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Abstract

We develop a novel absorption technique for large col-
lections of factual assertions about individual objects.
These assertions are commonly accompanied by im-
plicit background knowledge and form a knowledge
base. Both the assertions and the background knowl-
edge are expressed in a suitable language of Description
Logic and queries over such knowledge bases can be
expressed as assertion retrieval queries. The proposed
absorption technique significantly improves the perfor-
mance of such queries, in particular in cases where a
large number of object features are known for the ob-
jects represented in such a knowledge base. In addition
to the absorption technique we present the results of a
preliminary experimental evaluation that validates the
efficacy of the proposed optimization.

1 Introduction
Computing certain answers to queries over RDF data sets in
the context of an ontology that captures background knowl-
edge of application domains has become an important ser-
vice in information systems. In this paper, we consider a
description logic (DL) based representation of such data
sets and ontologies. In particular, we assume a data set and
an ontology are given in the form of a knowledge base
K = (T ,A) over some choice of DL dialect L, in which
T is a terminology (or TBox) that captures general onto-
logical knowledge, and in which A is a set of assertions (or
ABox) that identifies objects of interest to some agent and
asserts facts about those objects. In this setting, an object
corresponds to an individual name occurring in an ABox.

Perhaps the most basic reasoning tasks that underlie the
computation of certain answers to queries over a DL knowl-
edge base concern knowledge base consistency, the problem
of determining if a given knowledge base K is consistent,
and assertion membership, the problem of determining if a
given assertion a : C, stating that object a occurring in A
belongs to concept C, is a logical consequence of a con-
sistent K, written K |= a : C. Note that these tasks are
often combined in the literature in the sense that the latter
is assume to include the former. However, in a more prac-
tical setting, we believe that a typical workload for a gen-
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eral DL reasoner will include far more instances of assertion
membership tasks than of knowledge base consistency tasks.
Thus, this separation of concerns can enable technology that
is far more efficient for such workloads, particularly so in
the case of “non-Horn” DLs that preclude the possibility of
computing so-called canonical ABoxes (such as DLs that
include disjunction). In this paper, we contribute to this de-
velopment by introducing a novel absorption technique for
knowledge bases and demonstrate that the technique is effi-
cacious for workloads that contain many thousands of asser-
tion membership tasks.

To date, work on absorption has focused on the concept
satisfaction problem, a simple case of the assertion member-
ship problem for knowledge bases with an ABox consisting
of a single assertion a : >. Indeed, it has been known for
some time in this case that lazy unfolding is an important op-
timization technique in model building algorithms for satis-
fiability (Baader et al. 1994). It is also imperative for a large
TBox to be manipulated by an absorption generation pro-
cess to maximize the benefits of lazy unfolding in such al-
gorithms, thereby reducing the combinatorial effects of dis-
junction in underlying chase procedures (Horrocks 1998).

We build on earlier work reported at the description logics
workshop (Hudek and Weddell 2006) that proposed a gen-
eralization of the absorption theory and algorithms devel-
oped in (Horrocks and Tobies 2000a; 2000b) for the problem
of concept satisfaction. The generalization makes it possible
for lazy unfolding to be used for parts of terminologies not
handled by earlier absorption algorithms and theory.

Binary absorption combines two key ideas. The first is
the possibility of avoiding the need to internalize (at least
some of the) terminological axioms of the form (A1uA2) v
C, where the Ai denote primitive concepts and C a general
concept. The second is an idea relating to role absorptions
developed by Tsarkov and Horrocks (Tsarkov and Horrocks
2004). These ideas, in combination and when coupled with
standard equivalences, make it possible for an algorithm to
completely absorb, e.g., the TBox definition

GOODCLIENT .
= CLIENT u (∃Recommend−. BANK )

(∃Buy.(COSTLY t PROFITABLE))

as the set of TBox inclusion dependencies
∗An extended version of the paper is available as a technical

report (Wu et al. 2012).
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GOODCLIENTvCLIENT
GOODCLIENTv∃Buy. (COSTLY t PROFITABLE)
GOODCLIENTv∃Recommend−. BANK

COSTLYvA1
PROFITABLEvA1

A1v∀Buy−.A2
CLIENT u A2vA3

BANKv∀Recommend.A4
A3 u A4vCLIENT

in which concepts A1, A2, A3 and A4 are fresh atomic
concepts introduced by the absorption algorithm.

There are other reasons that binary absorption proves use-
ful, beyond the well-documented advantages of reducing the
need for internalization of general terminological axioms.
For one, it works very well for the parts of a terminology
that are Horn-like. A second reason is a key contribution of
this paper. Our contributions are as follows:

1. We propose a generalization of the absorption theory and
algorithms pioneered by Horrocks and Tobies (Horrocks
and Tobies 2000a; 2000b). The generalization applies for
any DL dialect that includesALCI as a fragment for con-
cept satisfaction tasks.

2. We introduce the notion of role and concrete feature
guards in the context of a knowledge base for the DL
dialect ALCI(D). In particular, we show how assertion
membership tasks in this dialect can map to concept satis-
faction problems in the dialectALCIO(D), but where bi-
nary absorption in combinations with guards can usefully
avoid reasoning about, e.g., irrelevant ABox individuals.

3. We report on the results of a preliminary experimental
evaluation that validates the efficacy of the proposed op-
timization.

2 Preliminaries
We study the proposed technique for the logic ALCI(D);
for technical reasons, however, we need to use a (controlled
subset of) ALCIO(D) defined as follows:

Definition 1 (Description Logic ALCIO(D))
Let ALCIO(D) be a DL based on disjoint infinite sets of
atomic concepts Nc, atomic roles Nr, concrete features Nf

and nominals No. We require that if A ∈ Nc, R ∈ Nr,
o ∈ No, Nf contains f, g and C1 and C2 are concept de-
scriptions, then a, A, ¬C1, C1uC2, C1tC2,>,⊥, ∃R.C1,
∃R−.C1, ∀R.C1, ∀R−.C1, f = k and f < g, where k is a
finite string are also concept descriptions.

An interpretation I is a pair I = (∆I ] DI , ·I), where
∆I is a non-empty set, DI a disjoint concrete domain of fi-
nite strings, and ·I is a function mapping each feature f to a
total function fI : ∆ → D, the “=” symbol to the equality
relation over D, the “<” symbol to the binary relation for
an alphabetic ordering of D, a finite string k to itself, Nc to
subsets of ∆I , Nr to subsets of ∆I ×∆I , and No to single-
ton sets of ∆I . The interpretation is extended to compound
descriptions in the standard way.

We also define the fragment ALCI(D) that disallows the
use of the nominal concept constructor.

Definition 2 (TBox, ABox, and KB Satisfiability)
A TBox T is a finite set of axioms of the form C1 v C2 or
C1

.
= C2. A TBox T is called primitive iff it consists entirely

of axioms of the form A
.
= C with A ∈ Nc, each A ∈ Nc

appears in at most one left hand side of an axiom, and T is
acyclic. A ∈ Nc is defined in T if T contains A v C or
A

.
= C. An ABox A is a finite set of assertions of the form

a : A, a : (f op k) and R(a, b).
LetK = (T ,A) be anALCIO(D) knowledge base (KB).

An interpretation I is a model of K, written I |= T , iff
CI1 ⊆ CI2 holds for each C1 v C2 ∈ T , CI1 = CI2 holds
for each C1

.
= C2 ∈ T , aI ∈ AI for a : A ∈ A, (aI , bI) ∈

RI , and fI(aI) op k for a : (f op k) ∈ A. A concept C
is satisfiable with respect to a knowledge base K iff there is
an I such that I |= K and such that CI 6= ∅.

3 ABox Transformation
In this section we convert an ALCI(D) knowledge base K
to a TBox by representing individuals in K’s ABox by nom-
inals (a controlled fragment of ALCIO(D)) as follows:
Definition 3 (ABox Conversion) Let K = (T ,A) be a
knowledge base. We define a TBox TA for the ABox of K
as follows:
TA = {a uDefa v A | a : A ∈ A}
∪{a uDeff v (f op k) | a : (f op k) ∈ A}
∪{a uDefR v ∃R.(b uDefb),
{b uDefR− v ∃R−.(a uDefa) | R(a, b) ∈ A}

All axioms resulting from ABox assertions are guarded by
auxiliary primitive concepts of the form Defa, DefR, and
Deff . These concepts, when coupled with an appropriate
absorption, allow a reasoner to ignore parts of the original
ABox: all the constants for which Defa is not set, yielding
considerable performance gains. For this idea to work we re-
quire w.l.o.g. that the TBox only uses universal restrictions
of the form A v ∀R.B where A and B are (negated) prim-
itive concepts. Subsumptions of the form ∃R.A v B (con-
sidered to be universal restrictions) and nested universal re-
strictions must be rewritten as well. Thus every ALCI(D)
TBox can be transformed to an equivalent TBox that satis-
fies this restriction by introducing new concept names. Then
the following assertions can manipulate the guards:
Definition 4 (TBox Conversion) Let K = (T ,A) be a
knowledge base. We define a TBox TT for the ABox of K
as follows:
TT = {A v DefR,¬B v DefR− | A v ∀R.B ∈ T }
∪ {(t1 op t2) v Deff | f appears in t1 or in t2,

(t1 op t2) appears in T }.
In the following we use TK for T ∪ TT ∪ TA.
Theorem 5 Let K = (T ,A) be a consistent knowledge
base. Then

K |= a : C if and only if TK |= a uD v C,

where D = Defa u(
d

f appears in C Deff ).

Proof. A sketch. Assume that there is an interpretation I0
that satisfies TK such that (a)I0 ⊆ (D)I0 but (a)I0∩(C)I0 =
∅ and an interpretation I1 that satisfies K in which all exis-
tential restrictions are fulfilled by anonymous objects. We
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assume w.l.o.g. both I0 and I1 are tree-shaped outside of
the converted ABox. We construct an interpretation J for
K ∪ {a : ¬C} as follows: Let ΓI0 be the set of objects
o ∈ ∆I0 such that either o ∈ (a)I0 and (a)I0 ⊆ (Defa)I0

or o is an anonymous object in ∆I0 rooted by such an ob-
ject. Similarly let ΓI1 be the set of objects o ∈ ∆I1 such
that either o = (a)I1 and (a)I0 ∩ (Defa)I0 = ∅ or o is an
anonymous object in ∆I1 rooted by such an object. We set

1. ∆J = ΓI0 ∪ ΓI1 ;
2. (a)J ∈ (a)I0 for (a)J ∈ ΓI0 and (a)J = (a)I1 for (a)J ∈

ΓI1 ;
3. o ∈ AJ if o ∈ AI0 and o ∈ ΓI0 or if o ∈ AI1 and o ∈ ΓI1

for A ∈ Nc (similarly for concrete domain concepts);
4. (o1, o2) ∈ (R)J if

(a) (o1, o2) ∈ RI0 (resp. RI1 ) and o1, o2 ∈ ΓI0 (resp.
o1, o2 ∈ ΓI1 ), or

(b) o1 ∈ (a)I0 ∩ (Defa)I0 , o2 ∈ (b)I1 and R(a, b) ∈ A (or
vice versa).

Then (a)J ∩ (C)J = ∅ holds trivially. To show J |= K we
only consider those R edges in (4b) that cross between the
two interpretations, i.e., when o1 ∈ ({a})I0 , o2 = (b)I1 and
R(a, b) ∈ A. These edges are not needed to fulfill existential
restrictions, which are fulfilled by anonymous objects. For
universal restrictions expressed as A v ∀R.B ∈ T , we can
conclude that o1 6∈ (A)I0 as otherwise o1 ∈ (DefR)I0 by
Definition 4 and thus o2 ∈ (Defb)

I0 by Definition 3 which
contradicts the assumption (b)I0 ∩ (Defb)

I0 = ∅. Hence the
inclusion dependency is satisfied vacuously. The edges in
(4a) satisfy all dependencies inK as the remainder of the in-
terpretation J is copied from one of the two interpretations;
hence J |= K. The proof of the other direction is trivial. 2

The proof idea can be extended to handle number restric-
tions by treating at most restrictions in a similar way as uni-
versal restrictions.

4 Binary Absorptions
Model building algorithms for checking the satisfaction of
a concept C operate by manipulating an internal data struc-
ture (e.g., in the form of a node and edge labelled rooted
tree with “back edges”). The data structure “encodes” a par-
tial description of (eventual) interpretations I for which CI

will be non-empty. Such a partial description will almost al-
ways abstract details on class membership for hypothetical
elements of ∆I and on details relating to the interpretation
of roles. To talk formally about absorption and lazy evalua-
tion, it is necessary to codify the idea of a partial description.
Horrocks and Tobies have done this by introducing the fol-
lowing notion of a witness, of an interpretation that stems
from a witness, and of what it means for a witness to be
admissible with respect to a given terminology.

Definition 6 (Witness) Let L be a DL and C ∈ L a concept.
A witness W = (∆W , ·W ,LW) for C consists of a non-
empty set ∆W , a function ·W that maps Nr to subsets of
∆W ×∆W , and a function LW that maps ∆W to subsets of
L such that:
(W1) there is some x ∈ ∆W with C ∈ LW(x),

(W2) there is an interpretation I ∈ Int(L) that stems from
W , and

(W3) for each interpretation I ∈ Int(L) that stems from
W , x ∈ CI if C ∈ LW(x).

An interpretation I = (∆I , ·I) is said to stem from W if
∆I = ∆W , ·I |Nr

= ·W , for each A ∈ Nc, A ∈ LW(x)
implies x ∈ AI and ¬A ∈ LW(x) implies x /∈ AI , for each
a ∈ No, a ∈ LW(x) implies x ∈ aI and ¬a ∈ LW(x)
implies x /∈ aI , for each (f op k), (f op k) ∈ LW(x)
implies x ∈ (f op k)I and ¬(f op k) ∈ LW(x) implies
x /∈ (f op k)I .

A witnessW is called admissible with respect to a TBox
T if there is an interpretation I ∈ Int(L) that stems from
W with I |= T .

The properties satisfied by a witness have been captured by
the original lemmas 2.6 and 2.7 in (Horrocks and Tobies
2000b). We further extend binary absorption (Hudek and
Weddell 2006) to allow for assertions absorbed in Section 3.
Definition 7 (Binary Absorption) Let L andK={T ,A} be
a DL and a KB, respectively. A binary absorption of T is
a pair of TBoxes (Tu, Tg) such that T ≡ Tu ∪ Tg and Tu
contains axioms of the form A1 v C, ¬A1 v C, and a v
C or the form (A1 u A2) v C, and a u A v C where
{A,A1, A2} ⊆ Nc, and a ∈ No.

A binary absorption (Tu, Tg) of T is called correct if it
satisfies the following condition: For each witness W and
x ∈ ∆W , if all conditions in Figure 1 are satisfied, then
W is admissible w.r.t. T . A witness that satisfies the above
property will be called unfolded.
The distinguishing feature of our extension is the addition of
the first three implications in Figure 1. Binary absorption al-
lows additional axioms in Tu to be dealt with in a determin-
istic manner, as we illustrate in our introductory example.
Assertion absorption, treating ABox assertions as axioms,
also contributes to binary absorption via nominals.

5 A Binary Absorption Algorithm
In this section, we extend binary absorptions (Hudek and
Weddell 2006) that derive from the absorption algorithm
for the FaCT system outlined in earlier work (Baader et
al. 2003; Horrocks and Tobies 2000a; 2000b). In particu-
lar, when coupled with assertion absorption the extended al-
gorithm makes it possible to retain guarding constraints as
much as possible by prioritizing binary absorptions.

The algorithm is given a TK that consists of arbitrary ax-
ioms. It proceeds by constructing four TBoxes such that:
T ≡ Tg ∪ Tprim ∪ Tuinc ∪ Tbinc, Tprim is primitive, Tuinc
consists of axioms of the form A1 v C, and a v C, and
Tbinc consists of axioms of the form (A1 u A2) v C and
(auA) v C and none of the above primitive concept are de-
fined in Tprim. Here, Tuinc contains unary absorptions and
Tbinc contains binary absorptions.

In the first phase, we move as many axioms as possible
from T into Tprim. We initialize Tprim = ∅ and process
each axiom X ∈ T as follows.

1. If X is of the form A
.
= C, A is not defined in Tprim, and

Tprim ∪ {X} is primitive, then move X to Tprim.
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a ∈ LW(x) and a ∈ LW(y) implies x = y ,
{a,A} ⊆ LW(x) , and (a uA) v C ∈ Tu implies C ∈ LW(x) ,

{a} ∈ LW(x) and {a} v C ∈ Tu implies C ∈ LW(x) ,
{A1, A2} ⊆ LW(x) and (A1 uA2) v C ∈ Tu implies C ∈ LW(x) ,

A ∈ LW(x) and A v C ∈ Tu implies C ∈ LW(x) ,
¬A ∈ LW(x) and ¬A v C ∈ Tu implies C ∈ LW(x) ,

C1 v C2 ∈ Tg implies ¬C1 t C2 ∈ LW(x) ,
C1

.
= C2 ∈ Tg implies ¬C1 t C2 ∈ LW(x) and

C1
.
= C2 ∈ Tg implies C1 t ¬C2 ∈ LW(x),

Figure 1: Absorption Witness Conditions

2. If X is of the form A
.
= C, then remove X from T and

replace it with axioms A v C and ¬A v ¬C.
3. Otherwise, leave X in T .
In the second phase, we process axioms in T , either by sim-
plifying them or by placing absorbed components in either
Tuinc or Tbinc. We place components that cannot be ab-
sorbed in Tg . We let G = {C1, . . . , Cn} represent the axiom
> v (C1 t . . . t Cn). Axioms are automatically converted
to (out of) set notation.
1. If T is empty, then return the binary absorption

({A v C,¬A v ¬C |A .
= C ∈ Tprim}∪Tuinc∪Tbinc, Tg).

Otherwise, remove an axiom G from T .
2. Simplify G.

(a) If there is some ¬C ∈ G such that C is not a primi-
tive concept, then add (G ∪ NNF(¬C) \ {¬C} to T ,
where the function NNF(·) converts concepts to nega-
tion normal form. Return to Step 1.

(b) If there is some C ∈ G such that C is of the form
(C1 uC2), then add both (G∪ {C1}) \ {C} and (G∪
{C2}) \ {C} to T . Return to Step 1.

(c) If there is some C ∈ G such that C is of the form C1t
C2, then apply associativity by adding (G∪{C1, C2})\
{C1 t C2} to T . Return to Step 1.

3. Partially absorb G.
(a) If {¬a,¬A} ⊂ G, and A is a guard, then do the fol-

lowing. If an axiom of the form (auA) v A′ is in Tbinc,
add G∪{¬A′}\{¬a,¬A} to T . Otherwise, introduce
a new concept A′ ∈ Nc, add (G ∪ {¬A′}) \ {¬a,¬A}
to T , and (a uA) v A′ to Tbinc. Return to Step 1.

(b) If {¬A1,¬A2} ⊂ G, and neither A1 nor A2 are
defined in Tprim, then do the following. If an ax-
iom of the form (A1 u A2) v A′ is in Tbinc, add
G∪{¬A′}\{¬A1,¬A2} to T . Otherwise, introduce a
new concept A′ ∈ Nc, add (G∪{¬A′})\{¬A1,¬A2}
to T , and (A1 uA2) v A′ to Tbinc. Return to Step 1.

(c) If ∀R.¬A ( resp. ∀R−.¬A) ∈ G, then do the fol-
lowing. Introduce a new internal primitive concept A′
and add both A v ∀R−.A′ ( resp. A v ∀R.A′) and
(G ∪ {¬A′}) \ {∀R.¬A} (resp. \{∀R−.¬A}) to T .
Return to Step 1.

4. Unfold G. If, for some A ∈ G (resp. ¬A ∈ G), there is
an axiom A

.
= C in Tprim, then substitute A ∈ G (resp.

¬A ∈ G) with C (resp. ¬C), and add G to T . Return to
Step 1.

5. Absorb G. If ¬a ∈ G, add a v C to Tuinc where C is
the disjunction of G \ {¬a}. Return to Step 1.

6. Absorb G. If ¬A ∈ G and A is not defined in Tprim, add
A v C to Tuinc where C is the disjunction of G \ {¬A}.
Return to Step 1.

7. If none of the above are possible (G cannot be absorbed),
add G to Tg . Return to Step 1.

Termination of our procedure can be established by a count-
ing argument involving concept constructors in T .
Theorem 8 For any TBox T , the binary absorption algo-
rithm computes a correct absorption of T .
Proof. The proof is by induction on iterations of our algo-
rithm. We abbreviate the pair ({Tprim∪Tuinc∪Tbinc, Tg∪T )
as T and claim that this pair is always a correct binary ab-
sorption. Initially, Tuinc, Tbinc, and Tg are empty, primitive
axioms are in Tprim, and the remaining axioms are in T .
• In Step 3(a) or Step 3(b), a newly introduced primitive

concept only appears on the left hand side of an axiom
once, hence T is a correct binary absorption.
• In Step 3(c), T is a correct binary absorption.
• In any of Steps 1, 2, 5-8, T is a correct binary absorption

as they use only equivalence preserving operations.
Thus, T is a correct binary absorption by induction. 2

6 Experiments
Our empirical studies focus on an important class of search
queries, assertion retrieval, proposed in earlier work (Pound
et al. 2011). Assertion retrieval queries are of the form
(C,Pd), in which C is a query concept in some DL L serv-
ing the same role as in instance retrieval and in which Pd is
a projection description that defines a subset of the concepts
of L. Assertion retrieval thus reduces to instance retrieval
if Pd = >. Assertion queries return assertions of the form
a : Ca such that K |= a : (C u Ca), where Ca provides
themost informative answer for which this condition holds.
A projection description generalizes the effect of the rela-
tional projection operation by controlling both the format
and information content of query results.

Our experiments were carried out on a digital camera KB,
where each camera has a list of over 70 feature-value pairs in
specification. ThisALC KB has 15 axioms, 1931 assertions,
1029 instances, and 2117 constants. We evaluated five dif-
ferent assertion queries of the form (C,Pd), which have the
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same selection concept C and different Pd’s (in increasing
difficulty) over the qualifying instances. The KB and queries
are available at http://db-tom.cs.uwaterloo.ca.

The times given in Table 1, averaged out over three in-
dependent runs on a Macbook with Intel Core 2 Duo pro-
cessor and 4GB memory, compare five queries under three
environments: NG, PG and FG, which refer to No Guard-
ing that checks all individuals in K, Partial Guarding that
checks relevant individuals instead, and Full Guarding that,
in addition to PG, introduces guards for features to reason
about only relevant domain concepts, respectively. In NG, a
Tableaux procedure needs to check all named individuals in
K, which makes query evaluation infeasible (timed out after
1000 seconds, as denoted by –). The dramatic differences
depicted in Table 1 suggest that, without guarding, evaluat-
ing object queries in large datasets often becomes infeasible.
The results for these five queries imply that FG reduces the

Q1 Q2 Q3 Q4 Q5

NG – – – – –
PG 29.98 29.80 30.33 32.28 32.34
FG 1.48 1.72 3.64 5.98 7.08

Table 1: Experimental Results (time in seconds)

total running time by at least 75 percent of that employing
PG. Particularly, FG effectively trims the graph size by more
than an order of magnitude during clash finding in concrete
domain, thus leading to a substantial runtime improvement
for query answering in KBs that have a considerable number
of features. In a nutshell, the proposed optimization in this
paper is a promising technique for querying large ABoxes,
especially when objects are described by numerous domain
concepts.

7 Conclusion
We have developed a technique that allows DL reasoners to
avoid exploring a large fraction of individuals in a knowl-
edge base that include a very large ABox in order to per-
form assertion membership tasks. We show how, with the
presumption that the knowledge base is consistent, one can
avoid considering irrelevant ABox individuals to the posed
question while preserving soundness and completeness of
answers. This goal is achieved by instrumenting the original
ABox with additional guards that are represented by auxil-
iary primitive concepts, and then by developing an extension
to absorption theory and algorithms in (Horrocks and Tobies
2000a; 2000b). This extension, called binary absorption,
originally designed for TBox reasoning alone (Hudek and
Weddell 2006), allows terminological axioms of the form
(auA) v C to qualify for lazy unfolding in model building
satisfaction procedures for description logics, such as those
based on tableaux technology. Such lazily unfolded axioms
with binary left-hand sides are essential when (translations
of) ABox assertions are to be processed by such algorithms
since they prevent exploring concepts and roles associated
with irrelevant ABox individuals (indeed, a simple modifica-
tion to said tableaux algorithms will avoid creating instances

of such individuals altogether.) Such an optimization cannot
be achieved when only unary absorption is available.

The experiments show that in realistic situations arising,
e.g., in implementations of assertion retrieval (Pound et al.
2011) in which a number of assertion membership queries
are needed to answer a single user query, or in the case of
ontology-based query answering (Lutz, Toman, and Wolter
2009; Kontchakov et al. 2010; Rosati and Almatelli 2010;
Kontchakov et al. 2011), when non-Horn DLs are used (and
thus the above techniques cannot be applied), our technique
makes querying often feasible. The experiments show, on
relatively simple examples, that while using the proposed
technique allows answers to be produced in few seconds,
attempting the same tasks without the optimization is not
feasible.
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