff

Forgetht(¬¬φ, V) ≡ht Forgetht(¬¬ψ, V).

Computational Complexity
Given a formula ψ and a set V of atoms, from Theorem
3 (i.e. (ii) in the representation theorem), we can see that
the result of the HT-forgetting V in ψ, Forgetht(ψ, V), can
be generated by computing all logical consequences of ψ
which are HT-irrelevant to V . Indeed, since there is a sound
and complete axiomatic system for the logic of here-and-
there (Jongh and Hendriks 2003), this is feasible. Never-
theless, it is also observed that from a computational view-
point, like the classical forgetting, the process of generating
Forgetht(ψ, V) would be expensive as shown by the below
theorem.

Theorem 5 Let ψ and φ be two formulas and V a set of
atoms. We have

(i) deciding if ψ ≡ht Forgetht(φ, V) is ΠP
2 -complete,

(ii) deciding if ψ |=ht Forgetht(φ, V) is ΠP
2 -complete,

(iii) deciding if Forgetht(ψ, V) |=ht φ is coNP-complete.

Related Work
As mentioned in Introduction, several approaches of forget-
ting in logic programs have been developed earlier in the
literature. While Zhang and Foo’s weak and strong forget-
ting (Zhang and Foo 2006), and Eiter and Wang’s seman-
tic forgetting (Eiter and Wang 2008) do not preserve strong
equivalence, Wong’s forgetting operators (Wong 2009) does.
In the section we compare our HT-forgetting with the ones
proposed by Wong.

Wong developed his forgetting for disjunctive logic pro-
grams. Differently from Zhang and Foo’s and Eiter and
Wang’s approaches, Wong’s forgetting is defined based on
the logic of here-and-there. In this sense, Wong’s approach

646

probably shares a common logic ground with HT-forgetting.
Wong also defined two forgetting operators FS and FW,
which correspond to two series of program transformations.
The interesting feature of Wong’s forgetting is that it pre-
serves strong equivalence.

However, a major issue with Wong’s forgetting is that:
on one hand, forgetting may cause unnecessary information
loss; on the other hand, forgetting may also introduce extra
information that we do not want, as illustrated by the follow-
ing example.
Example 3 Let us consider the normal logic program Π
consisting of:

a← x, y ← a, not z,

q ← not p, p← not q, ← p, q.

Then we have:
FS(Π, {a, p}) ≡ht {y ← x, not z},
FW(Π, {a, p}) ≡ht {y ← x, not z, ← x, q ←},
Forgetht(Π, {a, p}) ≡ht {y ← x, not z, q ← not not q}.
Since Π |=ht {q ← not not q}, which is irrelevant to
atoms a and p, it seems to us that forgetting {a, p} from
Π should not affect this fact. But clearly FS(Π, {a, p}) 6|=ht

{q ← not not q}. In this sense, we see FS has lost some
information that we wish to keep.

On the other hand, from the fact that Π 6|=ht q but
FW(Π, {a, p}) |=ht q, it appears that FW may introduce un-
necessary information, which indeed conflicts our intuition
of program weakening via forgetting. �

Concluding Remarks
In the paper we proposed a semantic forgetting in arbitrary
logic program which preserves strong equivalence and also
satisfies other important semantic properties that previous
forgetting approaches do not have.

Some related issues remain for the future work. Forget-
ting in logic programs has demonstrated its applications in
conflict resolution and knowledge base update (Zhang and
Foo 2006; Eiter and Wang 2008). We believe that our HT-
forgetting can be used to develop a general framework for
knowledge bases merging and update where each knowledge
base is represented as an arbitrary logic program.

It is also an interesting topic to develop a notion of forget-
ting in first-order logic programs. It is not clear yet whether
the HT-forgetting proposed in this paper may be extended
to arbitrary first-order logic programs. Nevertheless, some
general principles for forgetting such as preserving strong
equivalence and forgetting postulates that we addressed in
this paper may provide an essential guide for our study on
this topic.

Acknowledgement
We thanks the anonymous reviewers for their detailed com-
ments. Yisong Wang and Mingyi Zhang are partially sup-
ported by the Natural Science Foundation of China un-
der grant 60963009, while Yisong is also partially sup-
ported by Open Funds of the State Key Laboratory of Com-
puter Science of Chinese Academy of Science under grant
SYSKF1106.

References
Cabalar, P., and Ferraris, P. 2007. Propositional theories are
strongly equivalent to logic programs. TPLP 7(6):745–759.
Eiter, T., and Wang, K. 2008. Semantic forgetting in answer
set programming. AIJ 172(14):1644–1672.
Eiter, T.; Tompits, H.; and Woltran, S. 2005. On solution cor-
respondences in answer-set programming. In IJCAI-2005,
97–102. Edinburgh, Scotland, UK: Professional Book Cen-
ter.
Ferraris, P. 2011. Logic programs with propositional con-
nectives and aggregates. TOCL 12(4):25:1–25:40.
Jongh, D. D., and Hendriks, L. 2003. Characterization of
strongly equivalent logic programs in intermediate logics.
TPLP 3(3):259–270.
Lang, J., and Marquis, P. 2010. Reasoning under inconsis-
tency: A forgetting-based approach. AIJ 174(12-13):799–
823.
Lang, J.; Liberatore, P.; and Marquis, P. 2003. Propositional
independence: Formula-variable independence and forget-
ting. JAIR 18:391–443.
Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
equivalent logic programs. TOCL 2(4):526–541.
Lifschitz, V.; Tang, L. R.; and Turner, H. 1999. Nested
expressions in logic programs. AMAI 25(3-4):369–389.
Lin, F., and Reiter, R. 1994. Forget it! In In Proceedings of
the AAAI Fall Symposium on Relevance, 154–159.
Liu, Y., and Wen, X. 2011. On the progression of knowl-
edge in the situation calculus. In IJCAI-2011, 976–982.
Barcelona, Catalonia, Spain: IJCAI/AAAI.
Lutz, C., and Wolter, F. 2011. Foundations for uniform in-
terpolation and forgetting in expressive description logics.
In IJCAI-2011, 989–995. Barcelona, Catalonia, Spain: IJ-
CAI/AAAI.
Pearce, D.; Tompits, H.; and Woltran, S. 2001. Encodings
for equilibrium logic and logic programs with nested ex-
pressions. In EPIA-2001, 306–320. London, UK: Springer-
Verlag.
Pearce, D. 1996. A new logical characterisation of stable
models and answer sets. In NMELP’96, volume 1216 of
LNCS, 57–70. Bad Honnef, Germany: Springer.
Su, K.; Sattar, A.; Lv, G.; and Zhang, Y. 2009. Variable
forgetting in reasoning about knowledge. JAIR 35:677–716.
Visser, A. 1996. Uniform interpolation and layered bisimu-
lation. In Gödel’96, 139–164.
Wang, Z.; Wang, K.; Topor, R. W.; and Pan, J. Z. 2010. For-
getting for knowledge bases in dl-lite. AMAI 58(1-2):117–
151.
Wong, K.-S. 2009. Forgetting in Logic Programs. Ph.D.
Dissertation, The University of New South Wales.
Zhang, Y., and Foo, N. Y. 2006. Solving logic program
conflict through strong and weak forgettings. AIJ 170(8-
9):739–778.
Zhang, Y., and Zhou, Y. 2009. Knowledge forgetting: Prop-
erties and applications. AIJ 173(16-17):1525–1537.

647

