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Abstract

Only-knowing was originally introduced by Levesque to cap-
ture the beliefs of an agent in the sense that its knowledge
base is all the agent knows. When a knowledge base con-
tains defaults Levesque also showed an exact correspondence
between only-knowing and autoepistemic logic. Later these
results were extended by Lakemeyer and Levesque to also
capture a variant of autoepistemic logic proposed by Kono-
lige and Reiter’s default logic. One of the benefits of such
an approach is that various nonmonotonic formalisms can be
compared within a single monotonic logic leading, among
other things, to the first axiom system for default logic. In
this paper, we will bring another large class of nonmonotonic
systems, which were first studied by McDermott and Doyle,
into the only-knowing fold. Among other things, we will pro-
vide the first possible-world semantics for such systems, pro-
viding a new perspective on the nature of modal approaches
to nonmonotonic reasoning.

Introduction
When considering a knowledge-based agent, it seems natu-
ral to think of the beliefs1 of the agent to be those that follow
from the assumption that its knowledge base (KB) is all that
is believed. Levesque [1990] was the first to capture this
notion explicitly in his logic of only-knowing. One of the
advantages of this approach is that beliefs can be analyzed
in terms of the valid sentences of a logic without requiring
additional meta-logical notions like fixed points or partial
orders. This is done by using two modal operators in the
language, K for belief, and O for only knowing. For exam-
ple, in the logic proposed by Levesque, the sentence

O(P (a) ∨ P (b)) ⊃ K(∃x.P (x) ∧ ¬KP (x))

is valid, which can be read as “if we only know that P (a) or
P (b), then we know that something is a P, but not what.”

Levesque also showed that, when the KB itself is al-
lowed to mention K, then O captures the autoepistemic
logic (AEL) proposed by Moore [1985], in the sense that
the beliefs entailed by only-knowing KB are precisely those
which are in all stable expansions of KB. This connection
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1In this paper, we use the terms “knowledge” and “belief” in-
terchangeably to mean belief.

made it possible to study autoepistemic reasoning within a
classical monotonic logic, leading, among other things, to an
axiomatic characterization of the logic in the propositional
case, and a first-order account that handles quantifying-in.

In subsequent work by Lakemeyer and Levesque, hence-
forth called LL, [2005; 2006], only-knowing was extended
to capture other forms of nonmonotonic reasoning, and in
particular, the default logic (DL) proposed by Reiter [1980]
and a variant of AEL due to Konolige [1988]. As described
by Reiter, a default rule α : β / γ has an intuitive reading
of “if α is believed and it is consistent to believe β then in-
fer that γ is true.” Hence Konolige proposed translating the
default rule into a sentence of AEL of the form

Kα ∧Mβ ⊃ γ.

In the simplest case, M is understood as the dual of K in
the sense that Mβ stands for ¬K¬β. To properly charac-
terize DL, however, a more complex treatment of the M is
needed. Nonetheless, LL were able to present a variant of
only-knowing that did the job and allowed the properties of
DL to be understood in terms of an underlying model of be-
lief in a classical monotonic logic: a model theory based on
possible worlds, and later, a proof theory based on axioms
and rules of inference [Lakemeyer and Levesque, 2005;
2006].2

In this paper, we continue this work and bring another
large class of nonmonotonic systems into the only-knowing
fold. We investigate the so-called nonmonotonic modal
systems (NMS) first introduced by McDermott and Doyle
[1980], and reconstructed by Marek et al. [1993]. Roughly
speaking, an NMS starts with a classical modal system of
belief (like the system K or K45 or T, in the terminology
of Chellas [1980]), and declares a set of formulas to be an
expansion of α in the NMS if it consists of the formulas that
can be derived in the modal system from α together with the
assumptions ¬Kβ for those β that cannot be derived. Marek
et al. show various properties of these NMS based on a vari-
ety of modal logics, including how different modal systems
λ1 and λ2 can sometimes give rise to the same NMS (that is,
where the λ1-expansions coincide with the λ2-expansions).

2We remark that other nonmonotonic logics with two distinct
modalities were proposed that also capture DL such as [Lin and
Shoham, 1990; Lifschitz, 1994]. See [Lakemeyer and Levesque,
2005] for a discussion how these relate to LL’s work.
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These NMS are certainly less popular in the research com-
munity than DL or AEL (not to mention answer set program-
ming). They are also much more difficult to work with, with
the possible exception of the one based on K45 that aligns
exactly with AEL. However, like the variant of AEL pro-
posed by Konolige, they help shed light on nonmonotonic
reasoning as a whole, and in seeing what is at issue in the
various approaches to default reasoning. In particular, we
will see that the NMS based on the modal system K is a
virtually unstudied nonmonotonic system that has much to
recommend it: it is very close to Reiter’s DL, but arguably
avoids one of the main drawbacks of DL.

The rest of the paper is organized as follows. We begin
by reviewing nonmonotonic modal logic following [Marek
et al., 1993]. We then introduce the logic OKL, which pro-
vides a possible-world semantics for nonmonotonic logic K
in terms of only-knowing. This is followed by a reformu-
lation and generalization of the semantics, which has as a
parameter a monotonic modal logic λ. After that we discuss
in detail how only-knowing based on nonmonotonic logic K
relates to only-knowing based on a variant of AEL proposed
by Konolige and Reiter’s default logic. Then we conclude.

Nonmonotonic Modal Logic
Marek et al. [1993] re-examined the nonmonotonic modal
logics first introduced by McDermott and Doyle [1980]. The
idea is that for any classical modal logic of belief λ, there is
a notion of λ derivability (written `λ) from which a non-
monotonic logic can then be defined. By λ here we mean a
standard modal logic which we name using names like K,
K4 and K45 following the terminology of Chellas [1980].
By Γ `λ γ, we mean that γ can be derived in a classical
way from Γ using the axioms and rules of propositional (or
first-order) logic, the special axioms of the system λ, and the
rule of necessitation: from α, infer Kα.

For any modal system λ, Marek et al. define the non-
monotonic expansions of a formula as follows:
Definition 1 For any modal system λ, a consistent set of for-
mulas E is called a nonmonotonic λ-expansion of a formula
α iff for every formula γ, the following condition holds:

γ ∈ E iff {α} ∪ {¬Kβ |β 6∈ E} `λ γ.
So a nonmonotonic expansion of a formula includes every-
thing that can be derived from the formula and from the
assumptions ¬Kβ for every β that cannot be derived. (It
is this non-derivability that makes the definition nonmono-
tonic.) Within this framework, the autoepistemic logic of
Moore [1985] can be characterized succinctly: what he calls
the consistent stable expansions of a formula α are precisely
the K45-expansions of α.

Marek et al. show various properties of nonmonotonic
modal systems based on a variety of modal logics, including
how different modal systems λ1 and λ2 can sometimes give
rise to the same nonmonotonic system (that is, where the
λ1-expansions coincide with the λ2-expansions).

One modal logic that does differ nonmonotonically from
K45 is the system K. The logic K is a minimal logic of belief
in that it requires only that belief be closed under implica-
tion:

K : Kα ∧K(α ⊃ β) ⊃ Kβ.

It says nothing about introspection. In fact, the system K45
can be obtained from K by adding two axioms:

4 : Kα ⊃ KKα.
5 : ¬Kα ⊃ K¬Kα.

Marek et al. prove that the K-expansions are a proper subset
of the K45 ones (the stable expansions of AEL).

For example, let α be the formula (Kp ⊃ p). This is
the modal encoding of a (vacuous) rule that says that if p is
already known then it can be concluded to be true. There is
only one K-expansion of α: the set whose objective subset is
just the classical tautologies. So nothing can be concluded
in nonmonotonic K about p. This is what Reiter’s default
logic would do as well: there is only one extension of this
rule in default logic and it consists of just the tautologies.

When we turn to K45, however, we get a second K45-
expansion of α, one that includes p. Arguably, this is an
undesirable property of nonmonotonic K45, but it is a direct
consequence of its introspection: for the set E in question,
we have that ¬Kp 6∈ E, and so ¬K¬Kp ∈ E, and therefore
by introspection Kp ∈ E, which together with (Kp ⊃ p)
allows us to conclude p. The key step, from ¬K¬Kp to
Kp, is not available in the system K.

So it appears that nonmonotonic K is a more restrained
version of K45, perhaps better suited as a basis for general
default reasoning. In fact, we will show that it is actually
very close to Reiter’s default logic! But our first job is to
establish a connection between it and only-knowing.

A Semantics for Nonmonotonic System K
Let us now turn to a logic which we call OKL and which
gives meaning to a new only-knowing operator which will
be shown to capture nonmonotonic K. The symbols of the
language of OKL are the usual logical connectives, punctu-
ation, a countably infinite set of propositional variables (or
atomic propositions), and the modal operators K,OM, and
OK. Here, to be consistent with LL, we use OM rather than
O to refer to only-knowing in the sense of Moore. The OK

operator is our new variant of only-knowing.3 The formulas
of OKL are defined by the following:

1. every propositional variable is a formula;

2. if α and β are formulas, then ¬α, (α ∧ β) are formulas,
as are the modal formulas, Kα, OMα, and OKα with the
restriction that OM and OK are only applied to formulas
whose only modal operator is K.

As usual, we treat (α ∨ β), (α ⊃ β), and (α ≡ β) as abbre-
viations. We will also write Mα instead of ¬K¬α. Formu-
las without modal operators are called objective, and those
where all the propositional variables appear in the scope of a
modal operator are called subjective. Formulas whose only
modal operator is K are called basic. A basic formula with-
out nested occurrences of K is called flat.

3In the coming sections, we will introduce a number of other
only-knowing operators Oλ for various modal systems λ, but OK

(for system K) and OM (for Moore) will do for now.
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The semantics of OKL builds directly on the semantics
of OL from LL [2001]. The starting point is the notion of
a valuation (or world), which is a mapping from the set of
propositional variables into {0, 1}, and an epistemic state,
which consists of a set of valuations. We let e0 be the set of
all valuations.

Let v be a valuation, and e an epistemic state. Then the
satisfaction relation e, v |= α is defined as follows:

1. e, v |= p iff w[p] = 1 for atomic propositions p;

2. e, v |= ¬α iff e, v 6|= α;

3. e, v |= (α ∧ β) iff e, v |= α , and e, v |= β;

4. e, v |= Kα iff for every v′, if v′ ∈ e, then e, v′ |= α;

5. e, v |= OMα iff for every v′, v′ ∈ e iff e, v′ |= α.

Notice that the meaning of OM is simply a strengthening of
K, replacing if by an iff.

To give meaning to the remaining operator OK, we need
to define a superset of an epistemic state e for a given basic
formula α.

Definition 2 Let α be a basic formula. Then

eα =
⋃
e′, where

e′ ⊇ e and ∀v ∈ e′∃e∗ s.t . e ⊆ e∗ ⊆ e′ and e∗, v |= α.

Roughly, the purpose of eα is to capture those beliefs which
are forced when α is believed and when the beliefs are
closed only under K and necessitation. The semantics of
OK is then simply this:

6. e, v |= OKα iff e, v |= Kα and e = eα.

To complete the specification of the logic, we say that α
is valid (which we write as |= α) iff e, v |= α for every e
and v. If α is objective, we sometimes write v |= α; if α is
subjective, we sometimes write e |= α.

OKL and nonmonotonic system K
When the language is restricted to propositional variables,
Boolean connectives, and the modalities K and OM, the
logic coincides precisely with OL of LL [2001]. In partic-
ular, K is a K45-operator and OM precisely captures K45-
expansions.

Definition 3 Given an epistemic state e, the set of formulas

E(e) = {γ | γ is basic and e |= Kγ}

is called the belief set of e.

Theorem 1 (Levesque) The consistent K45-expansions of
α are precisely the belief sets of those epistemic states e 6=
{} satisfying e |= OMα.

Let us now turn to the properties of OK. We begin with a
useful lemma which states that eα satisfies a simple fix-point
equation:

Lemma 1 For every basic α, if e |= Kα then

eα = {v | ∃e∗ s.t. e ⊆ e∗ ⊆ eα and e∗, v |= α}.

Proof: Let ẽ = {v | ∃e∗ s.t. e ⊆ e∗ ⊆ eα and e∗, v |= α}.
We need to show that eα = ẽ.

To prove eα ⊆ ẽ, let v ∈ eα. Then v ∈ e′ for some e′ ⊇ e
and there is an e∗ such that e ⊆ e∗ ⊆ e′ and e∗, v |= α.
Since e′ ⊆ eα, we also have e ⊆ e∗ ⊆ eα and, hence, v ∈ ẽ.

To prove ẽ ⊆ eα, let ṽ ∈ ẽ. Now consider eα ∪ {ṽ}. By
the first part of the proof and since ṽ ∈ ẽ we have that for
all v ∈ eα ∪ {ṽ} there is an e∗ such that e ⊆ e∗ ⊆ eα ∪ {ṽ}
and e∗, ṽ |= α. Then, by Definition 2, eα ∪ {ṽ} ⊆ eα, that
is, ṽ ∈ eα.

The following theorem, together with Theorem 1, says that
the consistent belief sets sanctioned by OK are also K45-
expansions.

Theorem 2 |= OKα ⊃ OMα.

Proof: Let e |= OKα. We need to show that e |= OMα.
Since e |= Kα by assumption, it suffices to show that for
all v, if e, v |= α, then v ∈ e. So let e, v |= α. Then, by
Lemma 1, v ∈ eα. Since eα = e by assumption, v ∈ e.

When α is objective it is easy to see that the two notions
of only-knowing coincide.

Theorem 3 For objective α, |= OKα ≡ OMα.

Proof: It suffices to show that |= OMα ⊃ OKα. So let
e |= OMα. Since α is objective, e = {v | v |= α}. Since no
world outside of e satisfies α, we clearly have e = eα and
we are done.

To see that the two differ for non-objective α, we consider
two examples.

Example 1 Let α = Kp ⊃ p for some atomic proposition
p. There are exactly two K45-expansions of α, one which
believes p and one which does not. With Theorem 1, we have
that the only epistemic states e such that e |= OMα are e =
e0 (the set of all words) and e = ep, where ep = {v | v |= p}.
It is easy to see that eα = e0 since e0 |= ¬Kp and hence,
e0, v |= α for all v. Thus e0 |= OKα yet ep |6= OKα, that is,
|6= OMα ⊃ OKα.

The following example demonstrates that, even in the case
when there is a unique epistemic state which only-knows α
according to Moore, this epistemic state may be rejected by
OK.

Example 2 Let α be the conjunction of these formulas:

Kp ⊃ q
Kq ⊃ p
M¬p ⊃ p
M¬q ⊃ q

First note that any epistemic state which believes α also be-
lieves both p and q, that is, |= Kα ⊃ K(p ∧ q). This is
a direct consequence of introspection since K(M¬p ⊃ p),
which is the same as K(Kp ∨ p), is logically equivalent to
Kp in K45, and similarly for K(M¬q ⊃ q). As a conse-
quence, it is not hard to show that epq = {v | v |= p ∧ q} is
the unique epistemic state such that epq |= OMα.

But intuitively, when reading α as defaults, there really is
no good reason to believe p or to believe q. (Why should
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one believe p on the basis of ¬p being consistent?) And
indeed, this epistemic state is rejected under OK because
eα = {v | v |= (p ∨ q)}.

As we need them for the upcoming main result of this
section and the next, we now briefly review Kripke struc-
tures. A Kripke structure M is a triple 〈W,R, π〉, where W
is a non-empty set (of worlds), R is an accessibility relation,
and π is a mapping from W into the set of valuations. Given
anM = 〈W,R, π〉 and w ∈W , (M,w) is called a (pointed)
Kripke model. The truth of basic formulas is then defined in
the usual way:

1. M,w |= p iff π(w)(p) = 1;

2. M,w |= ¬α iff M,w |6= α;

3. M,w |= α ∧ β iff M,w |= α and M,w |= β;

4. M,w |= Kα iff ∀w′, if (w,w′) ∈ R then M,w′ |= α.

Note that the main difference between Kripke structures
and the much simpler, valuation-based semantics introduced
earlier is that Kripke structures allow for different worlds
whose valuations are the same and, of course, rather than
having a globally accessible set of worlds e, R can be arbi-
trary. Indeed, different modal logics are obtained by restrict-
ing the accessibility relation in various ways. For example,
without any restrictions, we obtain the logic K; if R is re-
flexive, we obtain T; if R is transitive and Euclidean, we
obtain K45. For a given modal logic λ, logical implication
between a set of basic formulas S and a basic formula α is
denoted as S |=λ α. Kripke models of a modal logic λ are
also referred to as λ-models.

In the following we will need to relate models of our
evaluation-based semantics and Kripke structures. In both
cases we will use |= for satisfaction. It will be clear from
the context which type of semantics is meant.

For the following result relating OK to K-expansions, we
need to restrict ourselves to flat basic formulas as arguments
of OK. Note that flat formulas include the translations of de-
fault theories as discussed in the introduction. Hence they
arguably cover the most important class of theories from
a nonmonotonic-reasoning perspective. The main result is
that with this restriction, our definition of OK correctly cap-
tures the nonmonotonic modal system K in a way that is
exactly parallel to Theorem 1 above:

Theorem 4 For any flat basic α, the consistent K-
expansions of α are precisely the belief sets of those epis-
temic states e 6= {} satisfying e |= OKα.

Proof: The proof needs to appeal to Kripke structures and
is quite involved. Here we only outline the main argument.
We need to prove two things: (1) for any non-empty e such
that e |= OKα, its belief set E(e) is a K-expansion of α,
and (2) for any K-expansion E of α, there is an e such that
e |= OKα and E = E(e).

To prove (1), let e |= OKα. Since it is well known that
belief sets and expansions are stable sets [Stalnaker, 1993],
which are uniquely determined by their objective subsets,
it suffices to show that for all objective φ, e |= Kφ iff
{α} ∪ {¬Kβ | e |= ¬Kβ} `K φ. This can be shown
to be equivalent to e |= Kφ iff F (α, e) |=K φ, where

F (α, e) = {K∗γ | γ = α or γ ∈ {¬Kβ |β 6∈ E(e)}},
K∗γ means γ preceded by an arbitrary number of K oper-
ators, and |=K is entailment in logic K. If e |6= Kφ then
¬Kφ ∈ F (α, e) and, hence, F (α, e) |6=K φ. Now suppose
e |= Kφ and let M = 〈W,R, π〉 be an arbitrary K-Kripke
structure such that M,w∗ |= F (α, e) for some w∗ ∈ W . It
is then possible to show that M,w∗ |= φ using the assump-
tion that e |= OKα and the fact that π(w∗) ∈ eα and, hence,
π(w∗) ∈ e.

To prove (2), letE be a K-expansion. Since K-expansions
are also K45-expansions [Marek et al., 1993], by Theorem 1,
there must be an e such that e |= OMα and, in particular,
e |= Kα. To show that e |= OKα, it then suffices to prove
that eα ⊆ e. So let v∗ ∈ eα. Then there is some e∗ such that
e ⊆ e∗ ⊆ eα and e∗, v∗ |= α. It is then possible to construct
a Kripke structure 〈W,R, π〉 with a world w∗ ∈ W such
that M,w∗ |= F (α, e) and v∗ = π(w∗). By assumption,
for all objective φ, e |= Kφ iff F (α, e) |=K φ. Thus for
all objective φ, if e |= Kφ then M,w∗ |= φ and, therefore,
v∗ |= φ. Since e |= OMα, e is the set of all worlds which
satisfy all objective formulas in E(e). Hence v∗ ∈ e.

A Unified Semantic Framework for Oλ

An appealing feature of the original proposal for nonmono-
tonic modal systems is that different NMS are obtained by
varying only the underlying monotonic modal logic and
keeping the definition of expansions otherwise fixed. In our
semantic reconstruction, this modularity seems to be lost
somehow since the definitions for OM and OK are quite dif-
ferent in nature. In this section we will propose an alterna-
tive semantics of only-knowing which also appeals to an un-
derlying modal logic λ and is uniform otherwise, thus giving
rise to different forms of only-knowing Oλ only by varying
λ. As we will see, we again get a correspondence with the
respective NMS in the case of λ = K and K45, which also
extends to K5. The investigation of other modal systems is
left for future work.

As we will see in a moment, the semantics of Oλ appeals
to both the evaluation-based semantics of OKL and Kripke
structures. In particular, for basic formulas, e, v |= α refers
to satisfaction in OKL for a given valuation v and set of
valuations e; M,w |= α refers to satisfaction in the modal
logic λ for a given λ-model (M,w).

We will write R(w) to mean {w′ | (w,w′) ∈ R}. If
S ⊆ W then R(S) stands for

⋃
w′∈S R(w′). As before,

we assume that Oλ is only applied to basic formulas.
The following definition of Kripke structures based on a

given set of valuations is key to our upcoming definition of
Oλ.

Definition 4 Let e be a set of valuations. A λ-model (M,w)
with M = 〈W,R, π〉 and w ∈W is called based on e iff the
following conditions are satisfied:

1. W = {w} ∪R(w);
2. for all w′ ∈W, π(R(w′)) ⊇ e;
3. for all w′ ∈ R(w), if π(w′) ∈ e then π(R(w′)) = e;
4. π(R(R(w))) ⊆ π(R(w)).
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Some Remarks: (1) is a rather tight constraint on the set of
worlds considered in a λ-model. It is possible that models
with less constrained sets of worlds will work as well, but
the current constraint simplifies proofs and suffices for the
purposes of this paper. Conditions (2) and (3) are inspired
by our definition of eα, where worlds in eα can only access
a set of worlds which is a superset of e and worlds in e can
only access all and only worlds in e. Condition (4) is needed
to have the same effect as necessitation in NMS.

The semantics of Oλα for a given valuation v and set of
valuations e is then defined as follows.

• e, v |= Oλα iff e, v |= Kα and
for all λ-models (M,w) based on e s.t. M,w |= Kα,
for all w′ ∈W , if M,w′ |= α then π(w′) ∈ e.

We will now establish the correspondence with NMS for
several λ starting with λ = K. As we want to compare
the new definition of OK with the old one of the previous
section, we will write OK′ whenever referring to the old def-
inition in this section.

Three lemmas are needed for the main theorem. The first
lemma is straightforward and says that a K-model and its
valuation-based counterpart, where only the directly acces-
sible worlds are considered, satisfy exactly the same flat ba-
sic formulas. (All proofs are relegated to the appendix.)

Lemma 2 For a given K-model (M,w). Then for every flat
basic α, M,w |= α iff π(R(w)), π(w) |= α.

The following two lemmas establish the crucial connec-
tion between eα on the one hand and K-models based on e
on the other: given a K-model (M,w) based on e, the worlds
accessible from w are members of eα, and there is a model
where the accessible worlds are exactly eα.

Lemma 3 Let α be flat and (M,w) based on e such that
e |= Kα and M,w |= Kα. Then π(R(w)) ⊆ eα.

Lemma 4 Let α be flat and e |= Kα. Then there exists a
(M,w) based on e s.t. π(R(w)) = eα and M,w |= Kα.

With these properties it is not hard to establish the main
result (see appendix).

Theorem 5 For any basic flat α, e |= OK′α iff e |= OKα.

Next we show the connection between OK45 and OM. It
turns out that they coincide for all e but the empty set. The
following two lemmas are key to proving the result. They
essentially say that a set of valuations e and any K45-model
based on e agree on all basic beliefs.

Lemma 5 Let e 6= {} and let (M,w) be a K45-model
based on e. Then for all w′ ∈W , π(R(w′)) = e.

Lemma 6 Let (M,w) be a K45-model based on e 6= {}
and let w′ ∈ W . Then M,w′ |= α iff e, π(w′) |= α for all
basic α.

Theorem 6 If e 6= {} then e |= OMα iff e |= OK45α.

With Theorem 1, we then immediately get
Corollary 1 The consistent K45-expansions of α are pre-
cisely the belief sets of those epistemic states e 6= {} satisfy-
ing e |= OK45α.

In other words, our definition of Oλ also does the right thing
for λ = K45. Interestingly, OM and OK45 differ in the case
of e = {}.
Example 3
Let e = {}. Then e |= OM¬Kp yet e |6= OK45¬Kp.

e |= OM¬Kp holds because clearly e |= K¬Kp and there
is no valuation v such that e, v |= ¬Kp, since the empty
epistemic state believes every formula.

To show that e |6= OK45¬Kp, consider the following K45-
model (M,w):

• Let W = {w} ∪ e0 such that π(v) = v for all v ∈ e0, the
set of all valuations and π(w) arbitrary.

• Let R = ({w} × e0) ∪ (e0 × e0).

It is easy to verify that (M,w) is based on e. We also clearly
have M,w |= ¬Kp as w considers all valuations possible,
yet w 6∈ e.

Note though that e0 |= OK45¬Kp, which follows from
Theorem 6 and the fact that e0 |= OM¬Kp. In a sense then,
for examples like these, OK45 seems already a little better
behaved than OM by ruling out some unwanted expansions.

As a final result of this section, we obtain that OK5 and
OK45 agree completely.

Theorem 7 |= OK45α ≡ OK5α.

The proof is actually trivial since, given the conditions of
Definition 4, it is easy to see that K45-models based on e
are the same as K5-models based on e.

Again, this result is reassuring since Marek et al. [1993]
already showed that nonmonotonic K45 and K5 are identi-
cal.

Relating OK to Konolige and Reiter
Two other variants of only-knowing, OKo and OR, were con-
sidered by LL [2005; 2006]. OKo captures Konolige’s mod-
erately grounded K45-expansions [Konolige, 1988] and OR

captures default extensions in the sense of Reiter [1980]. As
we will see, our new variant of only-knowing OK relates to
these in interesting ways.

As was shown in [Lakemeyer and Levesque, 2005], ORα
lines up with default extensions only in case α is in so-called
Reiter Normal Form (RNF), which is a conjunction of for-
mulas of the form

Kφ ∧Mψ1 ∧ · · · ∧Mψn ⊃ χ,

where φ, ψi, and χ are themselves objective. (Note that α in
RNF is a flat basic formula.)

For this reason and for the purpose of comparison we as-
sume, unless noted otherwise, that both OKo and OR are only
applied to formulas α in RNF, that is modal variants of de-
fault theories. Let us begin with the semantics of OKo :4

• e, v |= OKoα iff e, v |= OMα and for every e′
such that e ⊆ e′, if e′, v |= OMα then e = e′.

4OKo and OR are defined as extensions of the evaluation-based
semantics we introduced initially for OKL.
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We clearly have |= OKoα ⊃ OMα, but in addition, if
e |= OKoα then no proper superset only-knows α in the sense
of Moore. In other words, the e′s in question are the most
ignorant ones which only-know α according to Moore. For
example, if α = (Kp ⊃ p) then we have that e0 |= OKoα but
ep |6= OKoα since ep ⊆ e0.

While OKo does a reasonable job in eliminating some un-
grounded K45-expansions, as the previous example demon-
strates, it still has problems. For consider

α = (Kp ⊃ p) ∧ (M¬p ⊃ q).

Here both ep |= OKoα and eq |= OKoα. Because of cases
like these, Konolige called the resulting expansions moder-
ately grounded. He then went on to define strongly grounded
expansions, which dealt with this example correctly, but
the definition was cumbersome as it was syntax-dependent.
As was already observed by Shvarts [1990] and Marek et
al. [1993], K-expansions and, hence, OK also do the right
thing, but in a much more elegant way.

We have just seen an example showing that (OKoα ⊃
OKα) is not valid in general. However, in case α does not
mention M, the implication holds.

Theorem 8 Let α be in RNF not mentioning M.
Then |= OKoα ⊃ OKα.

Proof: Let e |= OKoα and suppose e |6= OKα. Then e 6= eα,
that is, eα ) e. We show that eα |= OMα, contradicting
the assumption that e |= OKoα. Wlog let α =

∧
δi with

δi = (Kφi ⊃ χi). Let v ∈ eα. Then for some e∗, e ⊆
e∗ ⊆ eα and e∗, v |= δi for all i. Since e∗ ⊆ eα, we also
obtain that eα, v |= δi for all i, that is, eα |= Kα. Now let
eα, v |= α for an arbitrary v. By Lemma 1, v ∈ eα, from
which eα |= OMα follows.

The converse, on the other hand, holds in general.

Theorem 9 Let α be in RNF. Then |= OKα ⊃ OKoα.

Proof: Suppose otherwise. Then for some e, e |= OKα and
e |6= OKoα. Since e |= OMα by Theorem 2, there is an e′ ) e
such that e′ |= OMα. Then for all v′ ∈ e′, e′, v′ |= α. Thus
for all v′ ∈ e′ there is an e∗ such that e ⊆ e∗ ⊆ e′ and
e∗, v′ |= α. Hence e′ ⊆ eα, contradicting the assumption
that e = eα.

Let us now turn to Reiter’s default logic. To define the
semantics for the corresponding only-knowing operator OR,
let α/e denote α with all occurrences of every subformula
Mβ (ie. ¬K¬β) replaced by TRUE if e |= Mβ and by
FALSE otherwise. For example, let α = p ∧ (Kp ∧Mq ⊃
q) ∧ (M¬q ⊃ ¬q) and e = epq . Then α/e = p ∧ (Kp ∧
TRUE ⊃ q) ∧ (FALSE ⊃ ¬q).

Given an epistemic state e, we can then define OR as fol-
lows:

• e, v |= ORα iff e, v |= OKoα/e.

In other words, only-knowing α according to Reiter reduces
to only-knowing in the sense of Konolige after replacing all
occurrences of Mβ by their respective truth values. We re-
mark that the original definition of OR by LL [2006] differs
from this one in that they introduce M not as a shorthand

for ¬K¬ but as a separate modal operator with K being in-
terpreted over e1 and M over e2. In the interpretation of OR,
they keep e2 fixed while e1 can vary. In other words, K and
M are no longer duals as far as OR is concerned. It is an
easy exercise to show that for formulas in RNF our way of
substituting M-subformulas by truth values amounts to the
same as LL’s approach. (In particular, we inherit the precise
connection proven by LL between OR and default extensions
as originally defined.)

To see how OR relates to OK and OKo, let us again recon-
sider some of our previous examples:

• Let α = (Kp ⊃ p). Since this α contains no M’s we
have α/e = α and thus OR agrees with OKo and OK here.

• Let α = (Kp ⊃ p) ∧ (M¬p ⊃ q). Then we get that
eq |= ORα since α/eq is logically equivalent to (Kp ⊃
p)∧q and eq is the only epistemic state which only knows
this. However, ep |6= ORα because α/ep is equivalent to
(Kp ⊃ p) and OKo rejects ep for this formula. Hence OR

differs from OKo but agrees with OK here.

• Let α be the formula of Example 2. As we saw, epq is
the unique epistemic state such that epq |= OMα. But OR

rejects epq because α/epq replaces both M-subformulas
by FALSE and is thus equivalent to (Kp ⊃ q)∧(Kq ⊃ p),
which has no stable expansion. Again, OR agrees with OK

but differs from OKo.

In general, we have:

Theorem 10 Let α be in RNF. Then |= ORα ⊃ OKα.

Proof: Suppose otherwise, that is, let e |= ORα and e |6=
OKα. Since e |= Kα, this means that e 6= eα. Since e |=
ORα, we have e |= OKoα

′ for α′ = α/e. Since α′ no longer
mentions M, by Theorem 8, e |= OKα′, from which e = eα′

follows. Since, by assumption, e 6= eα, eα′ ( eα. We will
show that eα ⊆ eα′ , a contradiction.

It suffices to show that for all v ∈ eα there is an e∗ such
that e ⊆ e∗ ⊆ eα and e∗, v |= α′. Wlog let α =

∧
δi with

δi = (Kφi∧Mψi ⊃ χi) and let δ′i = δ/e. By Lemma 1 we
have that for all v ∈ eα there is an e∗ such that e ⊆ e∗ ⊆ eα
and e∗, v |= α. Let τ(v) be such an e∗ corresponding to v.
We will show that τ(v), v |= α′, that is, τ(v), v |= δ′i for all
i. There are three cases:

• τ(v) |= ¬Kφ. Then clearly τ(v), v |= δ′i.

• τ(v) |= Kφ and e |= Mψi. Then τ(v) |= Mψi. Since
τ(v), v |= δi, v |= χi and, therefore, τ(v), v |= δ′i.

• τ(v) |= Kφ and e |6= Mψi. Then δi/e ≡ TRUE, that is,
τ(v), v |= δ′i holds vacuously.

Thus τ(v), v |= α′ for all v ∈ eα, that is, eα ⊆ eα′ .

We remark that the restriction to RNF is necessary. As
was shown by LL [2005], OR coincides with OM on formu-
las which mention only M. For example, in the case of
α = (¬M¬p ⊃ p) we have ep |= ORα and yet OK |6= Oα.
But note that this α is not a translation of a Reiter default,
that is, it is not in RNF.

It is not hard to see that in case a formula in RNF does not
mention any M, then OR, OK, and OKo agree completely.
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Corollary 2 Let α be in RNF such that α does not mention
any M-subformulas. Then |= ORα ≡ OKα ≡ OKoα.

Proof: This follows immediately from Theorem 9, Theo-
rem 10, and the fact that e |= ORα iff e |= OKoα in case
α = α/e.

The question then remains whether there are examples
where OR and OK differ. Indeed there are, and this has been
noticed long ago, for example, [Marek and Truszczynski ,
1989]. For consider α = (Kp ⊃ p) ∧ (M¬p ⊃ p). It is
easy to see that α is logically equivalent to p and, therefore,
ep |= OKα. Yet ep |6= ORα because α/ep is equivalent to
(Kp ⊃ p). Essentially, the difference arises because OK

is able to apply standard modal reasoning to defaults such
as α, while OR cannot look for conclusions that depend on
reasoning with the defaults themselves. Arguably, this is a
limitation of Reiter’s logic not shared by the NMS K.

However the two systems are very close. Indeed, we con-
jecture that OR and OK will agree after closing a formula α in
RNF under the logic K, that is after conjoining α with every
“minimal” objective formula or default that follows from it
under logic K.

To sum up, we have shown that only-knowing in the sense
of NMS K lies just between only-knowing in the sense of
Reiter and only-knowing in the sense of Konolige. Indeed,
OK seems very close to OR except that it allows for some
additional expansions that result from modal reasoning.

Conclusions
The work of LL has opened up the possibility of providing
simple monotonic characterizations (including axiomatiza-
tions) of certain nonmonotonic logics. Their work on the
nonmonotonic logics of Moore, Konolige, and Reiter was
based on a simple possible-world characterization.

In this paper, we continued this line of work by consider-
ing versions of only-knowing for nonmonotonic systems in
the sense of McDermott and Doyle, with a focus on NMS K.
We first provided a simple possible-world characterization
of OK and then provided a uniform semantics for Oλ, where
λ is a parameter for a monotonic modal logic. We were able
to show the correspondence between Oλ and NMS λ in the
case of K, K45, and K5 for the uniform semantics. As OK

seems the most interesting of all in terms of nonmonotonic
reasoning, we then went on comparing it to Konolige’s vari-
ant of autoepistemic logic and Reiter’s default logic. We
found that OK lies just between Reiter and Konolige.

Three areas of future work suggest themselves. First, be-
cause of the popularity of default logic, it would be worth-
while to investigate precisely those cases where OR and OK

coincide. Also, an axiomatization of K-expansions in terms
of only-knowing may shed additional light on some of its
properties. Finally, as was already mentioned, it remains
to be seen whether our definition of Oλ or some variant
carries over to other nonmonotonic modal systems such as
S4F [Schwarz and Truszczynski, 1992].

Appendix
Lemma 2 For a given K-model (M,w). Then for every flat
basic α, M,w |= α iff π(R(w)), π(w) |= α.

Proof: The proof is by induction on α.
The lemma clearly holds for atomic propositions and, by in-
duction, for ¬ and ∧. Hence the lemma holds for all objec-
tive formulas.
M,w |= Kα iff for all w′ ∈ R(w), M,w′ |= α iff for all

w′ ∈ R(w), π(R(w′)), π(w′) |= α by induction iff for all
v′ ∈ π(R(w)), π(R(w)), v′ |= α because α is objective iff
π(R(w)), π(w) |= Kα.

Lemma 3 Let α be flat and (M,w) based on e such that
e |= Kα and M,w |= Kα. Then π(R(w)) ⊆ eα.

Proof: Recall that

eα =
⋃
e′, where

e′ ⊇ e and ∀v ∈ e′∃e∗ s.t. e ⊆ e∗ ⊆ e′ and e∗, v |= α.

Let e′ = π(R(w)). In order to show that e′ ⊆ eα, it
suffices to establish that for all v′ ∈ e′ there exists a e∗ such
that e ⊆ e∗ ⊆ e′ and e∗, v′ |= α.

Let v′ ∈ e′. Then there exists a w′ ∈ R(w) such that
π(w′) = v′. Let e∗ = π(R(w′)). Since (M,w) is based on
e, π(R(w′)) ⊇ e by Property 2. By Property 4, π(R(w′)) ⊆
π(R(w)) = e′. Hence e ⊆ e∗ ⊆ e′. Since M,w |= Kα by
assumption, M,w′ |= α. Since α is flat, e∗, v′ |= α follows
by Lemma 2.

Lemma 4 Let α be flat and e |= Kα. Then there exists a
(M,w) based on e s.t. π(R(w)) = eα and M,w |= Kα.

Proof: Recall that, by Lemma 1,

(∗) eα = {v | ∃e′ s.t. e ⊆ e′ ⊆ eα and e′, v |= α}.

Construct M,w with M = 〈W,R, π〉 as follows:

• Let W = {w} ∪ eα s.t. ∀v ∈ eα, π(v) = v and π(w)
arbitrary.

• ∀w′ ∈ W, let w′ ∈ R(w) iff w′ ∈ eα and ∀w′ ∈ eα,
let w′′ ∈ R(w′) iff w′′ ∈ τ(w′), where τ(w′) is a set of
valuations such that e ⊆ τ(w′) ⊆ eα and τ(w′), w′ |= α.
(Such τ(w′) must exist by (∗) above and the Axiom of
Choice.) In particular, if w′ ∈ e then let τ(w′) = e.

We need to show that (M,w) is based on e such that
π(R(w)) = eα and M,w |= Kα. Note that π(R(w)) = eα
holds by construction. To show that (M,w) is based on e,
we establish that all four conditions of Definition 4 hold.

1. W = {w} ∪R(w) holds by construction.

2. Since e ⊆ τ(w′) ⊆ eα holds for all w′ ∈ R(w) by con-
struction and R(w) = eα, it follows that for all w′ ∈ W ,
π(R(w′)) ⊇ e.

3. If w′ ∈ e then τ(w′) = e by construction and thus
π(R(w′)) = e.

4. π(R(R(w)) =
⋃
τ(w′) ⊆ eα = π(R(w)).

Hence (M,w) is based on e.
Next we need to show that M,w |= Kα, that is, for all

w′ ∈ R(w), M,w′ |= α. So let w′ ∈ R(w). By construc-
tion, R(w′) = τ(w′) such that τ(w′), w′ |= α. Since α is
flat, M,w′ |= α by Lemma 2.
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Theorem 5 For any basic flat α, e |= OK′α iff e |= OKα.

Proof: To prove the only-if direction, let e |= OK′α. Then
e |= Kα and e = eα. We need to show that for all (M,w)
based on e such that M,w |= Kα, for all w′ ∈ W , if
M,w′ |= α then π(w′) ∈ e. So let (M,w) be based on
e such that M,w |= Kα and let M,w′ |= α for an arbitrary
w′ ∈ W . We first show that π(R(w′)) = e. If w′ = w
then, by Lemma 3, π(R(w′)) ⊆ eα. Since e = eα, we ob-
tain π(R(w′)) ⊇ eα by Property 2 of Definition 4 and thus
π(R(w′)) = e. If w′ 6= w, that is w′ ∈ R(w), then the fact
that π(R(w)) = e together with Properties 2 and 4 of Defini-
tion 4 establishes that π(R(w′)) = e. Since M,w′ |= α and
α is flat, e, π(w′) |= α follows now by Lemma 2. Therefore,
π(w′) ∈ eα and thus π(w′) ∈ e.

Conversely, let e |= OKα. Then e |= Kα. We need to
show that e = eα. By Lemma 4, there is a (M,w) based on
e such that M,w |= Kα and π(R(w)) = eα. Since e |=
OKα, π(R(w)) ⊆ e. Since by Property 2 of Definition 4,
π(R(w)) ⊇ e, we obtain π(R(w)) = e. Thus eα = e.

Lemma 5 Let e 6= {} and let (M,w) be a K45-model based
on e. Then for all w′ ∈W , π(R(w′)) = e.
Proof: By Property 2 of Definition 4, we have that for all
w′ ∈ W, π(R(w′)) ⊇ e. Suppose there is a w∗ ∈ R(w′)
such that π(w∗) 6∈ e. Since e 6= {}, by Property 2 of Defini-
tion 4, there is a w∗∗ ∈ R(w′) such that π(w∗∗) ∈ e. Since
M is a K45-model, w∗ ∈ R(w∗∗), contradicting Property 3
of Definition 4.

Lemma 6 Let (M,w) be a K45-model based on e 6= {}
and let w′ ∈ W . Then M,w′ |= α iff e, π(w′) |= α for all
basic α.
Proof: The proof is by induction on α.
The lemma clearly holds for atomic propositions and, by in-
duction, for ¬ and ∧.
M,w′ |= Kα iff for all w∗ ∈ R(w′), M,w∗ |= α iff for

all w∗ ∈ R(w′), e, π(w∗) |= α by induction iff for all v ∈ e,
e, v |= α by the previous lemma iff e, π(w′) |= Kα.

Theorem 6 If e 6= {} then e |= OMα iff e |= OK45α.
Proof: To prove the only-if direction, let e |= OMα. Then
e |= Kα. Let (M,w) be a K45-model based on e such that
M,w |= Kα and let M,w′ |= α for w′ ∈ W . We need to
show that π(w′) ∈ e. By Lemma 6, e, π(w′) |= α. Since
e |= OMα, π(w′) ∈ e.

For the if direction, let e |= OK45α. Then e |= Kα. Sup-
pose e, v |= α for some valuation v. We need to show that
v ∈ e. Consider the following M = 〈W,R, π〉:
• Let W = e ∪ {w} such that π(w) = v.
• Let R = ({w} × e) ∪ (e× e).
• Let π(v) = v for all v ∈ e.
Then M is clearly a K45-model and it is easy to verify
that (M,w) is based on e. Since e, v |= α by assump-
tion, M,w |= α follows by Lemma 6. Since e |= OK45α,
π(w) ∈ e follows. Since v = π(w) by assumption, v ∈ e
follows.
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