
JASP: A Framework for Integrating Answer Set Programming with Java
Onofrio Febbraro

DLVSystem s.r.l.
P.zza Vermicelli, Polo Tecnologico,

Rende, Italy

Giovanni Grasso
Oxford University, Department of Computer Science

Parks Road, Oxford, UK

Nicola Leone and Francesco Ricca
University of Calabria, Department of Mathematics

Rende, Italy

Abstract
Answer Set Programming (ASP) is a fully-declarative logic
programming paradigm, which has been proposed in the area
of knowledge representation and non-monotonic reasoning.
Nowadays, the formal properties of ASP are well-understood,
efficient ASP systems are available, and, recently, ASP has
been employed in a few industrial applications. However,
ASP technology is not mature for a successful exploitation
in industry yet; mainly because ASP technologies are not in-
tegrated in the well-assessed development processes and plat-
forms which are tailored for imperative/object-oriented pro-
gramming languages. In this paper we present a new pro-
gramming framework blending ASP with Java. The frame-
work is based on JASP , an hybrid language that trans-
parently supports a bilateral interaction between ASP and
Java. JASP specifications are compliant with the JPA stan-
dard to perfectly fit extensively-adopted enterprise applica-
tion technologies. The framework also encompasses an im-
plementation of JASP as a plug-in for the Eclipse platform,
called JDLV, which includes a compiler fromJASP to Java.
Moreover, we show a real-world application developed with
JASP and JDLV, which highlights the effectiveness of our
ASP–Java integration framework.

1 Introduction
Answer Set Programming (ASP) (Lifschitz 1999) is a fully-
declarative logic programming paradigm, which has been
proposed in the area of non-monotonic reasoning and logic
programming. The idea of ASP is to represent a given com-
putational problem by a logic program whose answer sets
correspond to solutions, and use a solver to find them (Lifs-
chitz 1999).

After many years of research, the formal properties of
ASP are well-understood; notably, ASP is expressive: it
can solve problems of complexity beyond NP (Eiter, Gott-
lob, and Mannila 1997). Moreover, the availability of robust
and efficient solvers (Leone et al. 2006; Simons, Niemelä,
and Soininen 2002; Lin and Zhao 2002; Babovich and
Maratea 2003; Gebser et al. 2007a; Janhunen et al. 2006;
Lierler 2005; Drescher et al. 2008; Gebser et al. 2007b;
Denecker et al. 2009; Calimeri et al. 2011b) made ASP an
effective powerful tool for advanced applications, and stim-
ulated the development of many interesting applications.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Among the others, ASP has been applied in the areas of Arti-
ficial Intelligence (Gebser et al. 2007b; Denecker et al. 2009;
Calimeri et al. 2011b; Balduccini et al. 2001; Baral and Gel-
fond 2000; Baral and Uyan 2001; Friedrich and Ivanchenko
2008; Franconi et al. 2001; Nogueira et al. 2001; Brewka
et al. 2006), Information Integration (Leone et al. 2005;
Bertossi, Hunter, and Schaub 2005), and Knowledge Man-
agement (Baral 2003; Bardadym 1996; Grasso et al. 2009;
2011). Recently, we have employed ASP for developing
some industrial application; in particular, we have used ASP
for building systems for workforce management (Ricca et
al. 2011b) and e-tourism (Ricca et al. 2010a).

The experience we have gained in developing real-world
ASP-based applications, on the one hand has confirmed the
viability of the industrial exploitation of ASP; but, on the
other hand, it has brought into light some practical obsta-
cles to the development of ASP-based software. The dif-
ficulties we faced within practice, have inspired the solu-
tions provided by the development-framework we present in
this paper, which is based on our on-the-field experience.
We have observed that there is a strong need of integrat-
ing ASP technologies (i.e., ASP programs and solvers) in
the well-assessed software-development processes and plat-
forms, which are tailored for imperative/object-oriented pro-
gramming languages. Indeed, the lesson we have learned
while building real-world ASP-based applications, confirms
that complex business-logic features can be developed in
ASP at a lower (implementation) price than in traditional
imperative languages, and the employment of ASP brings
many advantages from a Software Engineering viewpoint,
in flexibility, readability, extensibility, ease of maintenance,
etc. However, since ASP is not a full general-purpose lan-
guage, ASP programs must be embedded, at some point,
in systems components that are usually built by employing
imperative/object-oriented programming languages, e.g., for
developing visual user-interfaces.

A first step toward the solution of this problem was
the development of an Application Programming Interface
(API) (Ricca 2003; Gallucci and Ricca 2007), which offers
some methods for interacting with an ASP solver from an
embedding Java program. In that work, however, the bur-
den of the integration between ASP and Java is still in the
hands of the programmer, who must take care of the (of-
ten repetitive and) time-consuming development of ad-hoc

541

Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning

procedures that both control the execution of an external
solver and convert the application-data back and forth from
logic-based to object-oriented (Java) representations. Note
that, programming tools and workbenches basically offer no
specific support for this development task and, developers
are hindered from adopting a poorly-supported non stan-
dard technology. Another issue, which is particularly rele-
vant in the case of enterprise applications (Fowler 2002), is
the need of manipulating large databases, which store enter-
prise information or are often used to make persistent com-
plex object-oriented domain models.

This paper provides some contribution in this setting,
to deal with the above mentioned issues. In particular, we
present a new programming framework integrating ASP
with Java. The framework is based on an hybrid language,
called JASP , that transparently supports a bilateral inter-
action between ASP and Java. The programmer can simply
embed ASP code in a Java program without caring about
the interaction with the underlying ASP system. The log-
ical ASP program can access Java variables, and the an-
swer sets, resulting from the execution of the ASP code,
are automatically stored in Java objects, possibly popu-
lating Java collections, transparently. A key ingredient of
JASP is the mapping between (collections of) Java objects
and ASP facts. JASP shares with Object-Relational Map-
ping (ORM) frameworks, such as Hibernate and TopLink,
the structural issues of the impedance mismatch (Maier
1990; Keller, Jensen, and Agrawal 1993) problem. Indeed,
the data model underlying ASP systems is the relational
model (Codd 1970) as for RDBMSs. Thus, Java Objects
are mapped to logic facts (and vice versa) by adopting a
structural mapping strategy similar to the one employed by
ORM tools for retrieving/saving persistent objects from/to
relational databases. JASP supports both a default map-
ping strategy, which fits the most common programmers’
requirements, and custom ORM strategies that can be spec-
ified by the programmer for advanced needs. Importantly,
custom ORM specifications in JASP comply with the Java
Persistence API (JPA) (Oracle 2009), to perfectly suit enter-
prise application development standards. Moreover, JASP
supports direct access to data stored in a DBMS, since ORM
strategies can be shared with the persistent object manage-
ment layer, the new language also supports efficient ASP-
based reasoning on large repositories of persistent objects.

The framework also encompasses an implementation of
JASP as a plug-in for the Eclipse platform (Eclipse 2001),
called JDLV. JDLV provides an advanced platform for inte-
grating Java with DLV (Leone et al. 2006) – one of the most
popular ASP systems – and with DLVDB (Terracina et al.
2008) – the DLV variant working remotely on DBMS data
– that can be used when efficient dealing large amounts of
data, stored on DBMS, is a compelling requirement. JDLV
includes a JASP compiler generating Java code embed-
ding calls to DLV/DLVDB , offering a seamless integration
of ASP-based technologies within the most popular devel-
opment environments for Java.

We assessed our framework on the field, and we report in
this paper about an application developed with JASP and
JDLV, which highlights the effectiveness of our ASP–Java

integration platform.
In short, the contribution of the paper is the following.

•We propose JASP , a language blending ASP with Java.
- We formally define the syntax (in EBNF) and the
rewriting-based semantics of the JASP-core, along with
the Object-Relational Mapping, which is transparently
applied in JASP-core for the bilateral data-exchange Java-
ASP and vice versa.
- We specify the advanced features of the JASP lan-
guage, including the dynamic composition of JASP
modules, the access to databases, the JPA-compliant (Or-
acle 2009) mechanism for defining advanced mappings
between Java objects and ASP facts.

• We design and develop JDLV – an implementation of
JASP integrating Java with the ASP system DLV (Leone et
al. 2006), that we have incorporated as a plugin in the popu-
lar Eclipse platform. (Notaby, any other ASP system can be
easily supported.)

- We specify the advanced features of JDLV.
- We discuss the main issues underlying the JDLV
implementation, particularly focusing on Jdlvc, a com-
piler from JASP to Java code embedding calls to DLV,
which constitutes a key component of JDLV.
• We present a real-world application developed with
JASP and JDLV, confirming the usefulness of our frame-
work.

The remainder of this paper is organized as follows: After
a brief ASP introduction, we present, in turn, theJASP lan-
guage and the JDLVsystem. We then discuss related works,
and we finally draw the conclusion after showing an appli-
cation of our framework.

2 Answer Set Programming
Answer Set Programming (ASP) (Lifschitz 1999) is a truly-
declarative programming paradigm proposed in the area of
non-monotonic reasoning and logic programming. We re-
frain from reporting in this paper a formal description of
both syntax and semantics of ASP, rather we provide an in-
tuitive account of ASP as a tool for knowledge represen-
tation and reasoning by exploiting some examples. We as-
sume the reader familiar with logic programming conven-
tions, and refer to (Gelfond and Lifschitz 1991; Gelfond and
Leone 2002; Leone et al. 2006) for a formal description, and
to (Baral 2003) and (Gelfond and Leone 2002) for comple-
mentary introductory material on ASP.

In ASP, a rule is of the form Head :- Body., where
Body is a logic conjunction possibly involving negation,
and Head is either an atomic formula or a logic disjunc-
tion. A rule without head is usually referred to as an in-
tegrity constraint. If the body is empty, the rule is called a
fact. Rules are interpreted according to common sense prin-
ciples (Gelfond and Lifschitz 1991). Intuitively, a rule can
be read “Head is true if Body is true”; hence, facts repre-
sent things that are true (i.e., they model the basic knowledge
of a domain); whereas, constraints represent conditions that
must not hold in any solution. ASP follows a convention dat-
ing back to Prolog (Colmerauer and Roussel 1996), where
strings starting with uppercase letters denote logical vari-

542

1 class Graph {
private Set<Arc> arcs = new HashSet<Arc>();

3 private Set<String> nodes =
new HashSet<String>();

5 public void addNode(String id){
nodes.insert(id); }

7 public void addArc(String from, String to){
arcs.insert(new Arc(from,to)); }

9 public Set<Colored> compute3Coloring(){
Set<Colored> res = new HashSet<Colored>();

11 <# in=arcs::arc,nodes::node out=res::col
col(X,red) v col(X,green)

13 v col(X,blue) :– node(X).
:– col(X,C), col(Y,C), arc(X,Y).

15 #>
if_no_answerset { res = null; }

17 return res; }
}

19 public class Arc {
public String start; public String end; }

21 public class Colored {
public String node; public String color;}

Figure 1: A program solving the 3-Colorability problem.

NameMap ::= FieldAccess [::(PredName | @)]
InMapping ::= in = (NameMap)+
OutMapping ::= out = (NameMap)+
ModuleName ::= (Identifier)
SolverOption ::= .(StringLiteral)
BeginModule ::=
<# [ModuleName] InMapping OutMapping

EndModule ::= #> [SolverOption]
AnswerSetHandlers ::=

[for_each_answerset { Statement }]
[if_no_answerset { Statement }]

JASPModule ::= BeginModule
ASPProgram
EndModule
AnswerSetHandlers

BlockStatement ::=
LocalVariableDeclarationStatement |
ClassOrInterfaceDeclaration |
[Identifier:] Statement |
JASPModule

.

Figure 2: EBNF grammar for core JASP Program modules.

ables, while strings starting with lower case letters denote
constants.

As an example we present a solution of the Reachability
problem, which is a classical deductive database application.
Given a finite directed graph G = (V,A), the problem is to
compute all pairs of nodes (a, b) ∈ V × V such that b is
reachable from a through a nonempty sequence of arcs in A.
We represent G by the binary predicate arc(X,Y), where
a fact arc(a,b) means that G contains an arc from a to b,
i.e., (a, b) ∈ A. We model the solution as follows:

reachable(X,Y) :– arc(X,Y).
reachable(X,Y) :– arc(X,U), reachable(U,Y).

The first rule states that node Y is reachable from node X if
there is an arc in the graph from X to Y , while the second
rule states that node Y is reachable from node X if there
exists a node U such that U is directly reachable from X
(there is an arc from X to U) and Y is reachable from U .

More complex problems can be solved in a natural way in
ASP. Consider the following example, in which we solve
an NP-complete problem known as 3-Colorability. Given
a graph G = (V,A), 3-Colorability amounts to assign to
each node of G one of three colors (say, red, green, or blue)
such that adjacent nodes always have distinct colors. The in-
put graph G is represented by facts of the form node(v)
∀v ∈ V , and arc(a,b) ∀(a, b) ∈ A. The solutions is the
following ASP program made by only two rules:

col(X,red) v col(X,green) v col(X,blue)
:– node(X).

:– arc(X,Y), col(X,C), col(Y,C).

The disjunctive rule can be read “if X is a node then it is
either colored red or blue or green”. The constraint can
be read “discard solutions where an arc connects two nodes,
namely X and Y , which have both color C”. Answer sets
have the important property to be minimal w.r.t. subset in-
clusion, thus each vertex will be associated to precisely one
color in any answer set.

The expressivity of ASP and its declarative nature allows
one to solve complex problems; in the next section we intro-
duce a language that combines ASP with Java that eases the
usage of ASP in real-world systems.

3 The Core Fragment of JASP
In this section we describe the kernel fragment of the
JASP language, called JASP-core. JASP-core supports
the embedding of monolithic blocks of plain ASP code in
Java classes. The two-ways interaction with Java variables
is based on a specific object-relational mapping strategy,
which is able to cope with common usage scenarios. A num-
ber of advanced features are described in the next section.
Hereafter, we assume familiarity with the Java programming
language, and refer the reader to (Gosling, Joy, and Guy
L. Steele 2005; Oracle 2011; Alves-Foss 1999) for a formal
definition of both syntax and semantics of Java.
An Introductory Example. The JASP code is very nat-
ural and intuitive for a programmer skilled in both ASP
and Java; we introduce it by exploiting the example pro-
gram reported in Figure 1. In detail, we define a Graph
class with a method compute3Coloring(), which computes
a 3-coloring of the instance at hand. That method is im-
plemented by embedding the ASP program introduced in
the previous section. The ASP code is embedded as-it-is
in a module statement (lines 11-15) defining the body of
method compute3Coloring(). Fields (containing collections
of Java objects), such as arcs and nodes, are mapped to
corresponding predicates (Line 11) arc and node, respec-
tively. Moreover, the local variable res is mapped as out-
put variable corresponding to predicate col (Line 11). Intu-
itively, the meaning of this program is the following: when
compute3Coloring() is called, the set nodes is transformed
in a series of unary facts of the form node(x), one fact
for each string x in nodes; similarly, each instance of Arc
stored in the variable arcs is transformed in a binary fact.

543

The generated facts are added to the ASP program which
is evaluated (Line 15). In case no 3-coloring exists, variable
res is set to null (Line 16); else, when the first answer set
is computed, for each fact col contained in the solution a
new object of the class Colored is created and added to res,
which, in turn, is returned by the method.
EBNF Syntax. The syntax of JASP is a direct exten-
sion of the syntax of Java where JASP module statements
are allowed in Java block statements. Figure 2 reports the
EBNF specification of JASP modules, and the modified
BlockStatements production rule to be replaced in the Java
language specification defined in (Gosling, Joy, and Guy
L. Steele 2005) to obtain the JASP language specifica-
tion. (In addition, « <# »,« #> », «for_each_answerset »
and «if_no_answerset » are added to the set of language
keywords.) The grammar in Figure 2 uses essentially the
same BNF-style conventions adopted in (Gosling, Joy, and
Guy L. Steele 2005), where white spaces are ignored, non-
terminals are denoted in italic, and optional productions oc-
curring at most once are surrounded by square brackets in
italic. The only notational difference with the mentioned
Java language specification document concerns the way one
or more alternative productions for a non-terminal are spec-
ified: they are divided by the classical «|» symbol here; they
are reported on succeeding lines in (Gosling, Joy, and Guy
L. Steele 2005), instead. For any non-terminal that is not
defined in Figure 2 we refer the reader to the definition re-
ported in the Java language specification, with the excep-
tion of ASPProgram and PredName specifying the syntax of
ASP programs and predicate names, respectively. In princi-
ple, any ASP dialect can be plugged in a JASP core spec-
ification provided that variable names (matching FieldAc-
cess) that are not explicitly mapped to a predicate name are
also syntactically-valid predicate names (i.e. they also match
PredName). However, we pragmatically chose to be compli-
ant with the latest effort of language standardization in the
ASP community, that is the ASP-Core format of the third
ASP Competition (Calimeri et al. 2011b). Thus, a definition
of both PredName and ASPProgram can be found in (Cal-
imeri et al. 2011a). In the following, we specify how Java
objects and corresponding logic facts are reciprocally cre-
ated the ones from the others.
Object-Relational Mapping. For the sake of simplicity,
we limit our definitions to class names and fields, since other
language features (e.g., modifiers, methods) do not play a
role in object-relational mappings. We always assume that
Java statements are correct w.r.t. both syntax and typing
rules; and, it is given the set of admissible (Java) identifiers.
We consider only local scope name conventions, since the
definitions introduced in the following can be extended to
the general case considering fully qualified names.

A class (schema)K is a tupleK = 〈N,F〉, where N is the
identifier denoting the class name, and F = 〈f1, . . . , fm〉
(m ≥ 0) is the tuple of declared fields of N . A field fi
(0 ≤ i ≤ m) is a pair fi = (ni, ti) where ni is the field
name and ti is the field type. With a little abuse of notation
we refer to the type of a variable/field and to the name of the
corresponding class interchangeably. We denote by FN the
tuple of fields of class N , and by fN

i = (nN
i , tNi) the i-th

field of FN . The set of basic types B contains String and
all Java primitive types and corresponding boxing reference
types, e.g., both int and Integer are basic types. The set
of collection types C contains all valid capture conversions
of Collection <?>, Set<?> and List<?> and the correspond-
ing raw types, e.g., both Set<String> and Set are collection
types. The actual type argument of a collection c ∈ C is de-
noted by Actual(c), e.g., Actual(Set<String>) is String .

We now introduce the ORM strategy that is transparently
applied in JASP-core. (This is the default mapping strat-
egy for the full language). Any Java class that is mapped
to an ASP representation is required to have no-arguments
constructor, and non-recursive type definition (e.g., tree-like
structures are not admitted in JASP-core); moreover, both
array fields and collections fields are not allowed. Otherwise
the JASP-core program is not correct and, an implemen-
tation is required to issue an error. (Note that those limi-
tations can be overcome by exploiting JPA annotations in
the full language.) The JASP-core ORM strategy tries to
map one object per logic fact. The number of predicate argu-
ments needed for representing an object of type N , is given
by function A(·) defined as follows:

A(N) =


1 if N ∈ B
A(Actual(N)) if N ∈ C
0 if N 6∈C∪B ∧ |FN |=0∑

fN=(nN ,tN)A(tN) if |FN | > 0.

Basically, to represent a field of a basic type we need one
argument, to represent a collection we need as many argu-
ments as are needed by representing his actual type, and to
represent a field of a non-basic type we need as many ar-
guments as required for representing the basic fields of the
included type. Given a Java variable of name V and type
T , and a predicate name N the schema mapping function
M(N,V) associates to V a set of predicates containing a
predicate of name N and arity A(T).

For instance, the class Arc in the previous example con-
tains two fields of type String . In line 11 of Figure 1, the
variable arcs is mapped to predicate name arc; in this case,
M(arc, arcs) is applied associating the binary predicate
arc to variable arcs. The ASP-Core language, as in ASP,
does not support a predicates with variable arguments. In
the case in which the predicates employed in the rules of a
JASP-core module have a different arity w.r.t. the one pro-
duced by the mapping then the specification is not correct,
and an implementation is expected to issue an error.

ASP facts are created from Java objects by properly fill-
ing predicate attributes of the schema defined by M(·, ·).
Basic types are mapped to logic terms by exploiting the
toString () method, if the resulting string does not match
a symbolic constant or a number of ASP-Core it is sur-
rounded by quotes. Predicate attributes are filled according
to the declaration order of fields. The mapping can be in-
verted to obtain Java objects from ASP facts. Basically, a
new Java object is created for each collection of facts match-
ing the schema associated to an output variable mapping.
In the cases in which a basic attribute is filled, in the ASP
program, by a term that cannot be converted back to the ex-
pected Java type, a Java exception is thrown at runtime.

544

The mapping strategy defined above, in term of the
naming conventions for structural ORM patterns defined
in (Fowler 2002; Bauer and King 2006), corresponds to
mapping classes to relations with a compound key made of
all class attributes, combined with embedded value for one
to one associations; The choice of using a compound key
(made of all basic attributes) fits the usual way of repre-
senting information in ASP, e.g., in the example, one fact
models one node. Moreover, it ensures the safe creation of
new Java objects without requiring value invention in ASP
programs (Calimeri, Cozza, and Ianni 2007). Note that, this
strategy has the side effect of discarding both duplicates in a
Collection and the object position in a List , since ASP has
the “set semantics”. Specific ORM strategies are employed
by commercial tools to handle such a scenario in relational
databases (see (Bauer and King 2006)). Based on our ex-
perience, this strategy is sufficient to handle common use
cases; nonetheless custom ORM strategies can be specified
with JPA annotations in the full language, as described in
Section 4. We now provide the semantics of JASP .

Semantics. We first recall that, according to the syntax
of JASP-core, a JASP module J is a tuple J =
〈N, InMapping,OutMapping,ASPProgram,NoAns,
Ans〉 where N is the module name, InMapping and
OutMapping are sets of mappings, ASPProgram is the
embedded ASP program, and NoAns and Ans are the
optional Java statements that specify the handling code to be
executed either if the ASP program has no answer set or for
each answer set, respectively. Conventionally, the default
value for N is “module”. NoAns and Ans are assumed to
be empty if there is no Java code following the keywords
if_no_answerset and for_each_answerset, respectively. A
mapping is of the form V :: P where P is a predicate name
and V is a variable/field identifier. Moreover, V is a shortcut
for V :: V which is admitted iff V is also a valid predicate
name; and, V :: @ is a shortcut for V :: T where T is
the type of V . The semantics of a JASP-core program is
given by rewriting into a plain Java program. The rewriting
algorithm, which is detailed later on, is based on the class
Module defined as follows:

class Module {
StringBuilder program = ...
void buildFacts(String N, Object V) {

...}; // build facts from objects
boolean nextAnswerSet() {

...}; // asp solving process
Object createObject(String N, Object V) {

...}; // create objects from facts
};

where nextAnswerSet() implements either an ASP solv-
ing algorithm or a suitable call to an external ASP solver.
The method nextAnswerSet() stops returning true if an an-
swer set of the ASP specification stored in the program
field is found, and false otherwise. Subsequent calls to
nextAnswerSet() restart the search for next answer set.
nextAnswerSet() is expected to throw a runtime exception in
case of problems during the execution of the ASP program.
Method buildFacts () (resp. createObject) implements the

generation of facts from objects (resp. creation of objects
from facts) described previously.

A plain Java program P J corresponding to the meaning of
aJASP-core program P is obtained applying the algorithm
J to each JASP-core module statement occurring in P . In
detail, given a module J in input the algorithm J executes
the following steps:
• write a declaration statement of a local variable named N

of type Module and initialize it as new Module object;
• write a call to N.program.add() function passing the string

representation of ASPProgram;
• for each V :: P ∈ InMapping write a call to

N. buildFacts (P,V);
• write an if statement checking whether

N.nextAnswerSet() returns false;
• write NoAns statements in the then part;
• write a do while code block containing:

– for each V :: P ∈ OutMapping a statement assigning
to V the result of the call to createObject (P,V);

– a break statement if Ans is empty; or write NoAns
statements;

• write a call to nextAnswerSet() in the while condition.
We consider a JASP-core specification correct if the

program obtained by applying the above algorithm gener-
ates a correct Java program according with (Gosling, Joy,
and Guy L. Steele 2005).

As an example, the result of applying algorithm J to the
JASP-core Module of Figure 1 is:

Module module = new Module();
module.program.add("col(X,red) OR

col(X,green) OR col(X,blue) :- node(X).
:- col(X,C), col(Y,C), arc(X,Y).");

module.buildFacts("arc",arcs);
module.buildFacts("node",nodes);
if (! module.nextAnswerset()) {return null;}
else{ do{

res = (Set<Colored>)
module.createObject("col",res);

break;
}while(module.nextAnswerset());

}

Note that, if the for_each_answerset block is omitted, as in
our example, the JASP-core module basically ends when
the first model is found, otherwise the statements in the Ans
block are iteratively executed for each solution.

4 Advanced Features of the Language
In this section we describe the advanced features of JASP
conceived for easing the development of complex ap-
plications, including: syntactic enhancements, incremental
programs, database access, and structural mapping with
JPA (Oracle 2009) annotations. The JASP-core is ex-
tended in a natural way to include these additional features.
Named Non-positional Notation. JASP introduces an
alternative compact notation for logic atoms modeling Java
objects borrowed from (Ricca and Leone 2007), that can be
implemented by rewriting in plain ASP. For instance, class
Person has seven fields but we want to select the names of
those how are taller than 2 meters, we write the rule

545

Annotation Summary
@Entity Indicates a class with mapping.

Class name is the predicated name.
@Table (name="pred-
name")

In conjunction with @Entity, to re-
name the default predicate name.

@Column Identifies a class member, to be in-
cluded in the mapping.

@Id Marks a class member as identifier
(key) of the relative table.

@OneToMany
@ManyToOne
@ManyToMany
@OneToOne

On class members to denote associ-
ations multiplicity

@JoinTable
(name="pred-name")

In conjunction with @OneToMany
or @ManyToOne to specify a map-
ping realized through an associative
predicate

Figure 3: Main JPA Annotations.

1 public void createTeam(boolean forceMixG){
2 List<Person> people = loadPeople();

<#+ (m1) in=people
4 inTeam(X,G) v outTeam(X,G) :–

people(name: X, gender:G).
6 :– #count{X: inTeam(X,G)} >5.

#>
8 if(forceMixG){

<#+ (m1)
10 :– inTeam(X,GX), not inTeam(Y, GY),

people(name: Y, gender: GY), GX != GY.
12 #>}

Set<Team> res = new HashSet<Team >();
14 <# (m1) out=res::inTeam #>

for_each_answerset {
16 //do something with res

}}

Figure 4: Dynamic Module Composition and Invocation.

veryTall(X) :– person(name:X,height:H), H>2.

instead of
veryTall(X) :– person(X,_,_,_,_,H,_), H>2.

This notation improves readability, and is less error-prone.

JPA Mappings. Real-world applications involve complex
data models, that may require custom ORM mapping strate-
gies (e.g., to deal with legacy data). Instead of reinvent-
ing the wheel, JASP spouses the work done in the field
ORM (Fowler 2002; Bauer and King 2006), and complies
with enterprise application development standards for cus-
tomizing the JASP-core mapping strategy. JASP sup-
ports JPA (Oracle 2009) standard Java annotations for defin-
ing how Java classes map to relations (logic predicates). Ta-
ble 3 summarizes the most common JPA annotations em-
ployed in the paper. Note that, although ORM frameworks
address different behavioral problems w.r.t. JASP (e.g, ob-
ject persistence, transaction control, etc.), they are based
on a mechanisms to describe/map Java classes into rela-
tional data. The full description of JPA’s mapping features
is out of the scope of this paper (see (Bauer and King 2006;
Oracle 2009) for a full account); in the next section, exam-
ples and more details on JPA are provided.

An important issue to be considered in JPA mappings is
the usage of surrogate keys that are generated values. Persis-
tence frameworks generate new identifiers according to cus-
tom algorithms when persistent objects are saved, whereas
JASP might require to create new ids also when answer
sets are transformed in objects. In JASP , it is up to the pro-
grammer ensuring that objects have a valid id before being
transformed into facts, whereas, for the other direction, there
are two possible strategies: (i) embed an ASP dialect sup-
porting value invention (Calimeri, Cozza, and Ianni 2007),
so that new ids can be created in the ASP part, e.g., ex-
ploiting an id function symbol holding all basic attributes.
In this case, the programmer has to be aware of termination
problems; (ii) give the programmer the possibility of not
specifying a value for the id field by exploiting either non-
positional notation or a placeholder term “ generatedvalue ”,
so that the buildFacts() procedure becomes in charge of cre-
ating new ids. The id generation function can be also shared

with the actual persistence framework. The latter is the ap-
proach currently supported by our implementation. We also
require that the generated id fields cannot be joined in rule
bodies (in this case, the system issues a warning), which is a
compromise for overcoming the fact that ASP traditionally
is a function-free language. Note that, this issue does not oc-
cur in the JASP-core mapping strategy, since the key is the
natural one containing all predicate attributes.

Dynamic Composition of JASP Modules. JASP-core
modules are monolithic blocks of ASP rules forming a pro-
gram, that are executed "in-place". To give more flexibility,
we introduced module increments, that enable building ASP
programs incrementally throughout the application. Syntac-
tically, module increments start by «<+ », and, semanti-
cally, correspond to accumulating additional rules and facts
to the (possibly new) module at hand, without triggering
the solving process. Since modules are interpreted as Java
variables/fields, the usual Java scope rules apply to mod-
ule increments. As an example consider the snippet in Fig-
ure 4. Lines 3-7 define incrementally “m1”, that generates all
teams of at most five people. In line 8 we check a boolean
flag that indicates whether teams composed only of people
of same gender are allowed, an additional constraint is added
to “m1” only in this case (lines 10-12). Finally, in line 14 the
module is executed.

Accessing the Host Environment. JASP allows the pro-
grammer to include arbitrary Java expressions in logic rules
that are evaluated at runtime. Syntactically JASP uses the
operator ${javaExpr} that is expanded in the string obtained
evaluating the Java expression «""+javaExpr » correspond-
ing to a call to the method toString () . For instance,

for (int i = 0; i<10; i++)
<#+ (dyn)

a(${i},${i+1}). #>

dynamically adds ten facts to module “dyn” (i.e., a(1,2).
a(2,3),...a(10,11)).

Navigating Objects Associations. Real-world applica-
tions may involve several associations between domain en-
tities. Navigating associations in ASP rules correspond to

546

writing several joins. JASP offers the possibility to navi-
gates associations directly by a dot notation. Consider a class
AirCompany associated to a list of flights (Flight); each
flight has a crew and list of passengers (both Person), and
a person is associated to a Passport . From a variable b of
type AirCompany, we navigate to passengers passports as:

<#+ (m2) in=b
p(N):–[b.flights.passengers.passport](N).#>

JASP allows to navigate mapped associations at any level
of nesting. The advantage of this notation is two-fold. Users
can leverage a compact way to write rules and the resulting
program is more suitable for optimization at the compiler
level. Indeed, a syntactic analysis of the program is sufficient
to build facts for only those objects/associations that are ac-
tually accessed by the ASP program (e.g., in our example
only passengers are actually accessed, and creation of facts
corresponding to crew and flight objects can be avoided).
Accessing Databases. JASP supports data intensive
applications enabling reasoning directly on database ta-
bles. Those features are handled in our implementa-
tion by means of DLVDB , an ASP solver that executes
the logic program directly on a DBMS. Database ta-
bles are mapped to predicates, by using the mapping
statements fromTable=tableName@dburl::predicate (resp.
toTable), for read (resp. write) access. For example:

<# fromTable=Connect@
jdbc:myDriver:db-url::arc
out=reaches

reachable(X,Y) :– arc(X,Y).
reachable(X,Y) :– arc(X,U), reachable(U,Y).
reaches(Y) :– reachable("Rome",Y). #>

maps the table Connect to the predicate arc, and queries the
database for cities reachable from Rome. The whole com-
putation is expected to be carried out on the database. Note
that this query cannot be written in SQL. Moreover, since
JASP can be used in combination with an ORM persis-
tence framework, it allows read-only access to the host-
ing database tables of persistent objects through a state-
ment like fromDB=class−name::predicate. For instance,
fromDB=Person::person maps the database table for the an-
notated class Person to the predicate table.

5 System Description
We have implemented JASP in a pro-
totype development system, available at
http : // www.dlvsystem.com/dlvsystem/index .php/JDLV.
This system consists of Jdlvc, a compiler to generate plain
Java classes from JASP files, complemented with JDLV ,
a plug-in for the popular Eclipse platform (Eclipse 2001).
The JDLV plugin extends Eclipse with the possibility of
editing files in the JASP syntax in a friendly environment
featuring: (i) automatic completion for assisted editing
logic program rules; (ii) dynamic code checking and errors
highlighting (producing descriptive error messages and
warnings); (iii) outline view, a visual representation and
indexing JASP statements, and (iv) automatic generation
of Java code, by means of our Jdlvc compiler.

Given JASP files as input, the Jdlvc compiler produces
plain Java classes which manage the generation of logic pro-
grams and control statements for the underlying ASP solver.
Jdlvc is written in Java, and uses Java Reflection to ana-
lyze mappings (compile-time) and actual object types (run-
time). An enhanced version of the DLV Java Wrapper li-
brary (Ricca 2003) is used to implement the solving pro-
cess trough a call to a the DLV system (Leone et al. 2006).
Jdlvc’s compilation consists of fours steps: (1) input pars-
ing and data structures creation; (2) predicate schemas cre-
ation and validation; generation of proper Java statements
for (3) managing logic program creation, and (4) for control-
ling ASP-solver execution and output-handling procedures.

For (1) we employ a JavaCC-generated parser for JASP .
Our parser is compliant with Java6 and our JASP im-
plementation supports both the format of the Second ASP
Competition (Calimeri et al. 2011b), and the richer DLV
dialect. In (2) Jdlvc analyzes the mapping annotations of
all Java classes input of some JASP module, to com-
pute the relative predicate schemas and input sources (e.g.,
database tables or in-memory objects). Although JPA en-
ables any complex mapping, currently Jdlvc supports the
most common mapping annotations reported in Table 3. In
(3) Jdlvc replaces JASP modules with proper Java state-
ments that build the embedded logic programs. At this
stage, module are first validated (e.g., unsafe rules, mis-
match predicate-mapping), and rules using non-positional
notation are rewritten into plain ASP (on the lines of (Ricca
and Leone 2007)). In case of direct access to database ta-
bles, Jdlvc produces the needed DLVDB-specific mapping
files (Terracina et al. 2008). Last, in (4) , Jdlvc produces Java
statements to call the ASP solver along with the correspond-
ing output handling methods.

Performance Evaluation. We have evaluated Jdlvc to
asses both (a) performance and (b) efficiency of the com-
piled ASP programs. Regarding (a) we observed that
Jdlvc compiler is very efficient: it takes < 5s for a huge
JASP file of 188938 lines of code (7.4MB large), and
< 70ms for common cases (on a laptop equipped with
a 2.40GHz Intel TM Core i5 CPU). Concerning (b) we
observed that there is no noticeable difference compar-
ing the execution-time of compiled code with manually-
encoded equivalent solutions. (More details are available at
http://www.mat.unical.it/ ricca/downloads/jdlv-kr.zip).

6 A Real-World Use-Case with JASP
We describe the implementation of a real-world industrial
application with JASP . This is a follow-up of a success-
ful ASP-based system described in (Ricca et al. 2011b) and
commissioned by the ICO BLG company. ICO BLG oper-
ates in the international seaport of Gioia Tauro, which is the
largest transshipment terminal of the Mediterranean coast.
We have been able to fully integrate our system in a complex
scenario of ERPs and decision support systems. An exhaus-
tive description of system requirements and employed ASP
encodings is out of the scope of this paper (it can be found
in (Ricca et al. 2011b)); rather, we briefly introduce one of
the application use-cases and focus on the development steps
to showcase JASP’s peculiarities.

547

@Entity public class Employee{
@Id Integer id;

String name;
@OneToMany
@JoinTable(name="hasSkill")

Set<Skill> skills;
}
@Entity
public class AllocationDiary{
@Id Integer id;
@OneToOne Employee employee;
@OneToOne Skill skill;

Date date; }

@Entity
public class Allocation{
@Id Integer id;
@OneToOne Employee employee;
@OneToOne Shift shift;
@OneToOne Skill skill; }
@Entity public class Calendar{
@Id Integer id;
@OneToOne Employee employee;

Date date;
Boolean isAbsent;
Integer dayHours,weekHours,

weekOvertime; }

@Entity public class Skill{
@Id String name;

Boolean isCrucial,isHeavy;
}
@Entity public class Shift{
@Id Integer id;

Date date;
Integer duration;

@OneToMany
Map<Skill,Integer> neededEmp;
@OneToMany
@JoinTable(name="excluded")
Set<Employee> excluded; }

Figure 5: Java Classes and JPA Mappings.

Workforce Management. A crucial management task for
ICO BLG is team building: the problem of properly allocat-
ing teams of employees for serving cargo ships mooring in
the port. To accomplish this task, several constraints have to
be satisfied concerning human resources management, such
as allocation of the employees with the appropriate skills,
fair distribution of the working load, guaranteed coverage
of crucial skills, and turnover of the heavy/dangerous roles.
Non-optimal resource allocations may cause delays and con-
sequent pecuniary sanctions.

Data Model and JPA Mappings. The first steps of the
development are the design of the Java classes modeling the
domain, and their object relational mapping for JASP and
the persistence layer. Figure 5 reports the Java classes of the
application involved in the team building use-case annotated
with JPA mappings. The class Employee, having fields id
and name, has a one-to-may association with class Skill ;
each skill has a name as identifier, and two boolean fields
that describe whether the skill is crucial (i.e, owned by a few
employees) or heavy (i.e, dangerous and exposed to risks),
respectively. Working shifts are modeled by the homonym
class that, besides id, date and duration, contains the num-
ber of people needed per skill, and the list of employees
to be excluded for this shift for a management decision.
Class Calendar models the timesheet of each employee, con-
sidering absences, worked hours and overtime for a week.
Class AllocationDiary stores the history of allocations of
an employee in a given role on a certain date. Finally, class
Allocation is used to model the output of the reasoning task,
and represents the allocation of an employee to a certain
shift in a particular role. The relational schema produced by
the JPA mapping is the following: Employee(id, name), has-
Skill(idEmployee, skillName), for class Employee; Shift(id,
date, duration), neededEmployee(idShift, skillName, value),
and excluded(idShift, idEmployee) for Shift class; the re-
maing classes have no associations and their schema is di-
rectly derived from the properties. E.g., for Skill a predicate
schema Skill(name, isCrucial, isHeavy) is produced.

Encoding in JASP . The implementation of our use-
case is reported in Figure 6. It shows the Java method
computeTeam(), of the Reasoning class (details are omit-
ted for space reasons), which, given a shift s and a set of
employees e, embeds a JASP module to compute an al-
location for s. In our description, we intentionally omit the

encoding details, as out of the scope of this paper and fully
described in (Ricca et al. 2011b). Instead, we focus on show-
ing how straight and natural is the implementation of this
procedure in JASP , and how it perfectly suits the develop-
ment environment by seamlessly integrating the persistence
layer of the application (Hibernate, JPA compliant).

In Figure 6 Line 3, we prepare the teams variable to
be filled with the result of the computation. Then we
start the teambuilding module, retrieving the Calendar and
AllocationDiary relations directly from the DBMS used for
object persistence (Line 5-6) with a fromDB mapping (re-
call that, :: @ indicates to use the class name as predicate
name). Then, we map s and e to predicates employee and
shift, respectively. Moreover, we indicate that the out-
put is built from the predicate assign, properly mapped to
the variable teams (Line 7). Accessing directly the database
table, we avoid its materialization in memory, which can
be inefficient being calendar and historical allocations very
large tables. In Line 9 begins the ASP program solving
the problem according to the guess&check programming
methodology. The disjunctive rule guesses, in the predicate
assign (i.e., the output one), the selection of employees
that canBeAssigned to the shift in appropriate roles. The
rule in Line 13 computes those employees who can be as-
signed to the team, such as those having skills necessary
to the shift at hand, but not absent that day and not ex-
ceeding the working time limit. Note that, the definition of
canBeAssigned makes use of JASP’s special syntax
to navigate associations (Line 14-15) to access employees’
skills and needed skills for the shift, without writing the cor-
responding joins. Absent employees are computed at line 19,
exploiting the calendar table. This rule extensively uses the
named notation for predicates, using class properties names.

Employees to be allocated must respect daily and weekly
working time limits, as well as a maximum amount of over-
time per week. At line 22 we switch to Java, where we
use a for loop to dynamically compose the definition of
exceedTime. Indeed, we use the same “template” rule
which is instantiated by the environment access operator
(${ max[i]}) to deal with daily, weakly and overtime our. In
each iteration we inject only the parametric part (calendar’s
column and limit), provided as an array of strings.

After specifying the guess part, we write the “checking
part” of the encoding introducing constraints to filter out un-

548

wanted allocations. For each shift, we impose: (i) the cor-
rect number of allocated employees per skill, (ii) that an em-
ployee has only one role in a team, and (iii) the same em-
ployee cannot be allocated on more coincident shifts. Even-
tually, the last two constraints are specified to: (iv) apply a
“round-robin like” policy to equally distribute assignments
to heavy roles and to (v) guarantee a fair distribution of
the weekly workload among employees These last two con-
straints ensure that (i) the employee who less recently was
assigned to a certain role, must be preferred to the others
candidates, and (ii) among two employees to be allocated
on a shift, it is preferred the one who has worked less hours
during the week, if the gap is greater than a fixed threshold
(i.e., maxGap).

7 Related Work and Conclusion
Languages combining together different approaches to solv-
ing programming problems are known in the literature as
multi-paradigm languages (Hailpern 1986; Placer 1991)
(See (Spinellis 1994) for a comparative analysis.) Focusing
on the combination of declarative and imperative paradigms,
the proposals range from API-based approaches, such as
JSetL (Rossi, Panegai, and Poleo 2007), ILOG (ILOG
2011), Jess (JESS 2011); to hybrid languages, such as Alma-
0 (Apt et al. 1998), DJ (Zhou 1999), Oz (Roy 2005), and
PROVA (Kozlenkov et al. 2006). A punctual comparison
is made difficult by the number of language-specific fea-
tures; in general, JASP , like other hybrid languages, offers
a more straight and natural approach to programming than
the API-based methods, not requiring to learn a new API.
Compared with the second family of proposals, a distinc-
tive feature of JASP is the clean separation between the
two integrated programming paradigms interacting through
a standard ORM interface. JASP introduces minimal syn-
tax extensions both to Java and ASP, thus its specifications
are both easy to learn by programmers and easier to inte-
grate with other existing Java technologies. The integration
issue being one of the drawbacks of existing multi-paradigm
proposals as argued in (Rossi, Panegai, and Poleo 2007).

Works focusing on the combination of ASP and Java,
are the definition of some ASP APIs (Ricca 2003; Gallucci
and Ricca 2007) and the recent proposal of an hybrid lan-
guage (Oetsch, Puhrer, and Tompits 2011a). The limit of
the formers have been already discussed in the Introduction.
Concerning the latter, which has been independently devel-
oped in parallel to JASP , observe that it is based on a rad-
ically different strategy for the interaction with Java, where
Java methods (including constructors) can be called by ex-
ploiting special atoms in ASP rules. This is very interesting
idea that we plan to investigate for future JASP extensions.

Systems related to JDLV were proposed in the field of
software engineering for ASP (De Vos and Schaub 2007;
2009)), which include complete IDEs (Febbraro, Reale, and
Ricca 2011; Oetsch, Pührer, and Tompits 2011b), and spe-
cific programming tools (Brain and De Vos 2005; El-Khatib,
Pontelli, and Son 2005; Oetsch et al. 2011; Brain et al.
2007). Comparing JDLVwith state-of-the-art IDEs for ASP,
such as ASPIDE (Febbraro, Reale, and Ricca 2011) and
SeaLion (Oetsch, Pührer, and Tompits 2011b), we observe

1 public Allocation computeTeam(Shift s,
2 Set<Employee> e, Integer maxGap){
Set<Allocation> teams = Sets.newHashSet();

4 <#+(teambuilding)
fromDB=AllocationDiary::lastAllocation,

6 Calendar:@
in=s::shift, e::employee

8 out=teams::assign
assign(employee:Em, shift:Sh, skill:Sk)

10 v nAssign(Em,Sh,Sk) :–
canBeAssigned(Em,Sh,Sk).

12

canBeAssigned(Em,Sh,Sk) :–
14 [e.hasSkill](Em,Sk),

[s.neededEmp](Sh,Sk,_),
16 not exceedTimeLimit(Em,Sh),

not absent(Em,Sh), not [s.excluded](Sh,Em).
18

absent(E,Sh) :– shift(id:Sh, date:D),
20 Calendar(date:D, employee:E, absent:true).
#>

22 String[] max = {"dHours","12","wHours","36",
"wOvertime","10"};

24 for(int i=0;i<max.lenght;i+=2){
<#+(teambuilding)

26 exceedTime(E,Sh) :– shift(Sh,D,Dur),
Calendar(date:D, employee:E, ${max[i]}:M),

28 Dur+M>${max[i+1]}.
#>}

30 <#(teambuilding)
:– [s.neededEmp](Sh,Sk,EmpNum),

32 #count{Em: assign(Em,Sh,Sk)} != EmpNum.

34 :– assign(_,Em,Sh,Sk1),
assign(_,Em,Sh,Sk2), Sk1 != Sk2.

36 :– assign(_,Em,Sh1,_), assign(_,Em,Sh2,_),
Sh1 != Sh2.

38

prefByTurnover(Em1,Em2,Sh,Sk) :–
40 skill(name:Sk,isHeavy:true),

canBeAssigned(Em1,Sh,Sk),
42 canBeAssigned(Em2,Sh,Sk),

lastAllocation(Em1,Sk,Date1),
44 lastAllocation(Em2,Sk,Date2), Date1<Date2.

46 :– prefByTurnover(Em1,Em2,Sh,Sk),
assign(_,Em2,Sh,Sk),

48 not assign(employee:Em1,shift:Sh,skill:Sk).

50 prefByFairness(Em1,Em2,Sh,Sk) :–
canBeAssigned(Em1,Sh,Sk),

52 canBeAssigned(Em2,Sh,Sk), shift(Sh,D,_),
Calendar(date:D, employee:Em1, wHours:Wh1),

54 Calendar(date:D, employee:Em2, wHours:Wh2),
Wh1 + ${MaxGap} < Wh2.

56

:– prefByFairness(Em1,Em2,Sh,Sk),
58 assign(_,Em2,Sh,Sk),

not assign(employee:Em1,shift:Sh,skill:Sk).
60 #>
if_no_answerset

62 {throw new Exception("No allocation found");}
return teams;

Figure 6: Team Building with JASP .

549

that JDLV offers less advanced ASP-program editing fea-
tures. Though, none of the mentioned IDEs support the inte-
gration of ASP with imperative/object-oriented languages.

Concluding, this paper presents a framework for integrat-
ing Java and ASP. ASP code can be in-lined within Java pro-
grams, and the ASP–Java interaction relies on well-assessed
ORM strategies. A plugin for the Eclipse platform achieves
the seamless integration of ASP with Java development en-
vironments. The efficacy of our approach is witnessed by the
straight development of a real-world application.

Ongoing work concerns the application of the JASP ap-
proach to other object-oriented languages (such as C++).
Moreover, we are studying techniques for efficient compi-
lation of JASP in Java, and we are extending the editing
features of JDLV to improve our development platform.

Acknowledgments. This work has been partially sup-
ported by the Calabrian Region under PIA (Pacchetti In-
tegrati di Agevolazione industria, artigianato e servizi)
project DLVSYSTEM approved in BURC n. 20 parte III del
15/05/2009 - DR n. 7373 del 06/05/2009.

Giovanni Grasso has received funding from the European
Research Council under the European Community’s Sev-
enth Framework Programme (FP7/2007–2013) / ERC grant
agreement DIADEM, no. 246858.

References
Alves-Foss, J., ed. 1999. Formal Syntax and Semantics of
Java, LNCS 1523. Springer.
Apt, K. R.; Brunekreef, J.; Partington, V.; and Schaerf, A.
1998. Alma-O: An Imperative Language That Supports
Declarative Programming. ACM TPLS 20(5):1014–1066.
Babovich, Y., and Maratea, M. 2003. Cmodels-2: Sat-
based answer sets solver enhanced to non-tight programs.
http : // www.cs.utexas.edu/users / tag /cmodels.html.
Balduccini, M.; Gelfond, M.; Watson, R.; and Nogeira, M.
2001. The USA-Advisor: A Case Study in Answer Set Plan-
ning. In LPNMR-01, LNCS 2173, 439–442. Springer.
Baral, C., and Gelfond, M. 2000. Reasoning Agents in
Dynamic Domains. In Logic-Based Artificial Intelligence.
Kluwer. 257–279.
Baral, C., and Uyan, C. 2001. Declarative Specification and
Solution of Combinatorial Auctions Using Logic Program-
ming. In LPNMR-01, LNCS 2173, 186–199. Springer.
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.
Bardadym, V. A. 1996. Computer-Aided School and Uni-
versity Timetabling: The New Wave. In PTAT’95, LNCS
1153, 22–45. Springer.
Bauer, C., and King, G., eds. 2006. Java Persistence with
Hibernate. Manning.
Bertossi, L. E.; Hunter, A.; and Schaub, T., eds. 2005. In-
consistency Tolerance, LNCS 3300. Springer.
Brain, M., and De Vos, M. 2005. Debugging Logic Pro-
grams under the Answer Set Semantics. In ASP’05. CEUR.

Brain, M.; Gebser, M.; Pührer, J.; Schaub, T.; Tompits, H.;
and Woltran, S. 2007. Debugging asp programs by means
of asp. In LPNMR’07, LNCS 4483, 31–43. Springer.
Brewka, G.; Coradeschi, S.; Perini, A.; and Traverso, P., eds.
2006. ECAI 2006, Including PAIS 2006, volume 141 of
FAIS. IOS Press.
Calimeri, F.; Ianni, G.; Ricca, F.; and 3rd ASP Competition
Organizing Committee, T. 2011a. Third ASP Competi-
tion File and language formats. TR, University of Calabria.
www.mat.unical. it /aspcomp2011/files / latestSpec .pdf.
Calimeri, F.; Ianni, G.; Ricca, F.; Alviano, M.; Bria, A.;
Catalano, G.; Cozza, S.; Faber, W.; Febbraro, O.; Leone,
N.; Manna, M.; Martello, A.; Panetta, C.; Perri, S.; Reale,
K.; Santoro, M. C.; Sirianni, M.; Terracina, G.; and Veltri,
P. 2011b. The Third Answer Set Programming Competi-
tion: Preliminary Report of the System Competition Track.
In LPNMR, LNCS 6645, 388–403. Springer.
Calimeri, F.; Cozza, S.; and Ianni, G. 2007. External sources
of knowledge and value invention in logic programming.
AMAI 50(3–4):333–361. Elsevier.
Codd, E. F. 1970. A relational model of data for large shared
data banks. Communications of the ACM 13(6):377–387.
Colmerauer, A., and Roussel, P. 1996. The Birth of Prolog.
New York, USA. ACM.
De Vos, M., and Schaub, T., eds. 2007. SEA’07: Soft-
ware Engineering for Answer Set Programming, volume
281. CEUR. Online at http : // CEUR−WS.org/Vol−281/.
De Vos, M., and Schaub, T., eds. 2009. SEA’09: Soft-
ware Engineering for Answer Set Programming, volume
546. CEUR. Online at http : // CEUR−WS.org/Vol−546/.
Denecker, M.; Vennekens, J.; Bond, S.; Gebser, M.; and
Truszczynski, M. 2009. The Second Answer Set Program-
ming Competition. In LPNMR, LNCS 5753, 637–654.
Drescher, C.; Gebser, M.; Grote, T.; Kaufmann, B.; König,
A.; Ostrowski, M.; and Schaub, T. 2008. Conflict-Driven
Disjunctive Answer Set Solving. In KR 2008, 422–432.
AAAI Press.
Eclipse. from 2001. Eclipse. http : // www.eclipse.org/ .
Eiter, T.; Gottlob, G.; and Mannila, H. 1997. Disjunctive
Datalog. ACM TODS 22(3):364–418.
El-Khatib, O.; Pontelli, E.; and Son, T. C. 2005. Justification
and debugging of answer set programs in ASP. In Proc. of
Automated Debugging. California, USA. ACM.
Febbraro, O.; Reale, K.; and Ricca, F. 2011. Aspide: In-
tegrated development environment for answer set program-
ming. In LPNMR 2011, LNCS 6645, 317–330. Springer.
Fowler, M. 2002. Patterns of Enterprise Application Archi-
tecture. Addison-Wesley.
Franconi, E.; Palma, A. L.; Leone, N.; Perri, S.; and Scar-
cello, F. 2001. Census Data Repair: a Challenging Appli-
cation of Disjunctive Logic Programming. In LPAR 2001,
LNCS 2250, 561–578. Springer.
Friedrich, G., and Ivanchenko, V. 2008. Diagnosis from
first principles for workflow executions. TR, Alpen Adria
University, Applied Informatics, Austria.

550

Gallucci, L., and Ricca, F. 2007. Visual Querying and Appli-
cation Programming Interface for an ASP-based Ontology
Language. In SEA 07, 56–70. CEUR.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007a. Conflict-driven answer set solving. In IJCAI 2007,
386–392.
Gebser, M.; Liu, L.; Namasivayam, G.; Neumann, A.;
Schaub, T.; and Truszczyński, M. 2007b. The first answer
set programming system competition. In LPNMR’07, LNCS
4483, 3–17. Springer.
Gelfond, M., and Leone, N. 2002. Logic Programming and
Knowledge Representation – the A-Prolog perspective . AI
138(1–2):3–38.
Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases. New Genera-
tion Computing 9:365–385. Springer.
Gosling, J.; Joy, B.; and Guy L. Steele, G. B., eds. 2005.
The Java Language Specification, Third Edition. Addison-
Wesley.
Grasso, G.; Iiritano, S.; Leone, N.; and Ricca, F. 2009. Some
DLV Applications for Knowledge Management. In LPNMR
2009, LNCS 5753, 591–597. Springer.
Grasso, G.; Leone, N.; Manna, M.; and Ricca, F. 2011. ASP
at work: spin-off and applications of the DLV system. In
LPNMR 2011, LNCS 6565, 432–451. Springer.
Hailpern, B. 1986. Multiparadigm Languages and Environ-
ments - Editor’s Introduction. IEEE Software 3(1):6–9.
ILOG. 2011. ILOG. http : // ilog .com/products/ .
Janhunen, T.; Niemelä, I.; Seipel, D.; Simons, P.; and You,
J.-H. 2006. Unfolding Partiality and Disjunctions in Stable
Model Semantics. ACM TOCL 7(1):1–37.
JESS. 2011. JESS. http : // www.jessrules .com/.
Keller, A. M.; Jensen, R.; and Agrawal, S. 1993. Persis-
tence software: Bridging object-oriented programming and
relational databases. In Proc. of ACM SIGMOD 1993, 523–
528. ACM.
Kozlenkov, A.; Peñaloza, R.; Nigam, V.; Royer, L.; Dawel-
bait, G.; and Schroeder, M. 2006. Prova: Rule-Based Java
Scripting for Distributed Web Applications: A Case Study in
Bioinformatics. In EDBT, LNCS 4254, 899–908. Springer.
Leone, N.; Gottlob, G.; Rosati, R.; Eiter, T.; Faber, W.; Fink,
M.; Greco, G.; Ianni, G.; Kałka, E.; Lembo, D.; Lenzerini,
M.; Lio, V.; Nowicki, B.; Ruzzi, M.; Staniszkis, W.; and Ter-
racina, G. 2005. The INFOMIX System for Advanced In-
tegration of Incomplete and Inconsistent Data. In SIGMOD
2005, 915–917. ACM.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri,
S.; and Scarcello, F. 2006. The DLV System for Knowledge
Representation and Reasoning. ACM TOCL 7(3):499–562.
Lierler, Y. 2005. Disjunctive Answer Set Programming
via Satisfiability. In LPNMR’05, LNCS 3662, 447–451.
Springer.
Lifschitz, V. 1999. Answer Set Planning. ICLP’99, 23–37.
Lin, F., and Zhao, Y. 2002. ASSAT: Computing Answer Sets

of a Logic Program by SAT Solvers. In AAAI-2002. AAAI
Press / MIT Press.
Maier, D. 1990. Representing database programs as ob-
jects. In Advances in database programming languages.
ACM. 377–386.
Nogueira, M.; Balduccini, M.; Gelfond, M.; Watson, R.; and
Barry, M. 2001. An A-Prolog Decision Support System for
the Space Shuttle. In PADL 2001, LNCS 1990, 169–183.
Springer.
Oetsch, J.; Pührer, J.; Seidl, M.; Tompits, H.; and Zwickl, P.
2011. Videas: A development tool for answer-set programs
based on model-driven engineering technology. In LPNMR
2011, LNCS 6645, 382–387. Springer.
Oetsch, J.; Puhrer, J.; and Tompits, H. 2011a. Extend-
ing Object-Oriented Languages by Declarative Specifica-
tions of Complex Objects using Answer-Set Programming.
TR cs.AI/1112.0922, arXiv.org.
Oetsch, J.; Pührer, J.; and Tompits, H. 2011b. The SeaLion
has Landed: An IDE for Answer-Set Programming. TR,
Technische Universität Wien, Austria.
Oracle. 2009. JSR 317: JavaTM Persistence 2.0.
http : // jcp .org/en/ jsr / detail ?id=317.
Oracle. 2011. JSR 901: JavaTM Language Specification.
http : // jcp .org/en/ jsr / detail ?id=901.
Placer, J. 1991. Multiparadigm research: a new direction of
language design. SIGPLAN Not. 26(3):9–17.
Ricca, F., and Leone, N. 2007. Disjunctive Logic Pro-
gramming with types and objects: The DLV+ System. JAL
5(3):545–573. Elsevier.
Ricca, F.; Dimasi, A.; Grasso, G.; Ielpa, S. M.; Iiritano, S.;
Manna, M.; and Leone, N. 2010a. A Logic-Based System
for e-Tourism. Fundamenta Informaticae 105((1–2)):35–55.
Ricca, F.; Grasso, G.; Alviano, M.; Manna, M.; Lio, V.; Iiri-
tano, S.; and Leone, N. 2011b. Team-building with Answer
Set Programming in the Gioia-Tauro Seaport. TPLP.
Ricca, F. 2003. The DLV Java Wrapper. In ASP’03, 305–
316. Online at http : // CEUR−WS.org/Vol−78/.
Rossi, G.; Panegai, E.; and Poleo, E. 2007. JSetL: a
Java library for supporting declarative programming in Java.
Softw., Pract. Exper. 37(2):115–149.
Roy, P. V., ed. 2005. Multiparadigm Programming in
Mozart/Oz, Second International Conference, LNCS 3389.
Springer.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending
and Implementing the Stable Model Semantics. AI 138:181–
234.
Spinellis, D. D. 1994. Programming Paradigms as Object
Classes: A Structuring Mechanism. Master’s thesis, Impe-
rial College of Science, Tech. and Med. University of UK.
Terracina, G.; Leone, N.; Lio, V.; and Panetta, C. 2008.
Experimenting with recursive queries in database and logic
programming systems. TPLP 8:129–165.
Zhou, N.-F. 1999. Building Java Applets by Using DJ - A
Java-based Constraint Languag. In COMPSAC ’99, 27-19
1999, Phoenix, AZ, USA, 442–447. IEEE.

551

