
Stream Reasoning with Answer Set Programming:
Preliminary Report

M. Gebser, T. Grote, R. Kaminski, P. Obermeier,? O. Sabuncu, and T. Schaub∗

Universität Potsdam, Germany and ?DERI Galway, Ireland

Abstract

The advance of Internet and Sensor technology has brought
about new challenges evoked by the emergence of continu-
ous data streams. While existing data-stream management
systems allow for high-throughput stream processing, they
lack complex reasoning capacities. We address this short-
coming and elaborate upon an approach to knowledge-intense
stream reasoning based on Answer Set Programming (ASP).
The emphasis thus shifts from rapid data processing to com-
plex reasoning. To accommodate this in ASP, we develop
new techniques that allow us to formulate problem encodings
dealing with emerging as well as expiring data in a seam-
less way. We thus propose novel language constructs and
modeling techniques for specifying and reasoning with time-
decaying logic programs.

Introduction
The advance of Internet and Sensor technology has brought
about new challenges evoked by the emergence of continu-
ous data streams, like web logs, mobile locations, or traffic
data. While existing data-stream management systems (Go-
lab and Özsu 2010) allow for high-throughput stream pro-
cessing, they lack complex reasoning capacities (Della Valle
et al. 2009). We address this shortcoming and introduce an
approach to knowledge-intense stream reasoning, based on
Answer Set Programming (ASP; (Baral 2003)) as a prime
tool for Knowledge Representation and Reasoning (KRR).
The emphasis thus shifts from rapid data processing towards
complex reasoning, as needed for instance in ambient as-
sisted living, robotics, or scheduling.

However, the sheer amount and continuous flow of infor-
mation produced by data streams precludes the direct appli-
cation of ASP, simply because it is designed for singular rea-
soning from all available information. Unlike this, “stream
reasoning, instead, restricts processing to a certain window
of concern, focusing on a subset of recent statements in the
stream, while ignoring previous statements.” (Barbieri et al.
2010b). To accommodate this in ASP, we develop new tech-
niques that allow us to formulate problem encodings dealing
with emerging as well as expiring data in a seamless way.
∗Affiliated with Simon Fraser University, Canada, and Griffith

University, Australia.
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To further illustrate this problem, consider a continuous
character stream over alphabet {a, b} along with the task of
continuously checking whether the stream at hand matches
regular expression (a|b)∗aa. We represent the stream via
atoms of the form read(C,T), indicating that character C is
at stream position T. As a first attempt, we may then encode
the recognition of (a|b)∗aa by the rule

accept :- read(a,T-1), read(a,T).

This rule can be seen as an “offline” encoding, which is
correct for the initial segment of a stream of successive in-
stances of predicate read, that is, up to the smallest i (if
any) such that read(a,i−1) and read(a,i) hold. How-
ever, instances of read constitute an “online” data flow, and
an accept decision has to be withdrawn when letter b is
read, eg. in read(b,i+1). Clearly, solving such a problem
with traditional ASP systems requires relaunching the sys-
tem upon the arrival of each character. Although each time
only the last two readings need to be taken into account, nei-
ther of the following ways to utilize standard ASP systems
is satisfactory from a KRR viewpoint: (a) one may add fur-
ther rules to explicitly identify outdated readings (in order
not to reason about them) among the whole data; (b) an ex-
ternal component may filter readings and pass only the most
recent ones on to the ASP system. Major drawbacks of (a)
are the increasing size of input data over time and the more
involved encoding, required for the sake of “garbage collec-
tion.” Compared to this, (b) might appear tempting, but it
relies on external filtering and thus fails to model the sce-
nario at hand within the declarative realm of ASP.

To overcome this problem, we propose an ASP-based ap-
proach to stream reasoning based on the sliding window
model (cf. (Golab and Özsu 2010)). The idea is (i) to read
an “offline” encoding just once and (ii) to keep only the n
last entries of an “online” data stream. We accomplish this
by extending our previous approach to reactive ASP (Geb-
ser et al. 2011) by means for dealing with time-decaying
program parts. In our example, this implies that instances
of predicate read expire after two steps. Hence, when in-
vestigating the stream abba, only the atoms read(b,3) and
read(a,4) are taken into account, while read(a,1) and
read(b,2) have already expired and been disposed of. In
fact, time-decaying data poses a major challenge to ASP
given that fixed encodings must tolerate emerging as well

613

Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning

as expiring data. While traditional ASP solving deals with
one problem instance at a time, we now face continuously
changing instances. Furthermore, the applicability of tra-
ditional modeling techniques, eg. frame axioms (Lifschitz
2002), is in question since initial information expires. We
address this by proposing novel language constructs that al-
low for specifying and reasoning with time-decaying logic
programs in an effective way. Moreover, we develop mod-
eling techniques that are robust enough to handle changing
data without continuous re-processing or increasing memory
demands.

Background
We only provide a brief introduction to the syntax of logic
programs with choice rules and integrity constraints, and re-
fer the reader to (Simons, Niemelä, and Soininen 2002) for
semantic issues. A rule is an expression of the form

h← a1, . . . , am,not am+1, . . . ,not an (1)

where ai, for 1 ≤ m ≤ n, is an atom of the form
p(t1, . . . , tk), and t1, . . . , tk are terms, viz. constants, vari-
ables, or functions. For a rule r as in (1), the head h
of r is either an atom, a cardinality constraint of the form
l {h1, . . . , hk}u in which l, u are integers and h1, . . . , hk

are atoms, or the special symbol⊥. If h is a cardinality con-
straint, we call r a choice rule, and an integrity constraint if
h = ⊥. We denote the atoms occurring in h by head(r), ie.
head(r) = {h} if h is an atom, head(r) = {h1, . . . , hk}
if h = l {h1, . . . , hk}u, and head(r) = ∅ if h = ⊥.
We sometimes skip ⊥ when writing integrity constraints.
A logic program R is a set of rules of the form (1). By
atom(R), we denote the set of all atoms occurring in R, and
head(R) =

⋃
r∈R head(r) is the collection of head atoms

in R. The ground instance of R, denoted by grd(R), is the
set of all ground rules constructable from rules r ∈ R by
substituting every variable in r with some ground term com-
posed from constants and function symbols that occur in R.

For capturing dynamic systems, we take advantage of in-
cremental logic programs (Gebser et al. 2008), consisting of
a triple (B,P,Q) of logic programs, among which P and Q
contain a (single) parameter t ranging over the natural num-
bers. In view of this, we sometimes denote P and Q by
P [t] and Q[t]. The base program B is meant to describe
static knowledge, independent of parameter t. The role
of P is to capture knowledge accumulating with increas-
ing t (eg. a transition function in planning), whereas Q is
specific for each value of t (eg. a query). Roughly speaking,
we are interested in finding an answer set of the program
Ri = B ∪

⋃
1≤j≤i P [t/j] ∪Q[t/i] for some (minimum) in-

teger i ≥ 1. That is, the cumulative (and static) parts of
R are meant to be progressively extended when i increases,
while a query persists for just one step i. This is imple-
mented in the incremental ASP solver iclingo (Gebser et al.
2008), providing directives like “#base,” “#cumulative,”
and “#volatile” for fixing the meaning of the respective
program parts. The reactive solver oclingo (Gebser et al.
2011) extends this functionality to incorporate external in-
formation, via “#external,” from a controller, also dis-
tinguishing cumulative and volatile parts. However, stream

data often stays in a sliding window for several steps before
it can (and should) be discarded, so that it neither fits into
the cumulative part P nor the query Q in a natural way. In
order to address this shortcoming, we introduce the concept
of time-decaying logic programs.

Time-Decaying Logic Programs
To provide a formal account of time-decaying logic pro-
grams, subject to emerging and expiring parts, we rely on
module theory (Oikarinen and Janhunen 2006) for capturing
their continuous composition and decomposition from pro-
gram parts. To this end, we further extend the incremental
and reactive module theory developed in (Gebser et al. 2008;
2011). Also, we introduce directives for specifying the re-
spective modules, leading to an extension of the current lan-
guage of oclingo (Gebser et al. 2011).

A time-decaying logic program Ql is a logic program Q
annotated with a life span l ∈ N∪{∞}; when l =∞, we of-
ten write just Q below. The life span allows for steering the
expiration of non-persistent program parts, also called tran-
sients. To support this flexibility in practice, we augment the
oclingo language with new directives of the form

#volatile t [: l].

While t indicates the name written for the incremental pa-
rameter t in a (schematic) program Q[t], the additional in-
teger l gives the life span l of Ql[t]. If l is omitted, as
in the prior oclingo language, it is taken as 1, thus result-
ing in Q1[t]. Reconsidering the introductory example of
recognizing (a|b)∗aa, the fact that only the last two read-
ings deserve consideration could now be captured by a time-
decaying program Q2[t] specified as follows:

#volatile t : 2.
accept :- read(a,t), read(a,t+1). (2)

For deciding acceptance at a stream position, Q2[t] in-
volves read(a,t+1). Such a reading is yet unavailable
when Q2[t/i] is introduced at a stream position i, but
read(a,i) and read(a,i+1) together trigger the rule to
derive accept wrt. the reading at i+1, while Q2[t/i] ex-
pires once a reading at i+2 becomes available.

A time-decaying incremental logic program is a triple
of the form (B,P [t], {Ql1

1 [t], . . . , Q
lm
m [t]}) in which

B,P [t], Ql1
1 [t], . . . , Q

lm
m [t] are time-decaying logic pro-

grams. Such an incremental program serves as “offline” en-
coding of an underlying dynamic system. Note that ordi-
nary incremental logic programs (B,P [t], Q[t]) specialize
the decaying case to (B,P [t], {Q1[t]}).

A time-decaying online progression, representing a
stream of lasting and transient program parts, is a se-
quence (Ei[ei], {F

l1i
1i

, . . . , F
lmi
mi }[fi])i≥1 of pairs in which

Ei, F
l1i
1i

, . . . , F
lmi
mi are time-decaying logic programs and

ei, fi are positive integers. The latter represent minimum
values assumed for the incremental parameter t in an asso-
ciated “offline” (incremental) logic program. Note that on-
line progressions in the sense of (Gebser et al. 2011) capture
the special case (Ei[ei], {F1i}[fi])i≥1, where a transient F1i

614

persists for arbitrarily many incremental steps and is super-
seded only by F1i+1 . In order to generalize this setting, be-
yond “#volatile.” directives, we extended oclingo’s (ex-
ternal) controller component to support the following:

#volatile : l.

As with (transient) incremental logic program parts, the in-
teger l gives the life span l of any transient F l.

For illustrating this language construct, note that decay-
ing the rules of an incremental program, as done in (2), does
still not truly capture the sliding window idea that the data
expires while the reasoning remains the same. Rather than
expiring rules, for our introductory example, we better decay
readings in view of the fact that all but the last two are irrel-
evant. For instance, a (time-decaying) online progression
representing the stream abba can be provided as follows:

#step 1. #volatile : 2. read(a,1).
#step 2. #volatile : 2. read(b,2).
#step 3. #volatile : 2. read(b,3).
#step 4. #volatile : 2. read(a,4).

For 1 ≤ i ≤ 4, the value of fi is given in a “#step i.” di-
rective, expressing that an underlying incremental program
must have progressed to the position i of a reading in the
stream. Furthermore, the life span l1i = 2 of transients
F1i is provided via “#volatile : 2.” directives. Accord-
ingly, the online progression specified above is as follows:(

(∅,
{
{read(a,1).}2

}
[1]),

(∅,
{
{read(b,2).}2

}
[2]),

(∅,
{
{read(b,3).}2

}
[3]),

(∅,
{
{read(a,4).}2

}
[4])

)
.

(3)

In view of time-decaying data, rules stemming from the
(incremental) program in (2) could now also be accumu-
lated (when replacing the directive “#volatile t : 2.”
by “#cumulative t.”), while still preserving the intended
meaning that only the last two readings are used for deciding
acceptance.

Although the expiration of outdated data and/or rules may
yield a working (standard) logic program at each incremen-
tal step, a step-wise redefinition of head atoms, as with
accept in (2), is delicate in ASP and, in particular, for
an incremental ASP system like oclingo. In fact, the pos-
sibility of integrating recent additions without exhaustively
re-processing the entire collection of (non-expired) data and
rules requires incrementally gathered program parts to be
“compositional.” This condition can be expressed in terms
of modules, as elaborated in the following.

For providing a clear interface between various program
parts and guaranteeing their compositionality, we build upon
the concept of a module, P, being a triple (P, I,O) consist-
ing of a ground program P and sets I,O of ground atoms
such that I ∩O = ∅, atom(P) ⊆ I ∪O, and head(P) ⊆ O.
The elements of I and O are called input and output atoms,
also denoted by I(P) and O(P), respectively; similarly, we
refer to P by P (P). The join of two modules P and Q, de-
noted by P tQ, is defined as the module

(P (P)∪P (Q), (I(P)\O(Q))∪(I(Q)\O(P)), O(P)∪O(Q))

provided that O(P) ∩ O(Q) = ∅ and there is no strongly
connected component in the positive dependency graph of
P (P) ∪ P (Q) that shares atoms with both O(P) and O(Q).
A set X of atoms is an answer set of a module P = (P, I,O)
if X is a (standard) answer set of P ∪ {a ← | a ∈ I ∩X};
we denote the set of all answer sets of P by AS (P). For
two modules P and Q, the composition of their answer sets
is AS (P) on AS (Q) = {XP ∪ XQ | XP ∈ AS (P),
XQ ∈ AS (Q), XP∩(I(Q)∪O(Q)) = XQ∩(I(P)∪O(P))}.
The module theorem (Oikarinen and Janhunen 2006) shows
that the semantics of P and Q is compositional if their join
is defined, ie. if P t Q is well-defined, then AS (P t Q) =
AS (P) on AS (Q). In ASP solving, compositionality eases
adding new rules to a program, as it boils down to combin-
ing (without revising) the constraints characterizing answer
sets.

For turning programs into modules, we associate in Def-
inition 1 a (non-ground) program P and a set I of (ground)
input atoms with a module imposing certain restrictions on
the ground program induced by P . To this end, for a ground
program P and a set X of ground atoms, define P |X as
{h← a1, . . . , am,not a′m+1, . . . ,not a

′
n′ |

h← a1, . . . , am,not am+1, . . . ,not an ∈ P,

{a1, . . . , am} ⊆ X, {a′m+1, . . . , a
′
n′} = {am+1, . . . , an} ∩X}.

Note that P |X projects the bodies of rules in P to the atoms
of X . If a body contains an atom outside X , either the cor-
responding rule or literal is removed, depending on whether
the atom occurs positively or negatively. This allows us to
associate (non-ground) programs with (ground) modules in
the following way.
Definition 1. Let P l be a time-decaying logic program, I
a set of ground atoms, and k an integer. For X = I ∪
head(grd(P)) and Y = I ∪head(grd(P)|X), we define the
module

Pl(I, k) =

{
(∅, I, head(grd(P)|X)) if l ≤ k;
(grd(P)|Y , I, head(grd(P)|X)) otherwise.

The full ground instantiation, grd(P), of P l is projected
onto inputs and atoms defined in grd(P). The head atoms of
this projection, viz. head(grd(P)|X), serve as output atoms
and are used to simplify grd(P), sparing only input and out-
put atoms. If k < l, we thus get P (Pl(I, k)) = grd(P)|Y ,
while P (Pl(I, k)) = ∅, obtained otherwise, reflects the ex-
piration of P l wrt. k. However, the input-output interface
of Pl(I, k), I(Pl(I, k)) and O(Pl(I, k)), remains unaffected
by expiration (thus prohibiting the redefinition of expired
head atoms). Furthermore, when l = ∞, P (Pl(I, k)) can
never expire, and we often write P(I) in this case as a short-
hand for P∞(I, k).

We now turn to formalizing the modularity of time-
decaying incremental logic programs and online progres-
sions. For utilizing the import capacities of modules, we as-
sume that any (non-ground) time-decaying logic program P l

has an associated set IP of input atoms, used below to obtain
ground programs and interfaces of modules Pl(I, k).
Definition 2. We define a time-decaying online pro-
gression (Ei[ei], {F

l1i
1i

, . . . , F
lmi
mi }[fi])i≥1 as modu-

lar wrt. a time-decaying incremental logic program

615

(B,P [t], {Ql1
1 [t], . . . , Q

lm
m [t]}), if the modules

Q0 = B(IB)
Pn = Qn−1 t P[t/n](O(Qn−1) ∪ IP [t/n])

Qn = Pn t
(⊔

1≤g≤mQlg
g [t/n](O(Pn) ∪ IQg [t/n], k−n)

)
F0 = (∅, ∅, ∅)
En = Fn−1 t En(O(Qen) ∪ IEn)

Fn = En t
(⊔

1≤h≤mn

and lhn 6=∞

Flhn

hn
(O(Qfn) ∪ IFhn

, k−n)
)

Rj,k = Qk t Fj t
(⊔

1≤h≤mj

and lhj
=∞

Fhj (O(Qfj) ∪ IFhj
)
)

are well-defined for all j, k ≥ 1 with e1, f1, . . . , ej , fj ≤ k.

The module Rj,k represents the combination of the accu-
mulated “offline” encoding Qk (with horizon k) and all “on-
line” data gathered in online progressions Fj and F(∞)

hj
up to

element j. The definition requires modules generated upon
applying an incremental program to an online progression as
well as their joins to be well-defined. The latter guarantees
a compositional semantics enabling an “additive” step-wise
integration of modules. On the other hand, expiration of
transients Q

lg
g [t/n] or F

lhn

hn
is reflected by using k−n for

deriving a corresponding module. For instance, when lg or
lhn is 1, k−n < 1 only holds for n matching the current
step k (and n > k unused in Rj,k), while the empty program
is obtained for smaller n (cf. Definition 1). Furthermore,
the special handling of singular transients F∞hj

in Rj,k also
admits their withdrawal when proceeding to the j+1-th el-
ement of an online progression; if this is unintended, the
(lasting) event Ej allows for the accumulation of rules.

As a (negative) example, reconsider the time-decaying
program Q2[t] from (2), and let IQ[t] = {read(a,n) | n ∈
{t, t+1}}. Then, (∅, ∅, {Q2[t]}) cannot be combined mod-
ularly with streams; eg. for Rj,2, the intersecting outputs
O(Q2[t/1](IQ[t/1], 2−1)) = O(Q2[t/2](IQ[t/2], 2−2)) =
{accept} yield an undefined join. Note, however, that in-
puts like IQ[t] can be declared in the oclingo language as
follows: #external read(a,t;t+1).

For an alternative incremental program for the recognition
of (a|b)∗aa, let us consider the following specification:

#base. #external read(a,1).
{ accept }.
#volatile t : 2. #external read(a,t+1).
:- read(a,t), read(a,t+1), not accept.
:- accept, not read(a,t).

Denoting the program part in-between “#base.” and
“#volatile t : 2.” by B and the remaining part by
Q2[t], the program induces modules of the form

B({read(a,1)}) = (B, {read(a,1)}, {accept})
Q2[t](O(Qt−1) ∪ {read(a,t+1)}) =
(Q,O(Qt−1) ∪ {read(a,t+1)}, ∅)

where either Q = ∅ or Q = Q[t/n], depending on whether
k−n < 2 for Rj,k and 1 ≤ n ≤ k. Observe that
the atom accept is now subject to a choice rule in B

in order to avoid (non-modular) redefinitions within Q2[t];
rather, the synchronization of accept with stream read-
ings is accomplished via integrity constraints that do not
contribute (further) output atoms. In fact, B and Q2[t] in-
duce a well-defined sequence of (joined) modules, where
O = {accept}, as part of R4,4:

Q0 = (B , {read(a,1)} , O)
Q1 = (P (Q0) , {read(a,2)} ∪ I(Q0), O)
Q2 = (P (Q1) , {read(a,3)} ∪ I(Q1), O)
Q3 = (P (Q2) ∪Q[t/3], {read(a,4)} ∪ I(Q2), O)
Q4 = (P (Q3) ∪Q[t/4], {read(a,5)} ∪ I(Q3), O).

The result Q4 can also be joined with the combined module

F4 = ({read(b,3). read(a,4).}, {accept},
{read(a,1), read(b,2), read(b,3), read(a,4)})

obtained from the online progression in (3). In view of
the integrity constraint “:- accept, not read(a,3).”
in Q[t/3], the atom accept must not belong to an answer
set of R4,4 = Q4tF4 such that the input atoms read(a,2),
read(a,3), and read(a,5) of R4,4 are false. Unlike
this, “:- read(a,3), read(a,4), not accept.” in
Q[t/3] would enforce accept to hold if the third reading
was read(a,3).

Modeling and Reasoning
In the extended version of this paper (Gebser et al. 2012),
we present several extensive case studies illustrating partic-
ular features in modeling and reasoning with time-decaying
logic programs and stream data. This includes modelings
of the simple task to monitor consecutive user accesses, an
overtaking scenario utilizing frame axioms, and the combi-
natorial problem of online job scheduling.

Related Work
Academic and commercial systems for stream processing in-
clude, on the one hand, high-throughput stream processors,
like Aurora (Abadi et al. 2003), IBM’s System S (Gedik
et al. 2008), or C-SPARQL (Barbieri et al. 2009). All
these systems essentially operate on the level of continuous
conjunctive queries (without recursion). Although they fall
short in terms of expressiveness, they are highly optimized
for dealing with enormous amounts of stream data (as eg. in
stock exchange). Rule-based stream reasoners, on the other
hand, address this lack of expressiveness. For instance, Bar-
bieri et al. (2010a) suggest a reasoning engine with ontologi-
cal background knowledge, which amounts to pure Datalog.
Also, they employ a time-based sliding window by annotat-
ing incoming data with fixed expiration times. Interestingly,
the stream reasoner ETALIS (Anicic et al. 2010) provides a
declarative rule-based language for complex event process-
ing (implemented in Prolog). ETALIS associates proposi-
tions with time intervals; complex events are formed via in-
terval operators, like meets or during. Given that ETALIS
relies on unification, it is interesting future work to see in
how far its functionalities can be transferred to a ground-
ing approach based on ASP. Finally, ASP was used in (Do,
Loke, and Liu 2011) for a case study in processing OWL

616

data streams. However, this proposal does not integrate the
treatment of stream data into ASP, but rather calls anew an
ASP solver (here dlv (Leone et al. 2006)) on each window.
Unlike this, our approach handles time-decaying data (and
programs) within the reasoning methodology of ASP, which
distinguishes it from other approaches to stream reasoning.

Summary
We introduced the first genuine approach to stream reason-
ing in ASP. Our approach is of general purpose offering
interesting prospects for implementing higher forms of dy-
namic reasoning, as in agent technology, belief revision and
update, cognitive robots, forgetting, etc. Technically, the
emergence and expiration of program parts presented a sig-
nificant challenge to traditional ASP. We addressed this by
starting from semantic principles and developing language
extensions for specifying time-decaying program parts. Our
approach is implemented within the reactive ASP solver
oclingo (oclingo), which is a central component in the EU
projects www.easyreach-project.eu and www.strokeback.eu
relying on knowledge-intense stream reasoning in eHealth.
Acknowledgments. This work was partially funded by
DFG under grant SCHA 550/8-1/2 and by the EU project
EasyReach under AAL call 2009-2.

References
Abadi, D.; Carney, D.; Çetintemel, U.; Cherniack, M.; Con-
vey, C.; Lee, S.; Stonebraker, M.; Tatbul, N.; and Zdonik, S.
2003. Aurora: a new model and architecture for data stream
management. VLDB Journal 12(2):120–139.
Anicic, D.; Fodor, P.; Rudolph, S.; Stühmer, R.; Stojanovic,
N.; and Studer, R. 2010. A rule-based language for com-
plex event processing and reasoning. In Proceedings of
the Fourth International Conference on Web Reasoning and
Rule Systems (RR’10), 42–57. Springer.
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.
Barbieri, D.; Braga, D.; Ceri, S.; Della Valle, E.; and Gross-
niklaus, M. 2009. C-SPARQL: SPARQL for continuous
querying. In Proceedings of the Eighteenth International
Conference on World Wide Web (WWW’09), 1061–1062.
ACM Press.
Barbieri, D.; Braga, D.; Ceri, S.; Della Valle, E.; and Gross-
niklaus, M. 2010a. Incremental reasoning on streams and
rich background knowledge. In Proceedings of the Sev-
enth Extended Semantic Web Conference (ESWC’10), 1–15.
Springer.
Barbieri, D.; Braga, D.; Ceri, S.; Della Valle, E.; Huang, Y.;
Tresp, V.; Rettinger, A.; and Wermser, H. 2010b. Deductive
and inductive stream reasoning for semantic social media
analytics. IEEE Intelligent Systems 25(6):32–41.
Della Valle, E.; Ceri, S.; van Harmelen, F.; and Fensel, D.
2009. It’s a streaming world! reasoning upon rapidly chang-
ing information. IEEE Intelligent Systems 24(6):83–89.
Do, T.; Loke, S.; and Liu, F. 2011. Answer set program-
ming for stream reasoning. In Proceedings of the Twenty-

fourth Canadian Conference on Artificial Intelligence, 104–
109. Springer.
Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.;
Schaub, T.; and Thiele, S. 2008. Engineering an incre-
mental ASP solver. In Proceedings of the Twenty-fourth In-
ternational Conference on Logic Programming (ICLP’08),
190–205. Springer.
Gebser, M.; Grote, T.; Kaminski, R.; and Schaub, T.
2011. Reactive answer set programming. In Proceedings of
the Eleventh International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR’11), 54–66.
Springer.
Gebser, M.; Grote, T.; Kaminski, R.; Obermeier, P.;
Sabuncu, O.; and Schaub, T. 2012. Stream reasoning with
answer set programming: Extended version. Unpublished
draft. Available at (oclingo).
Gedik, B.; Andrade, H.; Wu, K.; Yu, P.; and Doo, M. 2008.
SPADE: the System S declarative stream processing engine.
In Proceedings of the International Conference on Manage-
ment of Data (SIGMOD’08), 1123–1134. ACM Press.
Golab, L., and Özsu, M. 2010. Data Stream Management.
Morgan and Claypool Publishers.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.;
Perri, S.; and Scarcello, F. 2006. The DLV system for
knowledge representation and reasoning. ACM Transactions
on Computational Logic 7(3):499–562.
Lifschitz, V. 2002. Answer set programming and plan gen-
eration. Artificial Intelligence 138(1-2):39–54.
oclingo. http://www.cs.uni-potsdam.de/oclingo.
Oikarinen, E., and Janhunen, T. 2006. Modular equiv-
alence for normal logic programs. In Proceedings of the
Seventeenth European Conference on Artificial Intelligence
(ECAI’06), 412–416. IOS Press.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extend-
ing and implementing the stable model semantics. Artificial
Intelligence 138(1-2):181–234.

617

