
Logic Programs with Intensional Functions

Vladimir Lifschitz
Department of Computer Science, University of Texas

Austin, TX 78712, USA

Abstract

The stable model semantics treats a logic program as a mech-
anism for specifying its intensional predicates. In this paper
we discuss a modification of that semantics in which func-
tions, rather than predicates, are intensional. The idea of the
new definition comes from nonmonotonic causal logic.

Introduction
The definition of a stable model proposed in (Ferraris, Lee,
& Lifschitz 2011) treats a logic program as a mechanism for
specifying its “intensional predicates.” The model-theoretic
meaning of that definition can be described in terms of a
first-order version of equilibrium logic (Pearce 1997). Equi-
librium models of a formula are defined as the Kripke mod-
els with two worlds that satisfy a certain minimality condi-
tion.

In this note we discuss a modification of the definition
from (Ferraris, Lee, & Lifschitz 2011) in which functions,
rather than predicates, are intensional. The difficulty here
is that it is not clear how to apply the idea of minimality to
functions. Predicates can be viewed as sets, and the sub-
set relation can be used to compare them. Functions can be
viewed as sets also—as sets of ordered pairs. But a function
fromA toB cannot be a subset of any other function fromA
to B; minimality becomes trivial. The solution adopted in
the semantics of functional logic programs (Cabalar 2011) is
based on making functions partial. We discuss here another
approach.

The idea of the semantics of logic programs with inten-
sional functions defined below comes from nonmonotonic
causal logic (McCain & Turner 1997), extended to the first-
order case in (Lifschitz 1997). We discard the minimality
condition in the definition of equilibrium logic altogether
and replace it by a uniqueness condition. The result is a
language that bears strong resemblance to causal logic; in
fact, many programs in this language can be easily reformu-
lated as causal theories. At the same time, the new language
is closely related to the traditional stable model semantics of
logic programs: the latter can be embedded into it by treat-
ing predicates as Boolean-valued functions and by adding
standard “minimization rules.”

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Because programs with intensional functions are simi-
lar both to nonmonotonic causal theories and to traditional
logic programs, they provide a new perspective on the re-
lationship between these two knowledge representation lan-
guages. This is one of the reasons why they may be of inter-
est. Another reason is that they allow us to describe effects
of actions on non-Boolean fluents directly, in pretty much
the same way as causal theories in the sense of (Lifschitz
1997). In traditional logic programming, non-Boolean flu-
ents have to be encoded by Boolean fluents; to express, for
instance, that the location of an object x changed between
times t and t+ 1 we have to write

at(x, y, t) ∧ at(x, z, t+ 1) ∧ y 6= z

instead of simply loc(x, t + 1) 6= loc(x, t). Expressing the
commonsense law of inertia (Shanahan 1997) for locations
requires two rules if loc is replaced with at: a positive inertia
rule and a uniqueness rule (see, for instance, the description
of the blocks world in (Lifschitz 2002, Section 5.1)). The
new language is more concise.

Syntax
In (Ferraris, Lee, & Lifschitz 2011), stable models are de-
fined for arbitrary first-order sentences. As observed in (Lif-
schitz 2011), that definition can be simplified in the im-
portant special case when the formula is a conjunction of
“rules.” The definition of a program with intensional func-
tions in this paper is restricted to formulas of this form also.1

In first-order formulas, we take the connectives and quan-
tifiers

> ⊥ ¬ ∧ ∨ → ∀ ∃
as primitives. A first-order sentence is a rule if it has the
form

∀̃(B → H) (1)

and has no occurrences of → other than the one explicitly
shown.2 FormulaB is the body of rule (1), andH is its head.
A logic program with intensional functions, or IF-program
for short, is a pair (R, f), where R is a conjunction of rules,

1The paper (Bartholomew & Lee 2012) describes an alterna-
tive semantics of intensional functions that is applicable to arbitrary
first-order sentences.

2∀̃F stands for the universal closure of F .

24

Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning

and f is a tuple of distinct function constants.3 We will rep-
resent R by the list of its conjunctive terms (1) written as
H ← B, and we will drop ← B if B is >. The members
of f will be called the intensional functions of the program.

Consider, for instance, the IF-program with the rules

f(x) = a ← ¬(f(x) 6= a),
f(x) = b ← P (x)

(2)

and the intensional function f . (Since the formula f(x) 6= a
is shorthand for ¬(f(x) = a), the body of the first rule is the
double negation of its head.) As discussed below, the first
rule expresses that, by default, the values of f are equal to a.
The second rule expresses that on every argument from P
the value of f is b.

Semantics
We will define the semantics of IF-programs by specifying
which models ofR are considered “stable models” of (R, f).
Like the definitions of a stable model introduced in (Ferraris,
Lee, & Lifschitz 2011) and (Lifschitz 2011), the new defi-
nition is based on a syntactic transformation that turns logic
programs into second-order sentences.4 An occurrence of a
symbol in a formula F is negated if it belongs to a subfor-
mula of F that begins with negation, and nonnegated oth-
erwise. Let F be a formula, and let f be a tuple of distinct
function constants. For each member f of f , choose a new
function variable υf of the same arity as f , and let υf be the
list of all these function variables. By F �(υf) we denote the
formula obtained from F by replacing each nonnegated oc-
currence of each member f with the variable υf . By SMf [F]
we denote the sentence

∀υf(F �(υf)↔ υf = f). (3)

(Here υf = f stands for the conjunction of the equalities
υf = f for all members f of the list f and the corresponding
members υf of the list υf.) Formula (3) expresses that f is
the only tuple of functions satisfying the condition F �(υf).

A stable model of an IF-program (R, f) is a model of
SMf [R] in the sense of classical second-order logic.

For example, the stable models of (2) are models of the
formula

∀υf((∀x(¬(f(x) 6= a)→ υf(x) = a)
∧∀x(P (x)→ υf(x) = b))

↔ υf = f).
(4)

The second-order quantifier here can be eliminated:

Proposition 1 Formula (4) is equivalent to the first-order
sentence

∀x(P (x)→ f(x) = b) ∧ ∀x(¬P (x)→ f(x) = a). (5)

Formula (5) expresses that on every argument from P the
value of f is b, and on every other argument the value of f

3Object constants can be viewed as function constants of arity 0
and thus are allowed to be members of f.

4For a brief discussion of the syntax and semantics of second-
order logic see, for instance, (Lifschitz, Morgenstern, & Plaisted
2008, Section 1.2.3).

is a. This is consistent with understanding the first rule of (2)
as a default, and the second rule as an exception.

Proofs of propositions can be found in the appendix.
Expression (3) for SMf [F] can be equivalently rewritten

as
F ∧ ∀υf(F �(υf)→ υf = f).

Consequently the stable models of (R, f) can be character-
ized as the models of R that satisfy the “stability condition”

∀υf(R�(υf)→ υf = f). (6)

Comparison with Similar Definitions
To see the similarity between the definition above and the
semantics introduced in (Lifschitz 2011), recall that a Dat-
alog program in that paper is a pair (R,p), where R is a
conjunction of rules, and p is a tuple of distinct predicate
constants. The result of applying the operator SMp to F is
defined there as

F ∧ ¬∃υp((υp < p) ∧ F �(υp)), (7)

where υp is a tuple of predicate variables; the definition
of F �(υp) is completely parallel to the definiton of F �(υf)
given above: this is the result of replacing each nonnegated
occurrence of each member of p by the corresponding mem-
ber of υp.5 Both (3) and (7) use F �, although in different
ways: the former is a uniqueness condition, and the latter is
a minimality condition.

On the other hand, the semantics of causal theories in (Lif-
schitz 1997) refers to formulas of the form

∀υc(· · · ↔ υc = c),

where c is the list of explainable symbols of the theory (it
may include both predicate and function constants), and υc
is a tuple of variables; see the section on causal logic be-
low for details. The definition (3) of SMf [F] has the same
syntactic form, but the left-hand side of the equivalence is
formed now in a different way.

Additional information about the relationship between IF-
programs on the one hand and Datalog programs and causal
theories on the other is provided in Propositions 4 and 6 be-
low.

Stability-Preserving Transformations
From (Lifschitz, Pearce, & Valverde 2007) we know that
two logic programs have the same stable models if the equiv-
alence of their sets of rules can be justified in intuitionistic
predicate logic with some additional postulates, such as the
weak law of the excluded middle

¬F ∨ ¬¬F (8)

and the law of the excluded middle for equalities

t1 = t2 ∨ t1 6= t2. (9)
5If p is a single unary predicate constant p then υp < p stands

for
∀x(υp(x)→ p(x)) ∧ ¬∀x(p(x)→ υp(x)).

For the general definition of < on tuples of predicate symbols see
(Lifschitz 2011, Section 4).

25

(For the list of additional axioms see (Lifschitz, Pearce, &
Valverde 2007, Section 3).) In the world of IF-programs,
the situation is somewhat different. If the equivalence be-
tween R1 and R2 can be proved in positive logic (that is to
say, using axiom schemas and inference rules of intuitionis-
tic propositional logic without postulates for negation) then
(R1, f) and (R2, f) have the same stable models, because
R�1(υf) is equivalent to R�2(υf) in this case. But the class of
stable models does change after some intuitionistically ac-
ceptable transformations. For instance, the rule

¬(f(x) 6= y)← f(x) = y

is intuitionistically trivial, but adding it to a logic program
(R, f) contributes the nontrivial conjunctive term

∀xy(υf(x) = y → ¬(f(x) 6= y))

to the antecedent of (6). This conjunctive term is equivalent
to υf = f , and it makes (6) significantly weaker.

We need to distinguish between the rules ⊥ ← F
and ¬F ← >, even though they are intuitionistically equiv-
alent: the former contributes ¬F � to the antecedent of the
stability condition (6); the latter contributes ¬F . According
to the definition of a constraint in the next section, rules of
the form ¬F are constraints, and rules of the form ⊥ ← F
are generally not.

On the other hand, replacing a rule of the form

F ← ¬¬F
with

F ∨ ¬F,
which is not an intuitionistically equivalent transformation,
preserves the class of stable models, because (F ← ¬¬F)�

is equivalent to (F ∨¬F)�. Replacing ¬(F ∧G) with ¬F ∨
¬G in the head or in the body of a rule does not change the
class of stable models either. These two transformations can
be justified in intuitionistic logic with the weak law of the
excluded middle (8).

The law of the excluded middle for equalities (9) is not ac-
ceptable in equivalent transformations of IF-programs when
the terms t1, t2 contain explainable functions. It would allow
us to replace the body of the first rule of (2) with f(x) = a,
which would make the rule trivial.

It appears that “the logic of IF-programs” is interme-
diate between positive logic and the first-order logic of
here-and-there introduced in (Lifschitz, Pearce, & Valverde
2007). It is neither weaker nor stronger than intuitionistic
logic. Stability-preserving transformations for IF-programs
require further study.

Constraints
In the context of IF-programs, a constraint is a rule without
nonnegated occurrences of intensional functions. Adding
a constraint to an IF-program affects the class of its stable
models monotonically—it eliminates the models that violate
the constraint:

Proposition 2 For any IF-program (R, f) and any con-
straint C, an interpretation I is a stable model of (R∧C, f)
iff I is a stable model of (R, f) that satisfies C.

Defaults and Choice
The first rule of program (2), which expresses that the equal-
ity f(x) = a “holds by default,” can be equivalently re-
placed with

f(x) = a ∨ f(x) 6= a (10)
(see the discussion of stability-preserving transformation
above). More generally, for any terms t1, t2 the idea that
the equality t1 = t2 “holds by default” can be expressed by
the formula

t1 = t2 ∨ t1 6= t2.

We will denote this formula by t1 ≈ t2. For instance, (10)
can be written as f(x) ≈ a.

Rules of the form

t ≈ x← B, (11)

where x is a variable that occurs neither in t nor in B, are
similar to choice rules in traditional answer set programming
(Niemelä, Simons, & Soininen 1999). Rule (11) allows us
to choose the value of t arbitrarily if B holds. We will write
it as

{t} ← B.

For instance, the rules of the IF-program

f(x) = a ← P (x),
{f(x)} ← ¬P (x)

(12)

(with intensional f) say that the value of f on any element
of P is a, and that otherwise the values of f are arbitrary:
Proposition 3 The stable models of program (12) are char-
acterized by the formula

∀x(P (x)→ f(x) = a). (13)

Relation to Causal Logic
IF-programs in which negated occurrences of intensional
functions are “separated” from nonnegated occurrences can
be translated into causal logic in the sense of (Lifschitz
1997).

Recall that a first-order causal theory T is defined by
• a list c of distinct function and/or predicate constants,

called the explainable symbols of T , and
• a finite set of causal rules of the form F ⇐ G, where F

and G are first-order formulas.
For each member c of c, choose a new variable υc sim-

ilar to c (that is to say, if c is a function constant then υc
should be a function variable of the same arity; if c is a pred-
icate constant then υc should be a predicate variable of the
same arity). Let υc stand for the list of all these variables.
By T †(υc) we denote the conjunction of the formulas

∀x(G→ F c
υc) (14)

for all rules F ⇐ G of T , where x is the list of all free
variables of F , G. (The expression F c

υc denotes the result
of substituting the variables υc for the corresponding con-
stants c in F .) Semantically, T is considered shorthand for
the sentence

∀υc(T †(υc)↔ υc = c). (15)

26

Let (R, f) be an IF-program such that all its rules have the
form

H+ ∨H− ← B+ ∧B−, (16)

where H+, B+ are formulas without negated occurrences
of intensional functions, and H−, B− are formulas without
nonnegated occurrences of intensional functions. (If a con-
junctive term of the body doesn’t contain intensional func-
tions, such as P (x) in the second rule of (2), then we are free
to choose whether to include it in B+ or in B−. Similarly, a
disjunctive term of the head that doesn’t contain intensional
functions can be included either in H+ or in H−.) By T we
denote the causal theory consisting of the rules

H+ ∨ ¬B+ ⇐ B− ∧ ¬H− (17)

for all rules (16) from R, with the explainable symbols f.
The idea of this transformation is that the difference between
negated and nonnegated occurrences of symbols in an IF-
program corresponds to the difference between occurrences
of symbols in the body and in the head of a causal rule.

Proposition 4 An interpretation I is a stable model
of (R, f) iff I is a model of causal theory T .

For example, program (2) corresponds to the causal the-
ory with the rules

f(x) = a ⇐ ¬(f(x) 6= a),
f(x) = b ⇐ P (x),

or, equivalently,

f(x) = a ⇐ f(x) = a,
f(x) = b ⇐ P (x).

(In causal logic, replacing the head or the body of a rule with
an equivalent formula does not affect the class of models.)
The modification of (2) in which the first rule is replaced
with (10) corresponds to the same causal theory.

Using Proposition 4 in combination with stability-
preserving transformations, we can turn any IF-program
with quantifier-free rules into an equivalent causal theory.
Conversely, if all rules of a causal theory are quantifier-free
and all its explainable symbols are function symbols then it
can be converted into an equivalent IF-program. Take, for
instance, causal theory T1 from (Lifschitz & Yang 2011):

⊥ ⇐ a = b,
c = a ⇐ c = a,
c = b ⇐ q,

(18)

with the explainable object constant c. It can be converted
into the IF-program

a 6= b,
c ≈ a,
c = b← q.

(19)

Describing Actions by IF-Programs
IF-programs, like nonmonotonic causal theories, can be
used for describing effects of actions. The following pro-
gram describes the effect of moving an object. (It is similar

to causal theory T2 from (Lifschitz & Yang 2011).) For sim-
plicity, we only consider the time instants 0, 1 and the exe-
cution of the move action at time 0. The auxiliary symbol
none is used as the value of loc(x, t) when the arguments are
“of a wrong kind” (that is, when x is not a physical object or
when t is not a time instant). The rules are

loc(x, 0) ≈ y ← obj(x) ∧ place(y),
loc(x, 1) = y ← move(x, y) ∧ obj(x) ∧ place(y),
loc(x, 1) ≈ y ← loc(x, 0) = y ∧ obj(x) ∧ place(y),
loc(x, t) = none← ¬obj(x) ∨ (t 6= 0 ∧ t 6= 1),
0 6= 1 ∧ 0 6= none ∧ 1 6= none,

and the only intensional function is loc. The first rule says
that initially an object can be at an arbitrary place. The sec-
ond rule describes the effect of moving an object, and the
third rule expresses the commonsense law of inertia for lo-
cations.

To describe the effect of an action on a Boolean-valued
fluent by an IF-program, we represent Boolean values by
object constants, say 0 and 1. For instance, the effect of
the action toggle on the Boolean-valued fluent on can be de-
scribed by the IF-program consisting of the constraints

0 6= 1,
x = 0 ∨ x = 1

(20)

and the rules
{on(0)},
on(1) = x← on(0) 6= x ∧ toggle,
on(1) ≈ x← on(0) = x.

Relation to the 1988 Definition
of a Stable Model

Let Π be a finite set of rules of the form

A0 ← A1, . . . , Am, not Am+1, . . . , not An (21)

(n ≥ m ≥ 0), where each Ai is a propositional atom.
The stable models of Π in the sense of (Gelfond & Lif-
schitz 1988) can be characterized in terms of IF-programs
as follows. We reclassify all propositional atoms as inten-
sional object constants, and add to the signature two non-
intensional object constants 0, 1. Each rule (21) is rewritten
as

A0 = 1← A1 = 1 ∧ · · · ∧Am = 1
∧Am+1 6= 1 ∧ · · · ∧An 6= 1.

For each atom A in the signature of Π we add the “mini-
mization rule” A ≈ 0 (by default, atoms get the value false).
Finally, we add constraints (20). The resulting IF-program
will be called the functional image of Π. For instance, the
functional image of the one-rule program

p← not q

consists of the rules
p = 1← q 6= 1,
p ≈ 0,
q ≈ 0

and constraints (20).
It is clear that models of (20) can be viewed as sets of

propositional atoms.

27

Proposition 5 The functional image of Π has the same sta-
ble models as Π.

The toggle program from the section on describing ac-
tions is similar in some ways to functional images as defined
above, but there is an essential difference: it includes the in-
ertia rule

on(1) ≈ x← on(0) = x

instead of the minimization rule

on(1) ≈ 0.

The definition of functional image and Proposition 5 can
be extended to disjunctive programs in a straightforward
way. In the next section we show how to extend them to
Datalog programs in the sense of (Lifschitz 2011).

Relation to Datalog Programs
Let (R,p) be a Datalog program that has two object con-
stants in its signature, say 0 and 1, and includes the con-
straint 0 6= 1. The functional image of (R,p) is formed as
follows. We reclassify each predicate constant p from p as a
function constant of the same arity. In the rules of R, we re-
place every atomic subformula p(t) such that p is a member
of p with p(t) = 1. Finally, for each p from p we add the
minimization rule

p(x) ≈ 0 (22)
and the constraint

¬¬(p(x) = 0 ∨ p(x) = 1), (23)

where x is a tuple of distinct object variables.
We will identify the interpretations of the original signa-

ture that satisfy 0 6= 1 with the interpretations of the modi-
fied signature that satisfy 0 6= 1 and

∀x(p(x) = 0 ∨ p(x) = 1). (24)

Proposition 6 The functional image of (R,p) has the same
stable models as (R,p).

In other words, in the presence of two distinct object con-
stants a Datalog program has the same meaning as its func-
tional image.

An Approach to Implementation
In some cases, answer set solvers can be used to generate the
models of a causal theory that have a given finite universe
even in the presence of explainable functions (Lifschitz &
Yang 2011). The idea is to represent an n-ary function con-
stant f by its graph—a predicate constant of arity n + 1.
In view of the close relationship between IF-programs and
causal theories with explainable functions, the stable mod-
els of an IF-program that have a given finite universe can be
sometimes generated in a similar way.

Consider, for instance, the problem of generating all sta-
ble models I of program (19) such that

|I| = {a, b}, aI = a, bI = b. (25)

(Here |I| is the universe of the interpretation I; appending
the superscript I turns a constant into the object that inter-
prets that constant.) This is equivalent to the problem of

generating the models of causal theory (18) that satisfy these
conditions. As discussed in (Lifschitz & Yang 2011, Sec-
tion 7.2), this can be accomplished by running the solver
CLINGO6 on the following input:

u(a;b). #domain u(X).
{q}.
p(a) :- not -p(a).
p(b) :- q.
-p(X) :- not p(X).
:- not 1{p(Z):u(Z)}1.
:- not p(X), not -p(X).

In this program, p(x) represents the condition x = c. The
first line expresses that the universe u consists of a and b,
and that X is a variable for arbitrary elements of u. The
choice rule in the second line says that q can be assigned
an arbitrary value. (It is included because q, unlike p, does
not correspond to an intensional constant of program (19).)
The next two lines correspond to the last two rules of (19).
(There is no need to represent the constraint a 6= b; it is taken
by CLINGO for granted.) The rest is standard for the transla-
tion process described in (Lifschitz & Yang 2011). In partic-
ular, the second line from the end expresses the uniqueness
of an object with the property p.

Given this input, CLINGO generates two stable mod-
els: one containing q and p(b), the other containing
p(a). They correspond to the two stable models of IF-
program (19) that satisfy conditions (25): in one of them

qI = true, cI = b,

in the other
qI = false, cI = a.

The range of applicability of this approach requires fur-
ther study.

Related Work
Logic programs with functions have received considerable
attention in the literature on answer set programming,7 and
function symbols are allowed in the input languages of most
answer set solvers. But many researchers make all func-
tions “predefined”: a function either corresponds to a spe-
cific arithmetical operation or operates by simply prepend-
ing its name to the list of arguments, as in Herbrand inter-
pretations. The values of such a function cannot be charac-
terized using the rules of a program.

Answer set programming with functions in the sense of
(Lin & Wang 2008) is different. Under that approach, the
values taken by a function are object constants. We can
express, for instance, that the color of x is red by writing
clr(x) = red. The formalization of the graph coloring prob-
lem in (Lin & Wang 2008) uses the constraint

← arc(x, y), clr(x) = clr(y).

On the other hand, the language of that paper allows equal-
ities in the bodies of rules only, not in the heads. It appears

6http://potassco.sourceforge.net/
7See, for instance, (Syrjänen 2001; Calimeri et al. 2008).

28

that assumptions about default values of a function, such as
the first rule of IF-program (2), cannot be expressed in that
language.

Functional answer set programming in the sense of (Ca-
balar 2011) is free of this limitation. An implementation
of this language, called LPPF, can be downloaded from the
Equilibrium Logic Workbench.8 As pointed out in the in-
troduction, the main difference between the two nonmono-
tonic logics is that we use total functions and uniqueness,
instead of partial functions and minimization. The definition
in (Cabalar 2011) is stated in model-theoretic terms, and the
universe of a model is assumed to be the set of all ground
terms that do not contain evaluable (in our terminology, in-
tensional) functions.

Default values of functions can be specified also in the
language of weight constraint programs with evaluable func-
tions (Wang et al. 2010). For example, the counterpart of the
first rule of (2) in that language is

f(x) = a← [f(x) 6= a : 1] 0.

The language of the inference engine EZCSP,9 which in-
tegrates answer set programming with constraint program-
ming, allows us to talk about default values of functions as
well.

Conclusion
Some features of logic programs with intensional functions
make them similar to traditional logic programs under the
stable model semantics; in other ways they are reminiscent
of nonmonotonic causal theories. Many questions about
properties of these programs remain at this point unan-
swered, and they provide topics for future work. What
is the model-theoretic meaning of the semantics of IF-
programs? How can one characterize the strong equiva-
lence relation (Lifschitz, Pearce, & Valverde 2001; 2007)
for IF-programs? What are advantages and disadvantages
of the language of IF-programs as a knowledge representa-
tion tool, in comparison with causal theories? What kinds
of IF-programs can be translated into the input languages
of the existing answer set solvers? Can IF-programs be re-
lated to the systems from (Cabalar 2011; Lin & Wang 2008;
Wang et al. 2010) in a mathematically precise way?

Acknowledgements
Thanks to Joohyung Lee for his comments on a draft of this
paper and for detecting an error in an earlier attempt to prove
Proposition 6. I am grateful also to Marcello Balduccini,
Pedro Cabalar, Luis Fariñas del Cerro, Michael Gelfond,
Yuliya Lierler, Fangzhen Lin, Ilkka Niemelä, David Pearce,
Yisong Wang, Fangkai Yang, and the anonymous referees
for their comments and suggestions. This research was par-
tially supported by the National Science Foundation under
Grant IIS-0712113.

8http://www.equilibriumlogic.net
9http://marcy.cjb.net/ezcsp/

Appendix
Proof of Proposition 1
Proposition 1 Formula (4) is equivalent to (5).

Proof Formula (4) is equivalent to
∀υf((∀x(f(x) = a→ υf(x) = a)

∧∀x(P (x)→ υf(x) = b))
↔ υf = f).

The implication right-to-left is equivalent to the first con-
junctive term of (5); it expresses that the set of values of x
satisfying f(x) = b is a superset of P . The implication left-
to-right expresses that, subject to this restriction on f , the
set of values of x satisfying f(x) = a is maximal. This is
equivalent to the second conjunctive term of (5).

Proof of Proposition 2
Proposition 2 For any IF-program (R, f) and any con-
straint C, an interpretation I is a stable model of (R∧C, f)
iff I is a stable model of (R, f) that satisfies C.

Proof
SMf [R ∧ C]
↔ R ∧ C ∧ ∀υf(R�(υf) ∧ C�(υf)→ υf = f)
= R ∧ C ∧ ∀υf(R�(υf) ∧ C → υf = f)
↔ R ∧ C ∧ ∀υf(R�(υf)→ υf = f)
↔ SMf [R] ∧ C.

Proof of Proposition 3
Proposition 3 The stable models of program (12) are char-
acterized by formula (13).

Proof The stable models of program (12) are characterized
by the formula
∀υf((∀x(P (x)→ υf(x) = a)

∧∀xy(¬P (x)→ υf(x) = y ∨ f(x) 6= y))
↔ υf = f)

or, equivalently,
∀υf((∀x(P (x)→ υf(x) = a)

∧∀x(¬P (x)→ υf(x) = f(x)))
↔ υf = f).

The implication right to left is equivalent to (13). The impli-
cation left to right is entailed by (13).

Proof of Proposition 4
In the statement of Proposition 4, the IF-program (R, f) and
the causal theory T are as described at the beginning of the
section on causal logic.

Proposition 4 An interpretation I is a stable model of (R, f)
iff I is a model of causal theory T .

Proof Formula R�(υf) is the conjunction of the formulas

∀x
(
(B+)fυf ∧B− → (H+)fυf ∨H−

)
(26)

for all rules (16) of R, where x is the list of free variables
of H+, H−, B+, B−. Formula T †(υf) is the conjunction of
the formulas

∀x
(
B− ∧ ¬H− → (H+)fυf ∨ ¬(B+)fυf

)
. (27)

It is clear that (27) is equivalent to (26).

29

Proof of Proposition 5

Recall that Π is a finite set of rules of the form (21).

Proposition 5 The functional image of Π has the same sta-
ble models as Π.

Proof We will identify Π with the conjunction of its rules
written as propositional formulas. The stable models of Π
can be characterized as the models of the second-order
propositional formula (“QBF”)

Π ∧ ¬∃υp((υp < p) ∧Π�(υp)) (28)

(Lifschitz 2011, Remark 2). For any second-order propo-
sitional formula F , by φF we will denote the expression
obtained by appending the symbols =1 to each atomic part
of F . This expression can be viewed as a first-order for-
mula if we treat the propositional constants occurring in F
as object constants, and the propositional variables occur-
ring in F as object variables. We will identify truth assign-
ments with corresponding models of formulas (20); then φF
has the same meaning as F . Our goal is to prove that the re-
sult of applying φ to formula (28) is equivalent to SMp[R],
where R is the set of rules of the functional image of Π.

By the definition of functional image, R is obtained
from φΠ by adding the rules p ≈ 0 for all members p of p
and constraints (20). Assuming (20),

SMp[R]

↔ SMp

[
φΠ ∧

∧
p(p = 0 ∨ p 6= 0)

]
↔ φΠ ∧ ∀υp(φΠ�(υp) ∧

∧
p(υp = 0 ∨ p 6= 0)

→ p = υp)
↔ φΠ ∧ ∀υp(φΠ�(υp) ∧

∧
p(υp = 1→ p = 1)

→ p = υp)
↔ φΠ ∧ ∀υp(φ(Π�(υp) ∧ (υp ≤ p))→ p = υp)
↔ φ(Π ∧ ∀υp(Π�(υp) ∧ (υp ≤ p)→ p = υp))
↔ φ(Π ∧ ∀υp¬(Π�(υp) ∧ (υp < p)))
↔ φ(Π ∧ ¬∃υp((υp < p) ∧Π�(υp))).

Proof of Proposition 6

Recall that (R,p) is a Datalog program that includes the
constraint 0 6= 1.

Proposition 6 The functional image of (R,p) has the same
stable models as (R,p).

Proof The rules R′ of the functional image of (R,p) in-
clude φR (see the proof of Proposition 5 for the definition
of φ), rules (22) and constraints (23). Assuming 0 6= 1

and (24),

SMp[R′]

↔ SMp

[
φR ∧

∧
p ∀x(p(x) = 0 ∨ p(x) 6= 0)

]
↔ φR ∧ ∀υp(φR�(υp)

∧
∧
p ∀x(υp(x) = 0 ∨ p(x) 6= 0)

→ p = υp)
↔ φR ∧ ∀υp(φR�(υp)

∧
∧
p ∀x(p(x) = 0→ υp(x) = 0)
→
∧
p ∀xy(p(x) = y → υp(x) = y)

↔ φR ∧ ∀υp(φR�(υp)
∧
∧
p ∀x(p(x) = 0→ υp(x) = 0))
→
∧
p ∀x(p(x) = 1→ υp(x) = 1)

↔ φR ∧ ∀υp(
∧
p ∀x(p(x) = 0→ υp(x) = 0)

→ φ(R�(υp)→ p ≤ υp)).

Consider the second conjunctive term of the last formula:

∀υp(
∧
p ∀x(p(x) = 0→ υp(x) = 0)

→ φ(R�(υp)→ p ≤ υp)).
(29)

Under the assumption 0 6= 1, it is equivalent to

∀υp(
∧
p ∀x(p(x) = 0→ υp(x) 6= 1)

→ φ(R�(υp)→ p ≤ υp)).
(30)

Indeed, the implication from (30) to (29) is obvious; as-
sume (29) and∧

p ∀x(p(x) = 0→ υp(x) 6= 1). (31)

Define υp′ by the conditions

∀x(υp(x) = 1→ υp′(x) = 1),
∀x(υp(x) 6= 1→ υp′(x) = 0).

(32)

From (31) and the second of conditions (32),∧
p ∀x(p(x) = 0→ υp′(x) = 0).

By (29), it follows that

φ(R�(υp′)→ p ≤ υp′). (33)

On the other hand, from (32),

∀x(υp(x) = 1↔ υp′(x) = 1). (34)

Since every occurrence of υp′ in (33) is within a subformula
of the form υp′(· · ·) = 1, from (33) and (34) we can con-
clude that

φ(R�(υp)→ p ≤ υp).

This completes the proof of the equivalence between (29)
and (30). Consequently

SMp[R′]
↔ φR ∧ ∀υp(

∧
p ∀x(p(x) = 0→ υp(x) 6= 1)

→ φ(R�(υp)→ p ≤ υp))
↔ φR ∧ ∀υp(

∧
p ∀x(υp(x) = 1→ p(x) = 1)

→ φ(R�(υp)→ p ≤ υp))
↔ φ(R ∧ ∀υp((υp ≤ p)→ (R�(υp)→ p ≤ υp)))
↔ φ(R ∧ ¬∃υp(R�(υp) ∧ (υp ≤ p) ∧ ¬(p ≤ υp)))
↔ φ(R ∧ ¬∃υp((υp < p) ∧R�(υp)))
= φ (SMp[R]) .

30

References
Bartholomew, M., and Lee, J. 2012. Stable models of for-
mulas with intensional functions. In this volume.
Cabalar, P. 2011. Functional answer set programming. The-
ory and Practice of Logic Programming 11:203–234.
Calimeri, F.; Cozza, S.; Ianni, G.; and Leone, N. 2008.
Computable functions in ASP: theory and implementation.
In Proceedings of International Conference on Logic Pro-
gramming (ICLP), 407–424.
Ferraris, P.; Lee, J.; and Lifschitz, V. 2011. Stable models
and circumscription. Artificial Intelligence 175:236–263.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Kowalski, R., and
Bowen, K., eds., Proceedings of International Logic Pro-
gramming Conference and Symposium, 1070–1080. MIT
Press.
Lifschitz, V., and Yang, F. 2011. Eliminating function sym-
bols from a nonmonotonic causal theory. In Lakemeyer, G.,
and McIlraith, S. A., eds., Knowing, Reasoning, and Acting:
Essays in Honour of Hector J. Levesque. College Publica-
tions.
Lifschitz, V.; Morgenstern, L.; and Plaisted, D. 2008.
Knowledge representation and classical logic. In van
Harmelen, F.; Lifschitz, V.; and Porter, B., eds., Handbook
of Knowledge Representation. Elsevier. 3–88.
Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
equivalent logic programs. ACM Transactions on Computa-
tional Logic 2:526–541.
Lifschitz, V.; Pearce, D.; and Valverde, A. 2007. A
characterization of strong equivalence for logic programs
with variables. In Procedings of International Conference
on Logic Programming and Nonmonotonic Reasoning (LP-
NMR), 188–200.
Lifschitz, V. 1997. On the logic of causal explanation. Arti-
ficial Intelligence 96:451–465.
Lifschitz, V. 2002. Answer set programming and plan gen-
eration. Artificial Intelligence 138:39–54.
Lifschitz, V. 2011. Datalog programs and their stable mod-
els10. In Datalog Reloaded: First International Workshop,
Datalog 2010, Oxford, UK, March 16-19, 2010. Revised Se-
lected Papers. Springer.
Lin, F., and Wang, Y. 2008. Answer set programming
with functions. In Proceedings of International Conference
on Principles of Knowledge Representation and Reasoning
(KR), 454–465.
McCain, N., and Turner, H. 1997. Causal theories of ac-
tion and change. In Proceedings of National Conference on
Artificial Intelligence (AAAI), 460–465.
Niemelä, I.; Simons, P.; and Soininen, T. 1999. Stable model
semantics for weight constraint rules. In Procedings of Inter-
national Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR), 317–331.

10http://www.cs.utexas.edu/users/vl/papers/dpsm.pdf

Pearce, D. 1997. A new logical characterization of sta-
ble models and answer sets. In Dix, J.; Pereira, L.; and
Przymusinski, T., eds., Non-Monotonic Extensions of Logic
Programming (Lecture Notes in Artificial Intelligence 1216),
57–70. Springer.
Shanahan, M. 1997. Solving the Frame Problem: A Math-
ematical Investigation of the Common Sense Law of Inertia.
MIT Press.
Syrjänen, T. 2001. Omega-restricted logic programs. In
Proceedings of International Conference on Logic Program-
ming and Nonmonotonic Reasoning, 267–279.
Wang, Y.; You, J.-H.; Lin, F.; Yuan, L.-Y.; and Zhang, M.
2010. Weight constraint programs with evaluable functions.
Annals of Mathematics and Artificial Intelligence 60:341–
380.

31

