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Abstract

Datalog∃ is the extension of Datalog, allowing existen-
tially quantified variables in rule heads. This language
is highly expressive and enables easy and powerful
knowledge-modeling, but the presence of existentially
quantified variables makes reasoning over Datalog∃ un-
decidable, in the general case. The results in this paper
enable powerful, yet decidable and efficient reasoning
(query answering) on top of Datalog∃ programs.
On the theoretical side, we define the class of parsimo-
nious Datalog∃ programs, and show that it allows of de-
cidable and efficiently-computable reasoning. Unfortu-
nately, we can demonstrate that recognizing parsimony
is undecidable. However, we single out Shy, an eas-
ily recognizable fragment of parsimonious programs,
that significantly extends both Datalog and Linear-
Datalog∃, while preserving the same (data and com-
bined) complexity of query answering over Datalog, al-
though the addition of existential quantifiers.
On the practical side, we implement a bottom-up eval-
uation strategy for Shy programs inside the DLV sys-
tem, enhancing the computation by a number of op-
timization techniques to result in DLV∃ – a powerful
system for answering conjunctive queries over Shy pro-
grams, which is profitably applicable to ontology-based
query answering. Moreover, we carry out an experimen-
tal analysis, comparing DLV∃ against a number of state-
of-the-art systems for ontology-based query answering.
The results confirm the effectiveness of DLV∃, which
outperforms all other systems in the benchmark domain.

1 Introduction
Context and Motivation. In the field of data and knowl-
edge management, ontology-based Query Answering (QA)
is becoming more and more a challenging task (Calvanese
et al. 2007; Calì, Gottlob, and Lukasiewicz 2009; Kollia,
Glimm, and Horrocks 2011; Calì, Gottlob, and Pieris 2011).
Actually, database technology providers – such as Oracle1,
have started to build ontological reasoning modules on top
of their existing software. In this context, queries are not
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merely evaluated on an extensional relational database D,
but against a logical theory combining the database D with
an ontological theory Σ. More specifically, Σ describes rules
and constraints for inferring intensional knowledge from the
extensional data stored inD (Johnson and Klug 1984). Thus,
for a conjunctive query (CQ) q, we do not actually check
whether D entails q, but we would like to know whether
D ∪ Σ does.

A key issue in ontology-based QA is the design of the lan-
guage that is provided for specifying the ontological theory
Σ. This language should balance expressiveness and com-
plexity, and in particular it should possibly be: (1) intuitive
and easy-to-understand; (2) QA-decidable (i.e., QA should
be decidable in this language); (3) efficiently computable;
(4) powerful enough in terms of expressiveness; and (5)
suitable for an efficient implementation.

In this regard, Datalog±, the family of Datalog-based lan-
guages proposed by Calì, Gottlob, and Lukasiewicz (2009)
for tractable QA over ontologies, is arousing increasing
interest (Mugnier 2011). This family, generalizing well
known ontology specification languages, is mainly based on
Datalog∃, the natural extension of Datalog (Abiteboul, Hull,
and Vianu 1995) that allows ∃-quantified variables in rule
heads. For example, the following Datalog∃ rules

∃Y father(X,Y) :- person(X).
person(Y) :- father(X,Y).

state that if X is a person, then X must have a father Y ,
which has to be a person as well.

A number of QA-decidable Datalog± languages have
been defined in the literature. They rely on three main
paradigms, called weak-acyclicity (Fagin et al. 2005),
guardness (Calì, Gottlob, and Kifer 2008) and stickiness
(Calì, Gottlob, and Pieris 2010a), depending on syntac-
tic properties. But there are also QA-decidable “abstract”
classes of Datalog∃ programs, called Finite-Expansion-Sets,
Finite-Treewidth-Sets and Finite-Unification-Sets, depend-
ing on semantic properties that capture the three mentioned
paradigms, respectively (Mugnier 2011). However, even if
all known languages based on these properties enjoy the
simplicity of Datalog and are endowed with properties that
are desired for ontology specification languages, none of
them fully satisfy conditions (1)–(5) above (see Section 8).
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Contribution. In this work, we single out a new class
of Datalog∃ programs, called Shy, which enjoys a new se-
mantic property called parsimony and results in a powerful
and yet QA-decidable language that combines positive as-
pects of different Datalog± languages. With respect to prop-
erties (1)–(5) above, the class of Shy programs behaves
as follows: (1) it inherits the simplicity and naturalness of
Datalog; (2) it is QA-decidable; (3) it is efficiently com-
putable (tractable data complexity and limited combined-
complexity); (4) it offers a good expressive power being a
strict superset of Datalog; and (5) it is suitable for an ef-
ficient implementation. Specifically, Shy programs can be
evaluated by parsimonious forward-chaining inference that
allows of an efficient on-the-fly QA, as witnessed by our
experimental results.2 From a technical viewpoint, the con-
tribution of the paper is the following.

I We propose a new semantic property called parsimony,
and prove that on the class of parsimonious Datalog∃ pro-
grams, called Parsimonious-Sets, (atomic) query answering
is decidable and also efficiently computable.

I After showing that recognition of parsimony is unde-
cidable (coRE-complete), we single out Shy, a subclass of
Parsimonious-Sets, which guarantees both easy recogniz-
ability and efficient answering even to CQs.

IWe demonstrate that both Parsimonious-Sets and Shy pre-
serve the same (data and combined) complexity of Datalog
for atomic QA: the addition of existential quantifiers does
not bring any computational overhead here.

I We implement a bottom-up evaluation strategy for Shy
programs inside the DLV system, and enhance the com-
putation by a number of optimization techniques, yielding
DLV∃ – a system for QA over Shy programs, which is prof-
itably applicable for ontology-based QA. To the best of our
knowledge, DLV∃ is the first system supporting the standard
first-order semantics for unrestricted CQs with existential
variables over ontologies with advanced properties (some of
these beyond AC0), such as, role transitivity, role hierarchy,
role inverse, and concept products (Glimm et al. 2008).

I We perform an experimental analysis, comparing DLV∃
against a number of systems for ontology-based QA. The
results evidence that DLV∃ is the most effective system for
QA in dynamic environments, where the ontology is subject
to frequent changes, making pre-computations and static op-
timizations inapplicable.

I We analyze related work, providing a precise tax-
onomy of the QA-decidable Datalog∃ classes. It turns
out that both Parsimonious-Sets and Shy strictly contain
Datalog ∪ Linear-Datalog∃, while they are uncomparable
to Finite-Expansion-Sets, Finite-Treewidth-Sets, and Finite-
Unification-Sets.

2Intuitively, parsimonious inference generates no isomorphic
atoms (see Section 3); while on-the-fly QA does not need any pre-
liminary materialization or compilation phase (see Section 7), and
is very well suited for QA against frequently changing ontologies.

2 The Framework
In this section, after some useful preliminaries, we introduce
Datalog∃ programs and CQs. Next, we equip such struc-
tures with a formal semantics. Finally, we show the chase, a
well-known procedure that allows of answering CQs (Maier,
Mendelzon, and Sagiv 1979; Johnson and Klug 1984).

2.1 Preliminaries
The following notation will be used throughout the paper.
We always denote by ∆C , ∆N and ∆V , countably infinite
domains of terms called constants, nulls and variables, re-
spectively; by ∆, the union of these three domains; by t, a
generic term; by c, d and e, constants; by ϕ, a null; by X and
Y, variables; by X and Y, sets of variables; by Π an alpha-
bet of predicate symbols each of which, say p, has a fixed
nonnegative arity, denoted by arity(p); by a, b and c, atoms
being expressions of the form p(t1, . . . , tk), where p is a
predicate symbol and t1, . . . , tk is a tuple of terms. More-
over, if the tuple of an atom consists of only constants and
nulls, then this atom is called ground; if T ⊆ ∆C ∪ ∆N ,
then base(T ) denotes the set of all ground atoms that can
be formed with predicate symbols in Π and terms from T ;
if a is an atom, then pred(a) denotes the predicate sym-
bol of a; if ς is any formal structure containing atoms, then
terms(ς) (resp., dom(ς)) denotes all the terms from ∆ (resp.,
∆C ∪∆N ) occurring in the atoms of ς .

Mappings. Given a mapping µ : S1 → S2, its restriction
to a set S is the mapping µ|S from S1∩S to S2 s.t. µ|S(s) =
µ(s) for each s ∈ S1 ∩ S. If µ′ is a restriction of µ, then µ
is called an extension of µ′, also denoted by µ ⊇ µ′. Let
µ1 : S1 → S2 and µ2 : S2 → S3 be two mappings. We
denote by µ2 ◦ µ1 : S1 → S3 the composite mapping.

We call homomorphism any mapping h : ∆ → ∆ whose
restriction h|∆C

is the identity mapping. In particular, h is
an homomorphism from an atom a = p(t1, . . . , tk) to an
atom b if b = p(h(t1), . . . , h(tk)). With a slight abuse of
notation, b is denoted by h(a). Similarly, h is a homomor-
phism from a set of atoms S1 to another set of atoms S2 if
h(a) ∈ S2, for each a ∈ S1. Moreover, h(S1) = {h(a) :
a ∈ S1} ⊆ S2. In particular, if S1 = ∅, then h(S1) = ∅.
In case the domain of h is the empty set, then h is called
empty homomorphism and it is denoted by h∅. In particular,
h∅(a) = a, for each atom a.

An isomorphism between two atoms (or two sets of
atoms) is a bijective homomorphism. Given two atoms a and
b, we say that: a � b iff there is a homomorphism from b
to a; a ' b iff there is an isomorphism between a and b;
a ≺ b iff a � b holds but a ' b does not.

A substitution is a homomorphism σ from ∆ to ∆C ∪∆N

whose restriction σ|∆C∪∆N
is the identity mapping. Also,

σ∅ = h∅ denotes the empty substitution.

2.2 Programs and Queries
A Datalog∃ rule r is a finite expression of the form:

∀X∃Y atom[X′∪Y] ← conj[X] (1)

where (i) X and Y are disjoint sets of variables (next called
∀-variables and ∃-variables, respectively); (ii) X′ ⊆ X;
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(iii) atom[X′∪Y] stands for an atom containing only and
all the variables in X′ ∪ Y; and (iv) conj[X] stands for a
conjunct (a conjunction of zero, one or more atoms) con-
taining only and all the variables in X. Constants are also al-
lowed in r. In the following, head(r) denotes atom[X′∪Y],
and body(r) the set of atoms in conj[X]. Universal quan-
tifiers are usually omitted to lighten the syntax, while ex-
istential quantifiers are omitted only if Y is empty. In the
second case, r coincides with a standard Datalog rule. If
body(r) = ∅, then r is usually referred to as a fact. In par-
ticular, r is called existential or ground fact according to
whether r contains some ∃-variable or not, respectively. A
Datalog∃ program P is a finite set of Datalog∃ rules. We de-
note by preds(P ) ⊆ Π the predicate symbols occurring in
P , by data(P ) all the atoms constituting the ground facts of
P , and by rules(P ) all the rules of P being not ground facts.
Example 2.1. The following expression is a Datalog∃ rule
where father is the head and person the only body atom.

∃Y father(X,Y) :- person(X).

Given a Datalog∃ program P , a conjunctive query (CQ) q
over P is a first-order (FO) expression of the form:

∃Y conj[X∪Y] (2)
where X are its free variables, and conj[X∪Y] is a conjunct
containing only and all the variables in X ∪ Y and possi-
bly some constants. To highlight the free variables, we write
q(X) instead of q. Query q is called Boolean CQ (BCQ) if
X = ∅. Moreover, q is called atomic if conj is an atom.
Finally, atoms(q) denotes the set of atoms in conj.
Example 2.2. The following expression is a CQ asking for
every person X having both a father (some other person Y )
and john as child:

∃Y father(‘john’,X),father(X,Y).

2.3 Query Answering and Universal Models
In the following, we equip Datalog∃ programs and queries
with a formal semantics to result in a formal QA definition.

Given a set S of atoms and an atom a, we say that S |= a
(resp., S 
 a) holds if there is a substitution σ s.t. σ(a) ∈ S
(resp., a homomorphism h s.t. h(a) ∈ S).

Let P ∈ Datalog∃. A setM ⊆ base(∆C∪∆N ) is a model
for P (M |= P , for short) if, for each r ∈ P of the form (1),
whenever there exists a substitution σ s.t. σ(body(r)) ⊆M ,
then M |= σ|X(head(r)). (Note that, σ|X(head(r)) con-
tains only and all the ∃-variables Y of r.) The set of all the
models of P are denoted by mods(P ).

Let M ∈ mods(P ). A BCQ q is true w.r.t. M (M |= q)
if there is a substitution σ s.t. σ(atoms(q)) ⊆ M . Anal-
ogously, the answer of a CQ q(X) w.r.t. M is the set
ans(q,M) = {σ|X : σ is a substitution ∧ M |= σ|X(q)}.

The answer of a CQ q(X) w.r.t. a program P is the
set ansP (q) = {σ : σ ∈ ans(q,M) ∀M ∈ mods(P )}. Note
that, ansP (q) = {σ∅} only if q is a BCQ. In this case, we
say that q is cautiously true w.r.t. P or, equivalently, that q is
entailed by P . This is denoted by P |= q, for short.

Let C be a class of Datalog∃ programs. The following def-
inition formally fixes the computational problem studied in
this paper, concerning QA.

Procedure 1 CHASE(P )

Input: Datalog∃ program P
Output: A Universal Model chase(P ) for P
1. C := data(P )
2. NewAtoms := ∅
3. for each r ∈ P do
4. for each firing substitution σ for r w.r.t. C do
5. if ( (C ∪ NewAtoms) 6|= σ(head(r)) )
6. add(σ̂(head(r)),NewAtoms)
7. if (NewAtoms 6= ∅)
8. C := C ∪ NewAtoms
9. go to step 2
10. return C

Definition 2.3. QA[C] is the following decision problem.
Given a program P belonging to C, an atomic query q, and
a substitution σ for q, does σ belong to ansP (q)?

In the following, a Datalog∃ class C is called QA-
decidable if and only if problem QA[C] is decidable. Finally,
before concluding this section, we mention that QA can be
carried out by using a universal model. Actually, a model U
for P is called universal if, for each M ∈ mods(P ), there is
a homomorphism h s.t. h(U) ⊆M .

Proposition 2.4 (Fagin et al. 2005). Let U be a univer-
sal model for P . Then, (i) P |= q iff U |= q, for each
BCQ q; (ii) ansP (q) ⊆ ans(q, U) for each CQ q; and (iii)
σ ∈ ansP (q) iff both σ ∈ ans(q, U) and σ : ∆V → ∆C .

2.4 The Chase
As already mentioned, the chase is a well-known procedure
for constructing a universal model for a Datalog∃ program.
We are now ready to show how this procedure works, in one
of its variants (although slightly revised).

First, we introduce the notion of chase step, which, intu-
itively, fires a rule r on a set C of atoms for inferring new
knowledge. More precisely, given a rule r of the form (1)
and a set C of atoms, a firing substitution σ for r w.r.t.
C is a substitution σ on X s.t. σ(body(r)) ⊆ C. Next,
given a firing substitution σ for r w.r.t. C, the fire of r on
C due to σ infers σ̂(head(r)), where σ̂ is an extension of
σ on Y ∪ X associating each ∃-variable in Y to a differ-
ent null. Finally, Procedure 1 illustrates the overall restricted
chase procedure. Importantly, we assume that different fires
(on the same or different rules) always introduce different
“fresh” nulls. The procedure consists of an exhaustive series
of fires in a breadth-first (level-saturating) fashion, which
leads as result to a (possibly infinite) chase(P ).

The level of an atom in chase(P ) is inductively defined
as follows. Each atom in data(P ) has level 0. The level of
each atom constructed after the application of a restricted
chase step is obtained from the highest level of the atoms in
σ(body(r)) plus one. For each k ≥ 0, chasek(P ) denotes
the subset of chase(P ) containing only and all the atoms of
level up to k. Actually, by Procedure 1, chasek(P ) is pre-
cisely the set of atoms which is inferred the kth-time that
the outer for-loop is ran.

Proposition 2.5. (Fagin et al. 2005; Deutsch, Nash, and
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Remmel 2008) Given a Datalog∃ program P , CHASE con-
structs a universal model for P .

Unfortunately, CHASE does not always terminates.
Proposition 2.6. (Fagin et al. 2005; Deutsch, Nash, and
Remmel 2008) QA[Datalog∃] is undecidable even for atomic
queries. In particular, it is RE-complete.

3 A New QA-Decidable Datalog∃ Class
This section introduces a new class of Datalog∃ programs
as well as some of its properties. Due to space restrictions,
some proofs have been sketched. Complete proofs can be
found in the full version of this paper (Leone et al. 2011).

Definition 3.1. For any P ∈ Datalog∃, parsimonious chase
(PARSIM-CHASE(P ) for short) is the procedure resulting by
the replacement of operator 6|= by 6
 in the condition of the
if-instruction at step 5 in Procedure 1 CHASE(P ). The output
of PARSIM-CHASE(P ) is denoted by pChase(P ).

Example 3.2. Let P be the “father-person” Datalog∃

program defined in the introduction, and augmented
by the fact person(‘john’). Figure 1 compares
chase(P ) with pChase(P ). Since, by definition, it
holds that {person(‘john’), father(‘john’,ϕ1)}

 person(ϕ1), then PARSIM-CHASE(P ) discards
person(ϕ1) and ends.

Figure 1: chase(P ) vs pChase(P ) w.r.t. Example 3.2

Note that, differently from chase(P ), pChase(P ) might
not be a model any more. Based on Definition 3.1, we next
define a new class of Datalog∃ programs depending on a
novel semantic property, called parsimony.

Definition 3.3. A Datalog∃ program P is parsimonious if
pChase(P ) 
 a, for each a ∈ chase(P ). Parsimonious-Sets
next denotes the class of all parsimonious programs.

We next show that atomic QA against a
Parsimonious-Sets program can be carried out by the
PARSIM-CHASE algorithm.
Proposition 3.4. Algorithm PARSIM-CHASE over parsimo-
nious programs is sound and complete w.r.t. atomic QA.

Proof (Sketch). Let P ∈ Parsimonious-Sets. Since, for any
set of atoms S, S 6
 a entails S 6|= a, then, by Definition 3.1,
pChase(P ) ⊆ chase(P ) holds, ensuring soundness. For
completeness, let q be an atomic query and σ ∈ ansP (q), if
there is a substitution σ′ that maps σ(q) to chase(P ), then,

Algorithm 2 ORACLE-QA(P, q)

Input: Datalog∃ program P ∧ Boolean atomic query q
Output: true ∨ false
1. if (IS-PARSIMONIOUS(P ))
2. return (pChase(P ) |= q)
3. else
4. k := firstAwakeningLevel(P )
5. P ′ := P ∪ (chasek(P )− chasek−1(P ))
6. return ORACLE-QA(P ′, q)

by Definition 3.3, there is a homomorphism h s.t. the substi-
tution h ◦ σ′ maps σ(q) also to pChase(P ).

The following theorem claims that parsimony makes
atomic QA decidable.

Theorem 3.5. Atomic QA against Parsimonious-Sets pro-
grams is decidable.

Proof (Sketch). Let P ∈ Datalog∃. Proposition 3.4 ensures
that atomic QA is sound and complete against pChase(P ).
Now, let α be the maximum arity over all predicate sym-
bols in P , and Φ be a set of α nulls. PARSIM-CHASE
termination is guaranteed by the existence of a one-to-
one correspondence µ between pChase(P ) and a subset of
base(dom(P ) ∪ Φ) s.t. a ' µ(a) for each a ∈ pChase(P ),
entailing |pChase(P )| ≤ |preds(P )| ·(|dom(P )|+α)α.

We now show that recognizing parsimony is undecidable.

Theorem 3.6. Checking whether a program is parsimonious
is not decidable. In particular, it is coRE-complete.

Proof (Sketch). Let P ∈ Datalog∃. For membership,
a CHASE run can semi-decide whether P is not par-
simonious. For hardness, we define Algorithm 2 that
would solve QA[Datalog∃] (being RE-complete by Proposi-
tion 2.6) if the parsimony-check was decidable. In partic-
ular, IS-PARSIMONIOUS denotes the Boolean computable
function deciding whether P ∈ Parsimonious-Sets, while
firstAwakeningLevel(P ) the lowest level k reached by the
CHASE s.t. pChase(P ) 
 a for each a ∈ chasek−1(P ), and
pChase(P ) 6
 a for at least one a ∈ chasek(P ). Finally,
under these assumptions, Algorithm 2 would be sound and
complete as well as it would always terminate.

4 Recognizable Parsimonious Programs
We next define a novel syntactic Datalog∃ class: Shy. Later,
we prove that this class enjoys the parsimony property.

4.1 Shy: Definition and Main Properties
Calì, Gottlob, and Kifer (2008) introduced the notion of
“affected position” to know whether an atom with a null at
a given position might belong to the output of the CHASE.
Specifically, let a be an atom with a variable X at position i.
This position is marked in a as affected w.r.t. P if there is a
rule r ∈ P s.t. pred(head(r)) = pred(a) and X is either an
∃-variable, or a ∀-variable s.t. X occurs in body(r) in affected
positions only. Otherwise, position i is marked as unaffected.
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However, this procedure might mark as affected some posi-
tion hosting a variable that can never be mapped to nulls.

To better detect whether a program admits a firing substi-
tution that maps a ∀-variable into a null, we introduce the
notion of null-set of a position in an atom. More precisely,
ϕrX denotes the “representative” null that can be introduced
by the ∃-variable X occurring in rule r. (If (r, X) 6= (r′, X′),
then ϕrX 6= ϕr

′

X′ .)

Definition 4.1. Let P be a Datalog∃ program, a be an atom,
and X a variable occurring in a at position i. The null-set
of position i in a w.r.t. P , denoted by nullset(i,a), is in-
ductively defined as follows. If a is the head atom of some
rule r ∈ P , then nullset(i,a) is: (1) either the set {ϕrX},
if X is ∃-quantified in r; or (2) the intersection of every
nullset(j,b) s.t. b ∈ body(r) and X occurs at position j
in b, if X is ∀-quantified in r. If a is not a head atom,
then nullset(i,a) is the union of nullset(i, head(r)) for each
r ∈ P s.t. pred(head(r)) = pred(a).

Note that nullset(i,a) may be empty. A representative null
ϕ invades a variable X that occurs at position i in an atom
a if ϕ is contained in nullset(i,a). A variable X occurring
in a conjunct conj is attacked in conj by a null ϕ if each
occurrence of X in conj is invaded by ϕ. A variable X is
protected in conj if it is attacked by no null. Clearly, each
attacked variable is affected but the converse is not true.

We are now ready to define the new Datalog∃ class.

Definition 4.2. A rule r of a Datalog∃ program P is called
shy w.r.t. P if the following conditions are both satisfied:

1. If a variable X occurs in more than one body atom, then X
is protected in body(r);

2. If two distinct ∀-variables are not protected in body(r) but
occur both in head(r) and in two different body atoms,
then they are not attacked by the same null.

Finally, Shy denotes the class of all Datalog∃ programs con-
taining only shy rules.

After noticing that a program is Shy regardless its ground
facts, we give an example of program being not Shy.

Example 4.3. Let P be the following Datalog∃ program:
r1 : ∃Y u(X,Y) :- q(X).
r2 : v(X,Y,Z) :- u(X,Y), p(X,Z).
r3 : p(X,Y) :- v(X,Y,Z).
r4 : u(Y,X) :- u(X,Y).

Let a1, . . . ,a9 be the atoms of P in left-to-right/top-to-
bottom order. First, nullset(2,a1) = {ϕr1Y }. Next, this sin-
gleton is propagated (head-to-body) to nullset(2,a4) and
nullset(2,a9). At this point, from a9 the singleton is prop-
agated (body-to-head) to nullset(1,a8), and from a4 to
nullset(2,a3), and so on, according to Definition 4.1. Fi-
nally, even if X is protected in r2 since it is invaded only
in a4, rule r2, and therefore P , is not shy due to Y and Z that
are attacked by ϕr1Y and occur in head(r2). Moreover, it is
easy to verify that P plus any fact for q does not belong to
Parsimonious-Sets.

Intuitively, the key idea behind this class is as follows. If
a program is shy then, during a CHASE execution, nulls do

not meet each other to join but only to propagate. Moreover,
a null is propagated, during a given fire, from a single atom
only. Hence, the shyness property, which ensures parsimony.

Theorem 4.4. Shy ⊂ Parsimonious-Sets.

Proof (Sketch). Let P ∈ Shy and j be the level where
PARSIM-CHASE stopped on P . If there is a level k > j + 1
with an atom b s.t. pChase(P ) 6
 b, then there must be a set
S 6= ∅ of atoms from chasek−1(P ) − chasek−2(P ) being
essential for firing a rule r on chasek−1(P ) to infer b. Let us
pick the smallest k. By Definition 3.3, for each a ∈ S there
is a homomorphism h s.t. h(a) ∈ pChase(P ). However,
since P is shy (see Definition 4.2), each h(a) can be used,
instead of a, to infer an atom b′ � b in chasek−1(P ).

Corollary 4.5. Atomic QA over Shy is decidable.

We now show that recognizing parsimony is decidable.

Theorem 4.6. Checking whether a program P is shy is de-
cidable. In particular, it is doable in polynomial-time.

Proof. First, the occurrences of ∃-variables in P fix the
number h of nulls appearing in the null-sets of P . Next, let
k be the number of atoms occurring in P , and α be the max-
imum arity over all predicate symbols in P . It is enough
to observe that P allows at most k ∗ α null-sets each of
which of cardinality no greater than h. Finally, the statement
holds since the null-set-construction is monotone and stops
as soon as a fixpoint has been reached.

4.2 Conjunctive Queries over Shy
In this section we show that conjunctive QA against Shy pro-
grams is also decidable. To manage CQs, we next describe
a technique called parsimonious-chase resumption, which is
sound for any Datalog∃ program P , and also complete over
Shy. Before proving formal results, we give a brief intuition
of this approach. Assume that pChase(P ) consists of the
atoms p(c, ϕ), q(d, e), r(c, e). It is definitely possible that
chase(P ) contains also q(ϕ, e), which, of course, cannot
belong to pChase(P ) due to q(d, e). Now consider the CQ
q = ∃Y p(X, Y), q(Y, Z). Clearly, pChase(P ) does not pro-
vide any answer to q even ifP does. Let us both “promote”ϕ
to constant in ∆C , and “resume” the PARSIM-CHASE execu-
tion at step 3, in the same state in which it had stopped after
returning the set C at step 10. But, now, since ϕ can be con-
sidered as a constant, then there is no homomorphism from
q(ϕ, e) to q(d, e). Thus, q(ϕ, e) may be now inferred by the
algorithm and used to prove that ansP (q) is nonempty.

We call freeze the act of promoting a null from ∆N to
an extra constant in ∆C . Also, given a set S of atoms, we
denote by dSc the set obtained from S after freezing all of
its nulls. The following definition formalizes the notion of
parsimonious-chase resumption after freezing actions.

Definition 4.7. Let P ∈ Datalog∃. The set pChase(P, 0)
denotes data(P ), while the set pChase(P, k) denotes
pChase(rules(P ) ∪ dpChase(k − 1)c), for each k > 0.

Clearly, the sequence {pChase(P, k)}k∈N is monotoni-
cally increasing; the limit of this sequence is denoted by
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pChase(P,∞). The next lemma states that the proposed re-
sumption technique is always sound w.r.t. QA, and that its
infinite application also ensures completeness.

Lemma 4.8. pChase(P,∞) = chase(P ) ∀P ∈ Datalog∃.

Proof. The statement holds since operator 
 in PARSIM-
CHASE behaves, on freezed nulls, as |= in the CHASE.

We now prove that PARSIM-CHASE over Shy programs is
complete w.r.t. CQ answering in finitely many resumptions.

Lemma 4.9. Let P ∈ Shy and q be a CQ with n different
∃-variables. Then, ansP (q) ⊆ ans(q, pChase(P, n+ 1)).

Proof (Sketch). Let P ∈ Shy, q be a CQ, σa ∈ ansP (q), σ
be a substitution proving that P |= σa(q) holds, and X be
only and all the ∃-variables of q mapped by σ to nulls. Then,
there is a substitution σ′, proving that P |= σa(q) holds,
that maps at least one variable in X to a term occurring in
pChase(P ). Thus, in the worst case, to be sure that all the
nulls involved by σ′ are generated, it is enough to compute
pChase(P, n) where n is the number of ∃-variables of q.
Finally, pChase(P, n+ 1) contains the atoms for σ′.

Theorem 4.10. Conjunctive QA over Shy is decidable.

Proof. Soundness follows by Lemma 4.8, completeness by
Lemma 4.9, while termination by combining Theorem 3.5
and Definition 4.7.

The following example, after defining a Shy program P ,
shows that P imposes the computation of pChase(P, 3) to
prove (after two resumptions) that a BCQ q containing two
atoms and two variables is entailed by P .

Example 4.11. Let P denote the following Shy program.

p(a,b). u(c,d).
r1 : ∃Z v(Z) :- u(X,Y).
r2 : ∃Y u(X,Y) :- v(X).
r3 : p(X,Z) :- v(X), p(Y,Z).
r4 : p(X,W) :- p(X,Y), u(Z,W).

Consider the BCQ q = ∃X, Y p(X,Y),u(X,Y). Figure 2
shows that q cannot be proved before two freezing.

Figure 2: Snapshot of pChase(P, 3) w.r.t. Example 4.11

5 Computational Complexity
In this section we study the complexity of Parsimonious-Sets
and Shy programs. Moreover, let C be one of these classes,
we talk about combined complexity of QA[C] in general, and
about data complexity of QA[C] under the assumption that
data(P ) are the only input while both q and rules(P ) are
considered fixed. We start with upper bounds.

Theorem 5.1. QA[Parsimonious-Sets] is in P (resp., EXP) in data
complexity (resp., combined complexity).

Proof (Sketch). Let P ∈ Parsimonious-Sets, α be the maxi-
mum arity over all predicate symbols in P and β be the max-
imum number of body atoms in P . From the bound identi-
fied in the proof of Theorem 3.5, PARSIM-CHASE performs
no more than |P − data(P )| · |preds(P )|2·β · (|dom(P )| +
α)2·α·β operations.

We now consider lower bounds, and thus completeness.

Theorem 5.2. Both QA[Shy] and QA[Parsimonious-Sets] are
P-complete (resp., EXP-complete) in data complexity (resp.,
combined complexity).

Proof. Since, by Theorem 4.4, a shy program is also parsi-
monious, then (i) upper-bounds of Theorem 5.1 hold for Shy
programs as well; (ii) lower-bounds for QA[Datalog] (Dantsin
et al. 2001) also hold both for Shy and Parsimonious-Sets
programs, by Theorem 8.1.

6 Implementation and Optimizations
We implemented a system for answering CQs over Shy pro-
grams (it actually works on any parsimonious program).
The system, called DLV∃, efficiently integrates the PARSIM-
CHASE algorithm defined in Section 3 and the resumption
technique introduced in Section 4.2, in the well known An-
swer Set Programming (ASP) system DLV (Leone et al.
2006). Following the DLV philosophy, it has been designed
as an in-memory reasoning system.

To answer a CQ q against a Shy program P , DLV∃ carries
out the following steps.

Skolemization. ∃-variables in rule heads are managed by
skolemization. Given a head atom a = p(t1, . . . , tk), let us
denote by fpos(Y,a) the position of the first occurrence of
variable Y in a. The skolemized version of a is obtained by
replacing in a each ∃-variable Y by fpfpos(Y,a)

(t′1, . . . , t
′
k)

where, for each i ∈ [1..k], t′i is either #fpos(ti,a) or ti ac-
cording to whether ti is an ∃-variable or not, respectively.
Every rule in P is skolemized in this way, and skolemized
terms are interpreted as functional symbols (Calimeri et al.
2010) within DLV∃.

Example 6.1. The Datalog∃ rule
∃X,Y p(Z,X,W,Y) :- s(Z,W).

is skolemized in
p(Z,t1,W,t2) :- s(Z,W).

where t1 = f p2(Z,#2,W,#4), t2 = f p4(Z,#2,W,#4).
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Data Loading and Filtering. Since DLV∃ is an in-
memory system, it needs to load input data in memory be-
fore the reasoning process can start. In order to optimize the
execution, the system first singles out the set of predicates
which are needed to answer the input query, by recursively
traversing top-down (head-to-body) the rules in P , starting
from the query predicates. This information is used to filter
out, at loading time, the facts belonging to predicates irrele-
vant for answering the input query.

Program Optimization. Data filtering, carried out at the
level of predicates, may still include some facts which are
not needed for the query at hand. The DLV∃ computation is
further optimized by “pushing-down” the bindings coming
from possible query constants. To this end, the program is
rewritten by a variant of the well-known magic-set optimiza-
tion technique (Cumbo et al. 2004; Alviano et al. 2009), that
we adapted to Datalog∃ by avoiding to propagate bindings
through “attacked” argument-positions (since ∃-quantifiers
generate “unknown” constants). The result is a program, be-
ing equivalent to P for the given query, that can be evaluated
more efficiently. In the following, P denotes the program
that has been rewritten by magic-sets.

pChase Computation and Optimized Resumption. Af-
ter skolemization, loading, and rewriting phases, DLV∃
computes pChase(P ) as defined in Section 3. Since ∃-
variables have been skolemized, the rules are safe and can
be evaluated in the usual bottom-up way; but, according to
pChase(P ), the generation of homomorphic atoms should
be avoided. To this end, each time a new head-atom a is
derivable, DLV∃ verifies whether an homomorphic atom had
been previously derived, where each skolem term is consid-
ered as a null for the sake of homomorphisms verification.
In the negative case, a is derived; otherwise it is discarded.

If the input query is atomic, then pChase(P ) is sufficient
to provide an answer (see Proposition 3.4); otherwise, the
fixpoint computation should be resumed several times (see
Lemma 4.9). In this case, every null (skolem term) derived
in previous reiterations is freezed (see Section 4.2) and con-
sidered as a standard constant; in our implementation, this
is implemented by attaching a “level” to each skolem term,
representing the fixpoint reiteration where it has been de-
rived. This is important because homomorphism verifica-
tion must consider as nulls only skolem terms produced in
the current resumption-phase; while previously introduced
skolem terms must be interpreted as constants. The num-
ber k of times that the fixpoint must be reiterated has been
stated in Lemma 4.9. In our implementation, this number is
further reduced by Algorithm 3 considering the structure of
the query w.r.t. P .

Query Answering. After the fixpoint is resumed k times,
the answers to q are given by ans(q, pChase(P, k + 1)).

7 Experiments
In this section we report on some experiments we carried out
to evaluate the efficiency and the effectiveness of DLV∃.

Algorithm 3 RESUMPTION-LEVEL(q, P )

Input: A CQ q = ∃Y conj[X∪Y] and a program P
Output: The number of needed resumptions for q and P .
1. Y∗ := Y
2. for each Y ∈ Y do
3. if Y is protected in q OR Y occurs in only one atom of q
4. remove(Y,Y∗)
5. return |Y∗|

Benchmark Focus. The focus of our tests is on rapidly
changing and evolving ontologies (rules or data). In fact, in
many contexts data frequently vary, even within hours, and
there is the need to always provide the most updated an-
swers to user queries. One of these contexts is e-commerce;
another example is the university context, where data on ex-
ams, courses schedule and assignments may vary on a fre-
quent basis. Benchmark framework from university domain
and obtained results are discussed next.

Compared Systems. As it will be pointed out in Sec-
tion 8, ontology reasoners mainly rely on three categories
of inference, namely: tableau, forward-chaining, and query-
rewriting. Systems belonging to the latter category are still
research prototypes and a comparison with them was not
possible due to various problems we had while trying to test
them; as an example some of them offer no API and the only
interaction is made possible by graphical, interactive, GUI
making it impossible to accurately measure response times.
In other cases there was no automatic tool for transforming
test data in system’s internal format. We compared DLV∃
with the following systems, being representatives of the first
two categories.
I Pellet (Sirin et al. 2007) is an OWL 2 reasoner which
implements a tableau-based decision procedure for gen-
eral TBoxes (subsumption, satisfiability, classification) and
ABoxes (retrieval, CQ answering).
I OWLIM-SE (Bishop et al. 2011) is a commercial product
which supports the full set of valid inferences using RDFS
semantics; it’s reasoning is based on forward-chaining. This
system is oriented to massive volumes of data and, as such,
based on persistent storage manipulation and reasoning.
I OWLIM-Lite (Bishop et al. 2011), sharing the same in-
ference mechanisms and semantics with OWLIM-SE, is an-
other product of the OWLIM family designed for medium
data volumes; reasoning and query evaluation are performed
in main memory.

Data Sets. We concentrated on a well known benchmark
suite for testing reasoners over ontologies, namely LUBM,
coupled with the Univ-Bench ontology (Guo, Pan, and
Heflin 2005). It refers to a university domain with a syn-
thetic data generator. We considered the entire set of rules
in Univ-Bench, except for equivalences with restrictions on
roles, which cannot be expressed in Shy in some cases; these
have been transformed in subsumptions.

In order to perform scalability tests, we generated a num-
ber of increasing data sets named: lubm-10, lubm-30, and
lubm-50, where right-hand sides of these acronyms indi-
cate the number of universities used as parameter to gener-
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Qall Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 # solved Geom. Avg time

lubm-10
DLV∃ 17 5 4 2 4 6 1 6 4 8 5 <1 1 6 2 14 2.87
Pellet 27 82 84 84 82 80 88 81 89 95 82 82 89 82 84 14 84.48
OWLIM-Lite 33 33 – 33 33 33 33 4909 70 – 33 33 33 33 33 12 53.31
OWLIM-SE 105 105 105 105 105 105 105 105 106 106 105 105 105 105 105 14 105.14

lubm-30
DLV∃ 55 16 13 7 14 21 3 21 12 25 18 <1 5 23 8 14 9.70
Pellet – – – – – – – – – – – – – – – 0 –
OWLIM-Lite 106 107 – 107 106 107 106 – 528 – 107 106 106 107 106 11 123.18
OWLIM-SE 323 323 328 323 323 323 323 323 323 326 323 323 323 323 323 14 323.57

lubm-50
DLV∃ 93 27 23 12 23 35 6 34 22 42 31 <1 9 33 14 14 16.67
Pellet – – – – – – – – – – – – – – – 0 –
OWLIM-Lite 187 188 – 190 187 189 188 – 1272 – 189 187 187 189 187 11 223.79
OWLIM-SE 536 536 547 536 536 536 537 536 536 542 536 536 536 536 537 14 537.35

Table 1: Running times for LUBM queries (sec).

ate the data. The number of statements (both individuals and
assertions) stored in the data sets vary from about 1M for
lubm-10 to about 7M for lubm-50

LUBM incorporates a set of 14 queries aimed at
testing different capabilities of the systems. A de-
tailed description of rules and queries is provided at
http://www.mat.unical.it/kr2012.

Data preparation. LUBM is provided as owl files. Each
owl class is associated with a unary predicate in Datalog∃;
each individual of a class is represented by a Datalog∃ fact
on the corresponding predicate. Each role is translated in
a binary Datalog∃ predicate with the same name. Finally,
assertions are translated in suitable Shy rules. The following
example shows some translations where the DL has been
used for clarity.

Example 7.1. The assertions
AdministrativeStaff v Employee
subOrgOf+

are translated in the following rules:
Employee(X) :- AdministrativeStaff(X).
subOrgOf(X,Z) :-subOrgOf(X,Y),subOrgOf(Y,Z).

where subOrgOf stands for subOrganizationOf.

The complete list of correspondences between DL,
OWL, and Datalog∃ rules and queries is provided at
http://www.mat.unical.it/kr2012.

Results and Discussion. Tests have been carried out on an
Intel Xeon X3430, 2.4 GHz, with 4 Gb Ram, running Linux
Operating System; for each query, we allowed a maximum
running time of 7200 seconds (two hours).

Table 1 reports the times taken by the tested systems to an-
swer the 14 LUBM queries. Since, as previously pointed out,
we are interested in evaluating a rapidly changing scenario,
each entry of the table reports the total time taken to answer
the respective query by a system (including also loading and
reasoning). In addition, the first column (labeledQall) shows
the time taken by the systems to compute all atomic conse-
quences of the program; this roughly corresponds to loading
and inference time for Pellet, OWLIM-Lite, and OWLIM-
SE and to parsing and first fixpoint computation for DLV∃.

The results in Table 1 show that DLV∃ clearly outper-
forms the other systems as an on-the-fly reasoner. In fact, the

overall running times for DLV∃ are significantly lower than
the corresponding times for the other systems. Pellet shows,
overall, the worst performances. In fact, it has not been able
to complete any query against lubm-30 and lubm-50, and
is also slower than competitors for the smallest data sets.

For both OWLIM-Lite and OWLIM-SE, most of the to-
tal time is taken for loading/inference (Qall), as the recon-
struction of the answers from the materialized inferences is
a trivial task, often taking less than one second. However, as
previously stated, this behavior is unsuited for reasoning on
frequently changing ontologies, where previous inferences
and materialization cannot be re-used, and loading must be
repeated or time-consuming updates must be performed. As
expected, loading/inference times (Qall) for OWLIM-SE are
higher than for OWLIM-Lite, but OWLIM-SE is faster than
OWLIM-Lite in the reconstruction of the answers from the
materialized inferences (this time is basically obtainable by
subtracting Qall). Because of this inefficiency in answers-
reconstruction OWLIM-Lite has not been able to answer
some queries in the time-limit that we set for the experiments
(two hours); these queries involve many classes and roles.

We carried out some tests also on ontology updates (not
reported due to space restrictions); just to show an example,
deleting 10% of lubm-50 individuals imposed OWLIM-SE
152 seconds of update activities, which is sensibly higher
than the highest query time needed by DLV∃ (42 seconds
for Q9) on the same data set. OWLIM-Lite was even worse
on updates, since it required 133 seconds for the deletion of
just one individual.

It is worth pointing out that DLV∃ is the only of the tested
systems for which the times needed for answering single
queries (Q1 . . . Q14) are significantly smaller than those re-
quired for materializing all atomic consequences (Qall). This
result highlights the effectiveness of the query-oriented op-
timizations implemented in DLV∃ (magic sets and filtering,
in particular), and confirms the suitability of the system for
on-the-fly QA. Interestingly, even if DLV∃ is specifically de-
signed for QA, it outperformed the competitors also for the
computation of all atomic consequences (query Qall). In-
deed, on each of the three ontologies, DLV∃ took, respec-
tively, about 17% and 51% of the time taken by OWLIM-SE
and OWLIM-Lite.
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8 Related Work and Discussion
8.1 Datalog∃ Languages
We overview the most relevant QA-decidable subclasses of
Datalog∃ defined in the literature. Then, we provide their
precise taxonomy and the complexity of QA in each class,
highlighting the differences to Parsimonious-Sets and Shy.

The best-known QA-decidable subclass of Datalog∃ is
clearly Datalog, the largest ∃-free Datalog∃ class (Abite-
boul, Hull, and Vianu 1995) which, notably, admits a unique
and yet finite (universal) model enabling efficient QA.

Three abstract QA-decidable classes have been sin-
gled out, namely, Finite-Expansion-Sets, Finite-Treewidth-
Sets, and Finite-Unification-Sets (Baget et al. 2009; Baget,
Leclère, and Mugnier 2010). Intuitively, the semantic prop-
erties behind these classes rely on a “forward-chaining infer-
ence that halts in finite time”, a “forward-chaining inference
that generates a tree-shaped structure”, and a “backward-
chaining inference that halts in finite time”, respectively.

Syntactic subclasses of Finite-Treewidth-Sets, of increas-
ing complexity and expressivity, have been defined by Calì,
Gottlob, and Kifer (2008). They are: (i) Linear-Datalog∃

where at most one body atom is allowed in each rule; (ii)

Guarded-Datalog∃ where each rule needs at least one body
atom that covers all ∀-variables; and (iii) Weakly-Guarded-
Datalog∃ extending Guarded by allowing unaffected “un-
guarded” variables (see Section 4.1 for the meaning of unaf-
fected). The first one generalizes the well known Inclusion-
Dependencies class (Johnson and Klug 1984; Abiteboul,
Hull, and Vianu 1995), with no computational overhead;
while only the last one is a superset of Datalog, but at the
price of a drastic increase in complexity. In general, to be
complete w.r.t. QA, the CHASE ran on a program belonging
to one of the latter two classes requires the generation of a
very high number of isomorphic atoms, so that no (efficient)
implementation has been realized yet.

More recently, another class of Datalog∃, called Sticky,
has been defined by Calì, Gottlob, and Pieris (2010a). Such a
class enjoys very good complexity, encompasses Inclusion-
Dependencies, but being FO-rewritable, it has limited ex-
pressive power and, clearly, does not include Datalog. Intu-
itively, if a program is sticky, then all the atoms that are in-
ferred (by the CHASE) starting from a given join contain the
term of this join. Several generalizations of stickiness have
been defined by Calì, Gottlob, and Pieris (2010b). For exam-
ple, the Sticky-Join class preserves the sticky-complexity by
also including Linear-Datalog∃. Both Sticky and Sticky-Join
are subclasses of Finite-Unification-Sets.

Finally, in the context of data exchange, where a finite uni-
versal model is required, Weakly-Acyclic-Datalog∃, a sub-
class of Finite-Expansion-Sets, has been introduced (Fagin
et al. 2005). Intuitively, a program is weakly-acyclic if the
presence of a null occurring in an inferred atom at a given
position does not trigger the inference of an infinite number
of atoms (with the same predicate symbol) containing sev-
eral nulls in the same position. This class both includes and
has much higher complexity than Datalog, but misses to cap-
ture even Inclusion-Dependencies. A number of extensions,

Figure 3: Taxonomy of representative Datalog∃ classes

techniques and criteria for checking chase termination have
been recently proposed in this context (Deutsch, Nash, and
Remmel 2008; Marnette 2009; Meier, Schmidt, and Lausen
2009; Greco, Spezzano, and Trubitsyna 2011).

Figure 3 provides a precise taxonomy of the considered
classes; while Table 2 summarizes the complexity of QA[C],
by varying C among the syntactic classes. In both diagrams,
only Datalog is intended to be ∃-free, and abstract classes
are shown in grey.

Theorem 8.1. For each pair C1 and C2 of classes repre-
sented in Figure 3, the following hold: (i) there is a direct
path from C1 to C2 iff C1 ⊃ C2; (ii) C1 and C2 are not linked
by any directed path iff they are uncomparable.

Proof. Relationships among known classes are pointed
out by Mugnier (2011). Shy ⊂ Parsimonious-Sets
holds by Theorem 4.4. Shy ⊃ Datalog ∪ Linear holds
since Datalog programs only admit protected positions,
while Linear ones only bodies with one atom. How-
ever, since there are both Weakly-Acyclic and Sticky pro-
grams being not Parsimonious-Sets, then both Shy and
Parsimonious-Sets are uncomparable to Finite-Expansion-
Sets, Weakly-Acyclic, Finite-Unification-Sets, Sticky-Join
and Sticky. Now, to prove that Shy 6⊆ Finite-Treewidth-Sets
we use the shy program

set1(a,a). ∃V′ set1(V,V′) :- set1(X,V).
set2(b,b). ∃V′ set2(V,V′) :- set2(X,V).
graphK(V1,V2) :- set1(V1,X), set2(V2,Y).

whose chase-graph3 has no finite treewidth (Calì, Gott-
lob, and Kifer 2008) since it contains a complete bipartite
graph Kn,n of 2n vertices – the treewidth of which is n
(Kloks 1994) – where n is not finite. Finally, since there
are Guarded programs that are not Parsimonious-Sets, then
both Shy and Parsimonious-Sets are uncomparable to Finite-
Treewidth-Sets, Weakly-Guarded and Guarded.

We care to notice that the proof of Theorem 8.1 uses the
so called concept product to generate a complete and infinite
bipartite graph. A natural and common example is

biggerThan(X,Y) :- elephant(X), mouse(Y).

3The chase-graph for a Datalog∃ program P is the directed
acyclic graph GP = 〈chase(P ), A〉 where (a,b) ∈ A iff b has
been inferred by the CHASE through a firing substitution σ for a
rule r where a ∈ σ(body(r)).
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Class C Data Combined
Complexity Complexity

Weakly-Guarded EXP-complete 2EXP-complete
Guarded
Weakly-Acyclic P-complete 2EXP-complete

Datalog, Shy
(Parsimonious-Sets) P-complete EXP-complete

Sticky, Sticky-Join in AC0 EXP-complete
Linear in AC0 PSPACE-complete

Table 2: Complexity of the QA[C] problem

that is expressible in Shy if elephant and mouse are dis-
joint concepts. However, such a concept cannot be expressed
in Finite-Treewidth-Sets and can be only simulated by a very
expressive ontology language for which no tight worst-case
complexity is known (Rudolph, Krötzsch, and Hitzler 2008).

Summarizing, Shy offers the best balance between ex-
pressivity and complexity. Conjunctive QA is efficiently
computable in Shy (polynomial data-complexity) and, com-
pared with other tractable Datalog∃ fragments, Shy is the
only language supporting advanced properties like role-
transitivity and concept-product (besides standard prop-
erties like role-hierarchy, role-inverse, concept-hierarchy).
These properties are relevant in practice. More specifically,
even though Weakly-Guarded encompasses and general-
izes both Datalog and Linear as Shy, it has untractable
data-complexity and no implementation. Weakly-Acyclic
and Guarded are tractable (although they suffer of higher
combined-complexity than Shy) but the former does not in-
clude Linear (even the basic “father-person” ontology can-
not be represented), while the latter does include Datalog
and does not support role-transitivity and concept-product.
Moreover, no efficient implementation (such as the one pro-
posed for Shy) of Guarded has been found so far since the
natural termination condition needs a huge number of iso-
morphic atoms. Sticky-Join is suitable for an efficient im-
plementation and captures some light-weight DL properties
but, since it does not generalize Datalog, it cannot express
important KR features like role-transitivity.

8.2 Ontology Reasoners
To the best of our knowledge, there is only one ongoing
research work directly supporting ∃-quantifiers in Datalog,
namely Nyaya (De Virgilio et al. 2011). This system, based
on an SQL-rewriting, allows a strict subclass of Shy called
Linear-Datalog∃, which does not include, e.g., transitivity
and concept products.4

Since DLV∃ enables ontology reasoning, existing ontol-
ogy reasoners are also related. They can be classified in three
groups: query-rewriting, tableau and forward-chaining.

The systems QuOnto (Acciarri et al. 2005), Presto (Rosati
and Almatelli 2010), Quest (Rodriguez-Muro and Cal-
vanese 2011a), Mastro (Calvanese et al. 2011) and OBDA
(Rodriguez-Muro and Calvanese 2011b) belong to the

4We could not compare DLV∃ with Nyaya since, as a research
prototype, Nyaya provides no API for data loading and querying.

query-rewriting category. They rewrite axioms and queries
to SQL, and use RDBMSs for answers computation. Such
systems support standard FO semantics for unrestricted
CQs; but the expressivity of their languages is limited to AC0

and excludes, e.g., transitivity property or concept products.
The systems FaCT++ (Tsarkov and Horrocks 2006),

RacerPro (Haarslev and Möller 2001), Pellet (Sirin et al.
2007) and HermiT (Motik, Shearer, and Horrocks 2009) are
based on tableau calculi. They materialize all inferences at
loading-time, implement very expressive description logics,
but they do not support the standard FO semantics for CQs
(Glimm et al. 2008). Actually, the Pellet system enables
first-order CQs but only in the acyclic case.

OWLIM (Bishop et al. 2011) and KAON2 (Hus-
tadt, Motik, and Sattler 2004) are based on forward-
chaining.5 Similar to tableau-based systems, they perform
full-materialization and implement expressive DLs, but they
still miss to support the standard FO semantics for CQs
(Glimm et al. 2008).

Summing up, it turns out that DLV∃ is the first system
supporting the standard FO semantics for unrestricted CQs
with ∃-variables over ontologies with advanced properties
(some of these beyond AC0), such as, role transitivity, role
hierarchy, role inverse, and concept products. The experi-
ments confirm the efficiency of DLV∃, which constitutes a
powerful system for a fully-declarative ontology-based QA.
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