
Query Containment in Description Logics Reconsidered

Meghyn Bienvenu
Laboratoire de Recherche en Informatique

CNRS & Université Paris Sud, France

Carsten Lutz
Fachbereich Informatik

Universität Bremen, Germany

Frank Wolter
Department of Computer Science

University of Liverpool, UK

Abstract

While query answering in the presence of description
logic (DL) ontologies is a well-studied problem, ques-
tions of static analysis such as query containment and
query optimization have received less attention. In this
paper, we study a rather general version of query con-
tainment that, unlike the classical version, cannot be re-
duced to query answering. First, we allow a restriction
to be placed on the vocabulary used in the instance data,
which can result in shorter equivalent queries; and sec-
ond, we allow each query its own ontology rather than
assuming a single ontology for both queries, which is
crucial in applications to versioning and modularity. We
also study global minimization of queries in the pres-
ence of DL ontologies, which is more subtle than for
classical databases as minimal queries need not be iso-
morphic.

1 Introduction
In ontology-based data access (OBDA), an ontology is used
to improve query answering over instance data in various
ways, for example by providing a semantics for the data vo-
cabulary, by enriching the query vocabulary, and by translat-
ing between data and query vocabularies when they diverge.
In the past decade, this paradigm has received significant at-
tention, with a focus on using description logics (DLs) as
the ontology language. In particular, answering conjunc-
tive queries (CQs) and the simpler instance queries (IQs)
in DL-based OBDA has been extensively studied, so that
today, various algorithmic approaches are known, and the
computational complexity is well-understood. On the one
hand, for expressive DLs such as ALC and SHIQ, CQ an-
swering is typically EXPTIME- or 2-EXPTIME-complete for
combined complexity and NP-complete for data complex-
ity (Calvanese, De Giacomo, and Lenzerini 1998; Hustadt,
Motik, and Sattler 2005; Glimm et al. 2008; Lutz 2008; Or-
tiz, Rudolph, and Simkus 2011). On the other hand, for so-
called lightweight DLs such as DL-Lite and EL, CQ answer-
ing is in PTIME for data complexity and can be implemented
efficiently using off-the-shelf relational database systems
(Calvanese et al. 2007; Lutz, Toman, and Wolter 2009;

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Pérez-Urbina, Horrocks, and Motik 2009; Kontchakov et al.
2010; Calvanese et al. 2011).

While query answering in DLs has been studied inten-
sively, little attention has been paid to the query containment
problem, which consists in deciding, given a DL ontology
(TBox) T and two queries q1 and q2 of same arity, whether
for every data instance (ABox), the answers to q1 given T
are a subset of the answers to q2 given T . This is in con-
trast to relational databases, where query containment is a
crucial and widely studied problem due to the central role
it plays in query optimization (Abiteboul, Hull, and Vianu
1995). In particular, Chandra and Merlin observed in a clas-
sical paper that minimal CQs are unique up to isomorphism,
which also means that the unique minimal CQ for a given
CQ q can be produced by the following simple procedure:
start with q and repeatedly remove atoms that are redundant
in the sense that dropping them preserves equivalence; the
order in which atoms are dropped is irrelevant and the only
non-trivial part is checking equivalence, implemented as two
query containment checks (Chandra and Merlin 1977).

Clearly, query optimization is important also in OBDA.
For example, in the combined approach to CQ answering
presented in (Lutz, Toman, and Wolter 2009; Kontchakov
et al. 2010), the CQ is passed virtually unchanged to a re-
lational database system for execution, and thus prior op-
timization improves performance. The relative lack of in-
terest in OBDA query containment is somewhat surprising
and seems to stem mainly from the fact that, for most query
languages including CQs and IQs, the problem can be poly-
nomially reduced to query answering and vice versa; thus,
algorithms and complexity results transfer (a notable excep-
tion are regular path queries, whose containment problem
was recently studied in a DL context in (Calvanese, Ortiz,
and Simkus 2011)). The aim of this paper is to reconsider
CQ- and IQ-containment in DL-based OBDA by (i) propos-
ing a generalized version of containment that enables novel
applications and cannot be polynomially reduced to query
answering, (ii) giving algorithms and complexity results for
this problem, with a focus on lightweight DLs of the DL-Lite
and EL families, and (iii) showing that while naive Chandra-
Merlin-minimization as described above fails in the pres-
ence of ontologies, by applying slightly refined strategies
one can still achieve strong guarantees for the produced min-
imal queries.

221

Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning

Regarding (i), we generalize OBDA query containment in
two directions. First, we pick up the observation of (Baader
et al. 2010) that, when an ontology is used to enrich the
query vocabulary with symbols that do not occur in the data,
then it is useful to carefully distinguish between the data vo-
cabulary and the ontology/query vocabulary. Specifically,
we use the data vocabulary Σ as an additional input to query
containment, which is then refined to quantify only over Σ-
ABoxes. While this sometimes increases the complexity of
containment, it can lead to signficantly smaller queries in
query minimization.

The second generalization is to associate a separate on-
tology Ti with each query qi instead of assuming a single
ontology T for both queries q1 and q2. This is natural from
a traditional database perspective, where the ontology would
likely be viewed as a component of the query rather than as
an independent object. It also enables applications to ontol-
ogy versioning and ontology modules. In the former, a typi-
cal scenario is that a new version Tnew of a reference ontol-
ogy Tref has to be adopted in an existing application; for ex-
ample, Tref could be the medical terminology SNOMED CT
or the National Cancer Institute Ontology NCI (IHTSDO
2008; Sioutos et al. 2006), both widely used and frequently
updated. To verify that the update does not affect the appli-
cation, the user wants to check, for each relevant query q,
whether q given Tnew is equivalent to q given Tref (see Sec-
tion 2 for more details). Applications to ontology modules
are in a similar spirit: assume that a large ontology T is re-
placed with a smaller module T ′ ⊆ T to speed up query
processing. When T ′ was generated manually or using a
technique that does not guarantee preservation of query an-
swers, then the user wants to check for each relevant query q,
whether q given T is equivalent to q given T ′.

Regarding (ii), we consider the complexity of generalized
query containment both for CQs and IQs, and for a vari-
ety of DLs from the DL-Lite-, EL-, and ALC-families. An
interesting first observation is that the two proposed exten-
sions of query containment are intimately related. In fact,
containment with an ABox signature Σ and two TBoxes
can, in most cases, be polynomially reduced to contain-
ment with an ABox signature but only one TBox, and
to containment without an ABox signature but with two
TBoxes. Another relevant observation is that query empti-
ness, as studied in (Baader et al. 2010), is a special case
of our version of query containment, and thus lower com-
plexity bounds carry over. In particular, this means that
containment is undecidable in ALCF , the extension of
ALC with functional roles, both for IQs and CQs. For
weaker DLs, we exhibit a rich complexity landscape that
ranges from PTIME (for IQ-containment in DL-Litecore
and IQ-containment w.r.t. acyclic EL-TBoxes) via Πp

2-
completeness (for CQ-containment in DL-Litecore and DL-
Litehorn) and PSPACE-completeness (for CQ-containment
w.r.t. acyclic EL-TBoxes) to EXPTIME-completeness (for
IQ-containment and CQ-containment w.r.t. general EL-
TBoxes and EL⊥-TBoxes). We also show decidability of
IQ-containment in ALC, with a PNEXP upper bound. The
precise complexity remains open, and so does the decidabil-
ity of CQ-containment in ALC.

Regarding (iii), we develop strategies for minimizing
queries in the presence of ontologies formulated in DL-Lite
and EL. We show that, by adopting a suitable minimization
strategy, the uniqueness of minimal queries can be regained
in DL-Lite, and the resulting queries have an optimal rela-
tional structure in the sense that this structure can be found
as a subquery in any equivalent query. For EL, we show
how to produce an equivalent acyclic query whenever it ex-
ists. In this part, we work with the classical notion of query
containment instead of with the generalized one.

Throughout the paper, we mostly confine ourselves to
proof sketches and (without further notice) defer full proof
details to the long version, which is made available at
http://www.informatik.uni-bremen.de/∼clu/papers/

2 Preliminaries
We use standard notation for the syntax and semantics of
DLs, please see (Baader et al. 2003) for details. As usual,
NC, NR, and NI denote countably infinite sets of concept
names, role names, and individual names, C,D denote (po-
tentially) composite concepts, A,B concept names, r, s role
names, and a, b individual names. We consider the following
three families of DLs.

The DL-Lite family. The basic member is DL-Litecore,
where TBoxes are finite sets of concept inclusions (CIs) of
the forms

B1 v B2 and B1 uB2 v ⊥
with B1 and B2 concepts of the form ∃r, ∃r−, >, ⊥, or A.
In the extension DL-Litehorn, we additionally allow conjunc-
tion, thus obtaining CIs of the forms

B1 u · · · uBn v B and B1 u · · · uBn v ⊥
cf. (Calvanese et al. 2007; Artale et al. 2009).

The EL-family. Its basic member EL offers the concept
constructors >, C u D, and ∃r.C. The extension of EL
with the bottom concept ⊥ is denoted EL⊥. In both cases, a
TBox is a finite set of CIsC v D withC andD (potentially)
compound concepts. We use concept definitions A ≡ C in
TBoxes as abbreviations for two CIs A v C and C v A.
See for example (Baader, Brandt, and Lutz 2005) for more
information on the EL-family of DLs.

The ALC-family. The basic member ALC offers the con-
cept constructors ¬C,C uD, and ∃r.C. ALCI is the exten-
sion of ALC with the ∃r−.C constructor, where r− denotes
an inverse role, and ALCF the extension with functional
roles. Sometimes we mention ALCFI, which is the union
of ALCI and ALCF and contains all DLs studied in this
paper as a fragment. In ALC and its extensions, a TBox is
again a finite set of CIs C v D. See (Baader et al. 2003) for
more details.

In any of these DLs, data is stored in an ABox, which is
a finite set of concept assertions A(a) and role assertions
r(a, b). We use Ind(A) to denote the set of individual names
used in the ABox A.

The semantics of DLs is based on interpretations I =
(∆I , ·I) as usual, see (Baader et al. 2003). An interpretation
is a model of a TBox T (resp. ABoxA) if it satisfies all con-
cept inclusions in T (resp. assertions in A), where satisfac-

222

tion is defined in the standard way. An ABoxA is consistent
w.r.t. a TBox T if A and T have a common model.

Instance queries (IQs) take the form A(x) and conjunc-
tive queries (CQs) take the form ∃~x.ϕ(~x, ~y), where x, ~x, ~y
denote (tuples of) variables taken from a set NV and ϕ is a
conjunction of atoms of the form A(t) and r(t, t′) with t, t′
terms, i.e., individual names or variables from ~x ∪ ~y. We
call the variables in ~y the answer variables and those in ~x
the quantified variables. The arity of a CQ is the number of
answer variables and term(q) denotes the set of terms used
in q. In what follows, we sometimes slightly abuse notation
and use CQ to denote the class of all conjunctive queries
and likewise for IQ. Whenever convenient, we treat a CQ
(and even an IQ) as a set of atoms.

Let I be an interpretation and q an (instance or conjunc-
tive) query with answer variables x1, . . . , xk. For ~a =
a1, . . . , ak ∈ NI, an ~a-match for q in I is a mapping
π : term(q) → ∆I such that π(xi) = aIi for 1 ≤ i ≤ k,
π(a) = aI for all a ∈ term(q) ∩ NI, π(t) ∈ AI for all
A(t) ∈ q, and (π(t1), π(t2)) ∈ rI for all r(t1, t2) ∈ q. We
write I |= q[~a] if there is an ~a-match of q in I. For a TBox
T and an ABoxA, we write T ,A |= q[~a] if I |= q[~a] for all
models I of T and A. In this case, ~a is a certain answer to
q w.r.t.A and T . We use certT (q,A) to denote the set of all
certain answers to q w.r.t. A and T .

We use the term predicate to refer to a concept name or
role name and signature to refer to a set of predicates. Then
sig(q) denotes the set of predicates used in the query q, and
similarly sig(T) (resp. sig(A)) refers to the signature of a
TBox T (resp. ABox A). Given a signature Σ, a Σ-ABox is
an ABox using predicates from Σ only.

In the context of query answering in DLs, it is sometimes
useful to adopt the unique name assumption (UNA), which
requires that aI 6= bI for all interpretations I and all a, b ∈
NI with a 6= b. The results obtained in this paper do not
depend on the UNA. In fact, it is well-known that in all DLs
studied here (with the exception of ALCF), query answers
with and without UNA coincide.

The following definition provides the general perspective
on query containment in the presence of DL TBoxes that we
propose in this paper.

Definition 1. Let T1, T2 be TBoxes, q1, q2 CQs with the
same arity, and Σ an ABox signature. Then (T1, q1) is con-
tained in (T2, q2) w.r.t. Σ, written (T1, q1) ⊆Σ (T2, q2), if
for all Σ-ABoxes A that are consistent w.r.t. T1 and T2, we
have certT1(q1,A) ⊆ certT2(q2,A).

As discussed in the introduction, this definition general-
izes the traditional view of query containment in DLs in
two directions: by admitting two distinct TBoxes for the
two queries and by allowing a restriction to be placed on
the ABox signature. If there is only a single TBox T , we
write q1 ⊆T ,Σ q2 instead of (T , q1) ⊆Σ (T , q2). When
Σ = NR ∪ NC, we say that the ABox signature Σ is full
and simply omit it in the subscript of “⊆”. We say that q1

and q2 are equivalent w.r.t. Σ and T , written q1 ≡T ,Σ q2, if
q1 ⊆T ,Σ q2 and q2 ⊆T ,Σ q1. Again, Σ is omitted if it is full.

To illustrate Definition 1, consider the following TBox T ,
a slightly simplified fragment of the SNOMED CT ontol-

ogy:

LabTest v LabProc u EvalProc

VenipunctBloodTest v ∃focus.LabTest
VenipunctBloodTest ≡ ∃purpose.BloodSmpl u

Venipuncture

Assume that ABoxes provide data about venipunctures and
their purpose, thus the ABox signature Σ contains the con-
cept names Venipuncture and BloodSmpl and the role name
purpose, but no other symbols from T . Let

q(x) = ∃y.(focus(x, y) ∧ EvalProc(y)).

Then q(x) ≡T ,Σ VenipunctBloodTest(x). Note that, when
Σ is full, q(x) is not equivalent to any query with only one
atom.

To illustrate the use of multiple TBoxes, we come back to
ontology versioning, already mentioned as a relevant appli-
cation in the introduction; note that versioning is an active
research area with a wide variety of approaches, ranging
from purely syntactic to fully semantic, logic-based meth-
ods (Noy and Musen 2002; Klein et al. 2002; Jimnez-
Ruiz et al. 2011; Gonçalves, Parsia, and Sattler 2011;
Konev, Walther, and Wolter 2008). Assume that the above
TBox T is updated to the new version T ′ in which the
first CI is replaced with LabTest v LabProc (this mod-
ification corresponds to an update that was made in the
‘real’ SNOMED CT). To check whether the above query
q(x) is unaffected by the update, the user checks whether
(T , q) ⊆Σ (T ′, q). In fact, this is not the case, as witnessed
by the ABox

A = {Venipuncture(a), purpose(a, b),BloodSmpl(b)}
where a ∈ certT (q,A), but a /∈ certT ′(q,A).

The main reasoning problems studied in this paper are as
follows.
Definition 2. Let Q ∈ {CQ, IQ} and let L be any of the
DLs introduced above. Deciding

1. Q-containment in L means to determine, given
q1, q2 ∈ Q, L-TBoxes T1, T2, and an ABox signa-
ture Σ, whether (T1, q1) ⊆Σ (T2, q2).

2. single TBox Q-containment in L means to determine,
given q1, q2 ∈ Q, an L-TBox T , and an ABox signature
Σ, whether q1 ⊆T ,Σ q2.

3. full signature Q-containment in L means to deter-
mine, given q1, q2 ∈ Q and L-TBoxes T1, T2, whether
(T1, q1) ⊆ (T2, q2).

4. full signature single TBox Q-containment in L means to
determine, given q1, q2 ∈ Q and an L-TBox T , whether
q1 ⊆T q2.

Note that Point 4 is the traditional query containment prob-
lem in DLs. The first three problems are closely related. In
fact, the following lemma shows that, in the presence of an
ABox signature, we can eliminate a second TBox.
Theorem 3. Let L ∈ {EL, EL⊥,ALC,ALCI,ALCF}
and Q ∈ {CQ, IQ}. Then Q-containment in L can be poly-
nomially reduced to single TBox Q-containment in L.

223

B

r r r r

u v

x zy

q1
x

r r

y z

q2

B AXA

Figure 1: Query containment with restricted ABox signature

Proof. We sketch the proof for EL⊥ and CQs. Let T1, T2 be
EL⊥-TBoxes, q1, q2 CQs of the same arity, and Σ an ABox
signature. To simulate T1 and T2 using a single TBox, we
duplicate the vocabulary. For simplicity, assume first that Σ
only contains concept names. We introduce fresh concept
names s1(A) and s2(A) for every concept nameA and fresh
role names s1(r), s2(r) for every role name r, and extend
s1, s2 to concepts and CQs in the obvious way; for example,
s1(C) is C with every X ∈ NR ∪ NC replaced with s1(X).
Let T ′i = {si(C) v si(D) | C v D ∈ Ti}, for i = 1, 2 and

T = T ′1 ∪ T ′2 ∪ {A v s1(A) u s2(A) | A ∈ Σ ∩ NC}.
We then have (T1, q1) ⊆Σ (T2, q2) iff s1(q1) ⊆T ,Σ s2(q2).

The general case, where Σ may contain role names, re-
quires some technical tricks. Since an assertion r(a, b) in
the ABox cannot be ‘copied’ into two assertions s1(r)(a, b)
and s2(r)(a, b) as in the last component of T , we leave role
names from Σ untouched and do not replace them with fresh
symbols when defining the TBoxes T ′i . This is unsound as
it enables undesired interaction between T1 and T2; we rec-
tify this problem by introducing additional concept names
E1 and E2 that represent the ‘active domains’ of T1 and T2,
and syntactically relativize all concepts in Ti to Ei in the
definition of T ′i . o

The following result shows that, in the presence of two
TBoxes, we can eliminate the ABox signature.
Theorem 4. For L ∈ {EL⊥,DL-Litecore, DL-Litehorn,
ALC, ALCI, ALCF} and Q ∈ {CQ, IQ}, Q-containment
in L can be polynomially reduced to full signature Q-
containment in L.
Proof. Here, we only illustrate the proof idea using an ex-
ample. Assume that we are interested in deciding CQ con-
tainment in the presence of the TBox T = {A v ∃r.A} and
with the ABox signature restricted to Σ = {A}. Set

T ′ = {A v ∃r′.A,∃r.> v ⊥}
Then, for any two CQs q1, q2 of the same arity using the
symbols A and r only, q1 ⊆T ,Σ q2 iff (T , q1) ⊆ (T ′, q′2),
where q′2 is obtained from q2 by replacing any occurrence of
r by r′. The equivalence holds since for any ABox A using
the non-Σ-symbol r, A is not consistent w.r.t. T ′. o

The next example illustrates a central reason for why
restricting the ABox signature (or admitting two distinct
TBoxes) can make query containment harder.
Example 5. Restricting the signature of ABoxes or admit-
ting two TBoxes can introduce a form of disjunction. This
is illustrated by the queries q1 and q2 in Figure 1, where
all variables are quantified, together with the very simple

DL-Litecore-TBox {A v X,B v X} and ABox signature
Σ = {A,B, r}. Note that, by definition of T and Σ, an
ABox can only ‘enforce’ the concept name X by an asser-
tion A(a) or an assertion B(a), which is the mentioned dis-
junction and results in the fact that q1 ≡T ,Σ q2.

Some lower bounds in this paper are inherited from query
emptiness, a reasoning problem that is defined as follows:
given a query q, TBox T , and ABox signature Σ, decide
whether there exists a Σ-ABox A that is consistent w.r.t. T
such that certT (q,A) 6= ∅. The following lemma shows
that query emptiness can be polynomially reduced to single
TBox query containment, both for IQs and CQs and for any
DL studied in this paper.
Lemma 6. Let q be a CQ, T be an ALCFI-TBox, Σ be an
ABox signature, A be a concept name that does not occur in
q, Σ, and T , and qA be any query with the same arity as q
that uses A. Then there exists a Σ-ABoxA that is consistent
w.r.t. T with certT (q,A) 6= ∅ iff q 6⊆T ,Σ qA.

3 Containment in DL-Lite
For query containment in the DL-Lite family, we find a dif-
ference in complexity depending on whether we consider
IQs or CQs. We show IQ-containment to be tractable for
DL-Litecore and co-NP-complete for DL-Litehorn, whereas
CQ-containment is Πp

2-complete for both logics. The lower
bounds are proven for single TBox containment, and hence
also hold for full signature containment by Theorem 4 .

We begin by the tractability result for IQs in DL-Litecore.
Theorem 7. IQ-containment in DL-Litecore is in PTIME.

Proof. It can be proved that (T1, A(x)) ⊆Σ (T2, B(x)) if
and only if for every C ∈ NC ∩Σ∪{∃r, ∃r− | r ∈ NR ∩Σ}
we have that T1 |= C v A implies T2 |= C v B. The latter
property can be verified in polynomial time (Calvanese et al.
2007). o

We now turn to DL-Litehorn, showing IQ-containment to
be coNP-complete and giving a Πp

2 upper bound for CQ-
containment.
Theorem 8. In DL-Litehorn, IQ-containment is coNP-
complete and CQ-containment is in Πp

2.

Proof. We start with instance queries. When (T1, A(x)) 6⊆Σ

(T2, B(x)), then there is a Σ-ABox A and an a ∈ Ind(A)
with T1,A |= A(a) and T2,A 6|= B(a). For each role
r ∈ Σ, choose an ar ∈ Ind(A) with r(a, ar) ∈ A, if
such exists. Let A′ be the restriction of A to the individ-
uals {a} ∪ {ar | r ∈ Σ}. Then T1,A′ |= A(a) and
T2,A′ 6|= B(a). To decide instance query non-entailment,
we may thus guess an ABox with |Ind(A)| ≤ |Σ| + 1
and an a ∈ Ind(A) and then check in polytime whether
T1,A |= A(a) and T2,A 6|= B(a) (Artale et al. 2009). For
the lower bound, we use the coNP-hardness of IQ-emptiness
(Baader et al. 2010) together with Lemma 6.

We only sketch the proof for CQs. A witness for
(T1, q1) 6⊆Σ (T2, q2) consists of an ABox A, a tuple of in-
dividuals ~a from Ind(A), and a part of the canonical model
for A and T1 (see (Kontchakov et al. 2010)) such that q1

has an ~a-match in that part and T2,A 6|= q2(~a). Similarly

224

uc1x

uc1y

uc2¬x

uc2¬y

u∃
T

u∃
F

ux

u∀
F

vy

rx
ry

ry

vc1 vc1x

vc2 vc2x
rxry

rx
Ac1

Ac1

u∀
T

ry
T

Ac2 F
F

Ac1

rx

V

T

Ac2

Ac2

Figure 2: Queries q1, q2 for QBF ∀x∃y(x∨ y)∧ (¬x∨¬y).

to the case of IQs, we can suppose that the witness ABox
A satisfies |Ind(A)| ≤ |q| · (|Σ| + 1). To decide CQ non-
containment, we guess such a witness and then verify in
coNP that T2,A 6|= q2(~a). o

To complete the picture, a Πp
2-lower bound for single TBox

CQ-containment in DL-Litecore is proved in the following.
Interestingly, it requires only TBox statements of the form
A v B (no roles in the TBox, no disjointness). The con-
struction is inspired by the Πp

2-lower bound proof for con-
tainment of positive existential queries in (Sagiv and Yan-
nakakis 1980).

The proof is by reduction from the validity of Πp
2-QBFs,

i.e., formulas of the form ∀~x∃~y ϕ(~x, ~y) with ϕ a proposi-
tional formula in CNF. We call the variables in ~x universal
variables and the variables in ~y existential variables and aim
at finding T ,Σ, q1, and q2 such that ∀~x∃~y ϕ(~x, ~y) is valid iff
q1 ⊆T ,Σ q2. Set

T = {T v V, F v V }
Σ = {T, F} ∪ {Ac | c clause in ϕ} ∪ {rx | x ∈ ~x ∪ ~y}.

The query q1 consists of the following atoms, where all vari-
ables are quantified variables:
• F (u∀F), T (u∀T), and V (ux) for each universal variable x;
• for each clause c in ϕ and each literal ` in c:

1. Ac(uc`);
2. rx(uc`, ux) if ` = x or ` = ¬x, with x a universal

variable;
3. ry(uc`, u

∃
T) if ` = y is an existential variable;

4. ry(uc`, u
∃
F) if ` = ¬y, with y an existential variable;

5. for each universal variable x different from the variable
in `, the atoms rx(uc`, u

∀
F) and rx(uc`, u

∀
T);

6. for each existential variable y different from the vari-
able in `, the atoms ry(uc`, u

∃
F) and ry(uc`, u

∃
T).

The query q2 consists of the following atoms, for each clause
c in ϕ, where again all variables are quantified variables:
• Ac(vc);
• for each universal variable x that occurs positively in c,

the atoms rx(vc, vcx) and T (vcx);
• for each universal variable x that occurs negatively in c,

the atoms rx(vc, vcx) and F (vcx);
• for each existential variable y in c, the atom ry(vc, vy).
An example can be found in Figure 2, where the edges from
Points 5 and 6 above are drawn in gray to improve read-
ability. Intuitively, the atoms V (ux) in q1, together with the

T (vcx) and F (vcx) in q2 and the fact that V /∈ Σ ensures all
truth assignments to universal variables are considered (cf.
Example 5). The truth assignment for the existential vari-
ables is selected via the variables vy of q2, which intuitively
can either be mapped to where u∃T of q1 is mapped or to
where u∃F of q1 is mapped. Note that each vci of q2 can
be mapped to where any of the uci` of q1 is mapped, which
corresponds to selecting a literal in ci that is made true.

Theorem 9. Single TBox CQ-containment in DL-Litecore is
Πp

2-hard.

4 Containment in EL, General TBoxes
We study the complexity of IQ- and CQ-containment in EL,
concentrating on the most general form of TBox as intro-
duced in Section 2. Our main result is that query contain-
ment is EXPTIME-complete both for CQs and IQs. The
lower bound holds already for single TBox containment and
full signature containment, and the upper bound is for EL⊥.

We start by establishing an EXPTIME lower bound for IQ-
containment in the single TBox case. By contrast, note that
query emptiness can be checked in polynomial time for EL-
TBoxes.

Theorem 10. Single-TBox IQ-containment in EL is
EXPTIME-hard.

Proof. The proof is by reduction from instance query empti-
ness in EL⊥, shown to be EXPTIME-hard in (Baader et al.
2010). Specifically, we establish the following.

Claim. A(x) is Σ-empty w.r.t. T iff A(x) ⊆T ′,Σ B(x)
where B ∈ NC is fresh and T ′ is obtained from T by (a) re-
placing every assertion C v ⊥ in T with C v B and
(b) adding ∃r.B v B for every role r in T and Σ. o

To obtain an EXPTIME lower bound for full signature
containment, we show that an analogue of Theorem 4 holds
in EL for instance queries. The proof is similar to that of
Theorem 4 and relies on the fact that we can force the sec-
ond instance query to hold whenever the ABox contains a
non-Σ symbol.

Theorem 11. In EL, IQ-containment can be polynomially
reduced to full signature IQ-containment.

In the remainder of the section, we aim to prove an EXP-
TIME upper bound for CQ-containment in EL⊥. Because
of Theorem 3, it is sufficient to consider single TBox con-
tainment. The key insight is that if q1 6⊆T ,Σ q2, then this is
witnessed by a forest-shaped ABox that consists of a small
core whose relational structure is not restricted in any way
and a (potentially infinite) tree below each core element. Our
decision procedure is based upon a reduction of containment
to the existence of a compact description of such a witness
ABox.

Tree-shaped queries play an important role in what fol-
lows, so we begin by recalling their definition and introduc-
ing some relevant notation. We recall that each CQ q can
be viewed as a directed graph Gq = (Vq, Eq) with Vq =
term(q) and Eq = {(t, t′) | r(t, t′) ∈ q for some r ∈ NR}.
We call q tree-shaped if Gq is a tree and r(t, t′), s(t, t′) ∈ q

225

implies r = s. If q is tree-shaped and t is the root of Gq , we
call t the root of q.

A query q′ is obtained from q by performing fork elimina-
tion if q′ is obtained from q by selecting two atoms r(x, z)
and r(y, z) with x, y, z quantified variables and x 6= y and
then identifying x and y. A query which is obtained from q
by repeatedly (but not necessarily exhaustively) performing
fork elimination is called a fork rewriting of q.

For a CQ q and t ∈ term(q), let Reachq(t) denote the
set of all terms that are reachable from t in the directed
graph Gq . For T ⊆ term(q), we write q|T to denote for
the restriction of q to atoms that contain only terms from T .
Define

Trees(q) := {q|Reachq(x) | x ∈ term(q) a variable
and q|Reachq(x) tree-shaped}

Trees+(q) := {r(t, x) ∧ q′ | r(t, x) ∈ q
and q′ = ∅ or q′ ∈ Trees(q) has root x}

Trees∗(q) :=
⋃

q′ fork rewriting of q

Trees(q′) ∪ Trees+(q′).

The cardinality of Trees(q) and Trees+(q) is clearly polyno-
mial in the size of q, and it follows from results from (Lutz
2008) that this is true of Trees∗(q) as well.

It is well-known that whenever T ,A 6|= q for an EL⊥-
TBox T , ABox A, and CQ q, then this is witnessed
by a forest-shaped model of T and A. We now intro-
duce the notion of a match candidate, which intuitively
describes a possible match of a CQ in such a model.
Let A be an ABox, q be a CQ with answer variables
x1, . . . , x`, and ~a = a1, . . . , a` ∈ Ind(A)` be a can-
didate answer to q in A. An ~a-match candidate for
q in A is a tuple Π = 〈p0, p1, . . . , pn, p̂1, . . . , p̂m, f〉
where p0, p1, . . . , pn, p̂1, . . . , p̂m is a partitioning of q and
f : term(q)→ Ind(A) maps each term in q to an individual
name in A. Let pi = ri(ti, yi) ∧ p′i for 1 ≤ i ≤ n. We
require that the following conditions are satisfied:

1. p1, . . . , pn ∈ Trees+(q) and p̂1, . . . , p̂m ∈ Trees(q);
2. f(xi) = ai for 1 ≤ i ≤ `;
3. f(a) = a for all a ∈ term(q) ∩ NI;
4. A(t) ∈ p0 implies A(f(t)) ∈ A;
5. r(t, t′) ∈ p0 implies r(f(t), f(t′)) ∈ A;
6. the p′i and the p̂i contain only quantified variables;
7. if s ∈ {p1, . . . , pn, p̂1, . . . , p̂m} and x, y ∈ term(s), then
f(x) = f(y);

8. term(p0) ∪ {t1, . . . , tn}, term(p′1), . . . , term(p′n),
term(p̂1), . . . , term(p̂m) are pairwise disjoint.

Intuitively, the function f is used to map (i) each term in p0

and (ii) each subquery pi and p̂i (i > 0) to some individual
name. To achieve this, we use the uniformity condition 7
and set f(pi) = f(x) (resp. f(p̂i) = f(x)) where x is any
variable in pi (resp. p̂i). Now, a match candidate describes a
match of q in a forest-shaped model of T and A as follows:
the atoms in p0 are mapped to the core of the forest-shaped
model with each t ∈ term(p0) being mapped to f(t). Each

query pi is mapped to the tree below f(pi) in a rooted way
(the root is the term ti), and each query p̂i is mapped to the
tree below f(p̂i) in a non-rooted way.

We now relate query entailment to the existence of a
match candidate. To do this, we represent tree-shaped CQs
as concepts expressed in EL or its extension ELu. For our
purposes, an ELu concept takes the form C or ∃u.C where
C is an EL-concept and u is the universal role, interpreted
as uI = ∆I × ∆I . To every tree-shaped CQ q and term
t ∈ term(q), we associate an EL-concept Cq,t as follows:

Cq,t = u
A(t)∈q

A u u
r(t,t′)∈q

∃r.Cq,t′ .

We use Cq to abbreviate Cq,t when t is the root of q and Cu
q

to denote the ELu-concept ∃u.Cq .

Lemma 12. Suppose A is consistent with T , and let
close(T ,A) denote the ABox

A ∪ {A(a) | T ,A |= A(a), a ∈ Ind(A), A ∈ NC}.

Then T ,A |= q(~a) iff there exists a fork rewriting q′ of q and
an ~a-match candidate Π = 〈p0, p1, . . . , pn, p̂1, . . . , p̂m, f〉
for q′ and close(T ,A) such that T ,A |= C(a) for all con-
cepts C from {Cpi | f(pi) = a} ∪ {Cu

p̂i
| f(p̂i) = a}.

According to the preceding lemma, a query is not entailed
just in the case that for each match candidate for a fork
rewriting, one of the required concept assertions is not en-
tailed. This leads us to define the notion of a spoiler, which
describes a possible way of avoiding a query match. We say
a map

ν : Ind(A)→ 2{Cq′ ,C
u
q′ |q
′∈Trees∗(q)}

is an~a-spoiler for q w.r.t. A if for every fork rewriting q′ of q
and ~a-match candidate Π = 〈p0, p1, . . . , pn, p̂1, . . . , p̂m, f〉
for q′ in A, there is a pi such that Cpi ∈ ν(f(pi)) or a p̂i
such that Cu

p̂i
∈ ν(f(p̂i)).

We are now ready to define compact witnesses, which are
the key ingredient to our upper bound. A compact witness
for q1 6⊆T ,Σ q2 is a tuple (Aw,~aw, q

′
1,Πw, νw) where Aw

is a sig(T)-ABox with |Ind(Aw)| bounded by |term(q1)|,
~aw a candidate answer to q1 and q2 in Aw, q′1 a fork rewrit-
ing of q1, Πw = 〈p0, p1, . . . , pn, p̂1, . . . , p̂m, f〉 an ~a-match
candidate for q′1 in Aw, and νw an ~a-spoiler for q2 w.r.t. Aw

such that the following conditions are satisfied:

1. Aw is consistent w.r.t. T ;

2. if T ,Aw |= A(a) with a ∈ Ind(Aw) and A ∈ NC, then
A(a) ∈ Aw;

3. all role names in Aw are from Σ;

4. for each a ∈ Ind(Aw), there is a tree-shaped Σ-ABox Aa

with root a which is consistent with T and such that

(a) A(a) ∈ Aw iff A(a) ∈ Aa for all A ∈ NC ∩ Σ;
(b) T ,Aa |= A(a) iff A(a) ∈ Aw for all A ∈ NC \ Σ;
(c) T ,Aa |= C(a) for all concepts C from

{Cpi | f(pi) = a} ∪ {Cu
p̂i
| f(p̂i) = a};

(d) T ,Aa 6|= C(a), for every C ∈ νw(a).

226

Given a compact witness (Aw,~aw, q
′
1,Πw, νw) for

q1 6⊆T ,Σ q2, the desired forest-shaped witness ABox, call
it Af , can be constructed by taking the role assertions in
Aw and attaching the tree-shaped Σ-ABoxes described by
condition 4. Note that because of conditions 2 and 4(a-b),
the concept assertions in Aw are precisely the atomic
concept assertions concerning individuals in Aw which
are entailed from T ,Af . Consistency of the whole ABox
Af follows from conditions 1 and 4. To show entailment
of q1(~a), we use the match candidate Πw together with
condition 4(c), and for non-entailment of q2(~a), we use the
spoiler νw together with condition 4(d).

The following theorem gives the reduction announced
earlier. It holds only for normalized TBoxes whose axioms
are of the forms A v B, A1 u A2 v B, A1 v ∃r.A2, and
∃r.A v B, whereA,A1, A2 ∈ NC andB ∈ NC∪{⊥}. This
is unproblematic since every EL⊥-TBox can be transformed
into a normalized EL⊥-TBox that is a model conservative
extension of T (Baader, Brandt, and Lutz 2005).

Theorem 13. If T is normalized, q1 6⊆T ,Σ q2 iff there is a
compact witness for q1 6⊆T ,Σ q2.

Based on Theorem 13, our decision procedure is as fol-
lows: enumerate all tuples (Aw,~aw, q

′
1,Πw, νw) that are

candidates for compact witnesses for q1 6⊆T ,Σ q2, i.e.,Aw is
a sig(T)-ABox with |Ind(Aw)| bounded by |term(q1)|, ~aw
a candidate answer to q1 and q2 inAw, q′1 a fork rewriting of
q1, Πw = 〈p0, p1, . . . , pn, p̂1, . . . , p̂m, f〉 an ~a-match candi-
date for q′1 in Aw, and νw an ~a-spoiler for q2 w.r.t. Aw. It
is not hard to verify that there are only exponentially many
such tuples. For each tuple, verify whether it satisfies condi-
tions 1 to 4 of compact witnesses. This can clearly be done
in polynomial time for conditions 1 to 3, and thus it remains
to deal with condition 4. This is less straightforward, and we
use an automaton construction to show the following.

Proposition 14. Given an EL⊥-TBox T , an ABox signa-
ture Σ, and sets of ELu-concepts Ψ1 and Ψ2, it is in EX-
PTIME to decide whether there is a tree-shaped Σ-ABox A
with root a such that

1. A is consistent w.r.t. T ;
2. T ,A |= C(a) for all C ∈ Ψ1;
3. T ,A 6|= C(a) for all C ∈ Ψ2.

We thus obtain the desired upper bound:

Theorem 15. CQ-containment in EL⊥ is in EXPTIME.

5 Containment in EL, Classical TBoxes
A classical EL-TBox is a set T of concept definitionsA ≡ C
such that each A is a concept name and no concept name
appears on the left-hand side of multiple definitions. T is
called acyclic if it is classical and no concept name depends
on itself; that is, for any sequence A0 ≡ C0, . . . , An ≡ Cn

in T with Ai+1 a subconcept of Ci, 0 ≤ i < n, A0 is not a
subconcept of Cn. The length of a longest such sequence is
called the definitorial depth d(T) of an acyclic TBox T .

We show that IQ-containment is tractable for classical
EL-TBoxes and CQ-containment is PSPACE-complete for

acyclic EL-TBoxes. The PSPACE lower bound holds al-
ready for single TBox CQ-containment and full signature
CQ-containment. The exact complexity of CQ-containment
for (possibly cyclic) classical EL-TBoxes remains open be-
tween PSPACE and EXPTIME.

Theorem 16. IQ-containment in EL with classical TBoxes
is in PTIME.

The proof of Theorem 16 applies techniques introduced
in (Konev, Walther, and Wolter 2008; Konev et al. 2011)
for proving that conservative extensions, Σ-entailment and
Σ-inseparability between classical EL-TBoxes are tractable.
Here, we consider in more detail CQ-containment for
acyclic EL-TBoxes.

Theorem 17. CQ-containment in EL with acyclic TBoxes
is in PSPACE.

The polynomial reduction of CQ-containment to single
TBox CQ-containment given in Theorem 3 can be modi-
fied to prove that CQ-containment for acyclic EL-TBoxes is
polynomially reducible to single TBox CQ-containment for
acyclic EL-TBoxes. Thus, it suffices to prove the PSPACE
upper bound for single TBox containment. Note that we can
w.l.o.g. assume that Σ contains a distinguished role name r@

that does not occur in the TBox and the queries since adding
such a name does not impact the result of deciding contain-
ment.

We use a variation of the algorithm described in Section 4,
and in particular Theorem 13. The central observation is that
a PSPACE procedure for single TBox CQ-containment w.r.t.
acyclic EL-TBoxes is obtained by guessing a candidate tuple
for a compact witness and then using a variant of Proposi-
tion 14 to verify that it is indeed a compact witness. The
additional role name r@ can be traced all the way through to
Proposition 14, thus it suffices to prove the following.

Proposition 18. Given an acyclic EL-TBox T , an ABox sig-
nature Σ, and sets of ELu-concepts Ψ1 and Ψ2 such that the
role name r@ occurs in Σ, but not in T , Ψ1, and Ψ2, it is in
PSPACE to decide whether there is a tree-shaped Σ-ABoxA
with root a such that Points 1 to 3 of Proposition 14 hold.

Proof. (sketch) We assume that T is in a certain normal
form in which each A ≡ C is of the form A ≡ ∃r.B or
A ≡ B1u· · ·uBn, whereB,B1, . . . , Bn are concept names;
details are given in the long version. Call a concept name A
primitive in T if it does not occur on the left hand side of a
concept definition in T . Let Ψi = Ψl

i ∪ {∃u.C | C ∈ Ψu
i },

where Ψl
i and Ψu

i are sets of EL-concepts, for i = 1, 2. Let
S be the set of subconcepts of T ∪Ψl

1 ∪Ψu
1 ∪Ψl

2 ∪Ψu
2 and

w.l.o.g. > ∈ S.
We define a recursive polynomial space procedure com-

puting the predicate ABox(Γ, k) for Γ ⊆ S such that
ABox(Γ, k) = 1 iff there is a tree-shaped Σ-ABox A with
root a of depth ≤ k and such that T ,A |= C(a) iff C ∈ Γ
(for all C ∈ S), and T ,A 6|= ∃u.C(a) for all C ∈ Ψu

2 .
ABox(Γ, 0) = 1 can be checked in polyspace. For n > 0,
one can show that ABox(Γ, n) = 1 if and only if the follow-
ing conditions are satisfied:

(b1) > ∈ Γ and Ψu
2 ⊆ S \ Γ;

227

(b2) for all C1, C2 ∈ S: if C1 ∈ Γ and T |= C1 v C2, then
C2 ∈ Γ;

(b3) for all A ∈ Γ ∩ Σ and C ∈ Ψu
2 : T 6|= A v ∃u.C;

(b4) for all A primitive in T : A ∈ Γ iff there exists B ∈
Σ ∩ Γ such that T |= B v A;

(b5) for all ∃r.C ∈ S: ∃r.C ∈ Γ iff there exists B ∈ Σ ∩ Γ
such that T |= B v ∃r.C or there exist Γ′ ⊆ S such
that, recursively: (1) C ∈ Γ′, (2) for all D ∈ S: if T |=
∃r.(uΓ′) v D, then D ∈ Γ, (3) ABox(Γ′, n− 1) = 1.

Conditions (b1) to (b5) can be checked in polyspace. Let
d(S) denote the maximal number of nestings of existential
restriction in concepts from S. Now one can show that an
ABox with the properties from Proposition 18 exists if
1. there exists Γ ⊆ S such that ABox(Γ, d(T) + d(S)) = 1,

Ψl
1 ⊆ Γ and Ψl

2 ∩ Γ = ∅;
2. for all C ∈ Ψu

1 : there exists Γ ⊆ S such that
ABox(Γ, d(T) + d(S)) = 1 and C ∈ Γ or T |= A v
∃u.C for some A ∈ Γ ∩ Σ.

One obtains the required tree-shaped Σ-ABox by adding the
roots of the tree-shaped Σ-ABoxes obtained in Point 2 for
C ∈ Ψu

1 as r@-successors to the root of the Σ-ABox ob-
tained in Point 1. o

We now state the matching lower bound.
Theorem 19. CQ-containment in EL with acyclic TBoxes is
PSPACE-hard. This is true already for single TBox and full
signature containment.
We consider single TBox containment and give a poly-
time reduction of the validity of QBF formulas ϕ =
Q1p1. . . . Qnpn.ϑwith ϑ = u

c∈C
c a propositional formula in

CNF, C its clauses, and Qi ∈ {∀, ∃}, for 1 ≤ i ≤ n. Recall
that a validation tree for ϕ is a tree of depth n in which every
level (except the leaves) corresponds to one of the quantifiers
in ϕ. In ∀pi-levels, each node has two successors, one for
pi = > and one for pi = ⊥. In ∃pi-levels, each node has
one successor, either for pi = > or for pi = ⊥. Thus, every
branch of a validation tree corresponds to a truth assignment
to the variables p1, . . . , pn, and it is required that the propo-
sitional formula ϑ evaluates to true on every branch. We say
ϕ is valid iff there exists a validation tree for ϕ.

Now let ϕ = Q1p1. . . . Qnpn.ϑ be of the form above. In
the reduction, the existence of a validation tree is encoded
in the existence of a Σ-ABox A that witnesses q1 6⊆T ,Σ q2.
To encode the tree structure, we use a role name r to rep-
resent the edges of the validation tree, and the concept
names L0, . . . , Ln to identify the n levels. The truth values
of the variables p1, . . . , pn are represented via the concept
names P1, . . . , Pn (indicating truth) and P̄1, . . . , P̄n (indi-
cating falsity). Concept names V1, . . . , Vn are used to in-
dicate that either Pi or P̄i holds. Finally concept names
Pc, c ∈ C, indicate that the clause c of ϑ is true. We set
Σ = {r} ∪ {Pi, P̄i | i ≤ n} and let T consist of, for i ≤ n:

Pi v Vi u u
Pi∈c,c∈C

Pc, P̄i v Vi u u
P̄i∈C,c∈C

Pc,

for i < n and Qi = ∀:
Li ≡ ∃r.(Pi+1uLi+1uu

j≤i
Vj)u∃r.(P̄i+1uLi+1uu

j≤i
Vj),

for i < n and Qi+1 = ∃: Li ≡ ∃r.(Li+1 u u
j≤i+1

Vj),

and, finally, Ln ≡ u
c∈C

Pc.

Observe that if T ,A |= L0(a) for a Σ-ABox A, then one
can show by induction that there exists a tree in A with root
a satisfying Li at every node of level i and satisfying Pi∨ P̄i

at all nodes of level j with n ≥ j ≥ i (since Vi is satisfied
in all those nodes and this can only be enforced by Pi ∨ P̄i).
Moreover, in ∀pi-levels we have a successor node in which
Pi holds and a successor node in which P̄i holds. Finally,
Pc is true in all leaf nodes for all c ∈ C. We, therefore,
have a validation tree in which ϑ evaluates to true in every
leaf iff there exists a Σ-ABox A with T ,A |= L0(a) and
T ,A 6|= C(a), for every C ∈ C, where

C := {∃rj .(Pi u P̄i) | 1 ≤ j ≤ n, 1 ≤ i ≤ n} ∪
{∃rj .(P̄i u ∃r.Pi) | 1 ≤ j ≤ n− 1, 1 ≤ i < n} ∪
{∃rj .(Pi u ∃r.P̄i) | 1 ≤ j ≤ n− 1, 1 ≤ i ≤ n}

It follows that ϕ is valid iff L0(x) 6⊆T ,Σ t
C∈C

C(x). It now

remains to encode the disjunction on the right-hand-side of
this containment problem into an extension of L0(x) to a
CQ. This is done in the long version by modifying a con-
struction from a lower bound proof for ABox updates in EL
(Liu, Lutz, and Milicic 2008). The proof for full signature
containment is similar.

6 Containment in Expressive DLs
For ALC and ALCI, we establish a PNEXP upper bound
on IQ-containment using the same technique that was used
in (Baader et al. 2010) to prove such an upper bound
for query emptiness. Embarrassingly enough, we do not
know whether this bound is tight, neither for emptiness nor
for containment, and we do not even know whether CQ-
containment is decidable in ALC and ALCI. In ALCF ,
both IQ-containment and CQ-containment are undecidable
as a direct consequence of the corresponding results for
query emptiness, shown in (Baader et al. 2010).

Fix IQs A1(x), A2(x), a consistent ALCI-TBox T , and
an ABox signature Σ such that it is to be decided whether
A1(x) ⊆T ,Σ A2(x). The central observation is that one can
construct, in exponential time, a single candidate Σ-ABox
AT ,Σ such that A1(x) 6⊆T ,Σ A2(x) iff T ,AT ,Σ |= q1[a]
and T ,AT ,Σ 6|= q2[a] for some a ∈ Ind(AT ,Σ). AT ,Σ

is called the canonical Σ-ABox for T and constructed as
follows. The closure cl(T ,Σ) is the smallest set that con-
tains Σ ∩ NC as well as all concepts that occur (potentially
as a subconcept) in T and is closed under single nega-
tions. A type for T and Σ is a set t ⊆ cl(T ,Σ) such
that for some model I of T and some d ∈ ∆I , we have
t = {C ∈ cl(T ,Σ) | d ∈ CI}. Let TT ,Σ denote the set of
all types for T and Σ. Let at be mutually distinct individual
names for t ∈ TT ,Σ and define AT ,Σ as follows:

AT ,Σ = {A(at) | A ∈ t ∩ Σ and t ∈ TT ,Σ} ∪
{r(at, at′) | t, t′ ∈ TT ,Σ and r ∈ Σ and
for all ∃r.C ∈ cl(T ,Σ) : C ∈ t′ ⇒ ∃r.C ∈ t}.

228

The set TT ,Σ can be computed in exponential time by mak-
ing use of well-known EXPTIME procedures for concept sat-
isfiability w.r.t. TBoxes inALCI (Baader et al. 2003). Thus,
AT ,Σ can be computed in exponential time.

The main property of AT ,Σ is that A1(x) ⊆T ,Σ A2(x)
iff certT (A1(x),AT ,Σ) ⊆ certT (A2(x),AT ,Σ), which is
proved using homomorphisms between ABoxes. Based on
AT ,Σ, we can now prove the main result of this section.

Theorem 20. IQ-containment in ALCI is in PNEXP.
Proof. By Theorem 3, it is sufficient to consider single
TBox containment. We show that non-containment is in
NPNEXP and derive from NPNEXP ⊆ PNEXP the desired re-
sult (Hemachandra 1987). Let T be a consistent ALCI-
TBox, Σ be an ABox signature, and A1(x), A2(x) be IQs
for which it is to be decided whether A1(x) ⊆T ,Σ A2(x)
is not the case. The algorithm guesses a ∈ Ind(AT ,Σ),
and then checks (1) a ∈ certT (A1(x),AT ,Σ) and (2)
a 6∈ certT (A2(x),AT ,Σ), by calling a NEXPTIME ora-
cle that decides the following problem: given an ALCI-
TBox T ′, signature Σ′, individual a′ ∈ Ind(AT ′,Σ′) and
IQ A(x), does a′ 6∈ certT ′(A(x),AT ′,Σ′) hold? Such an
oracle exists: it computes the canonical ABox AT ′,Σ′ and
guesses a map π : Ind(AT ′,Σ′) → TT ′,Σ′ and accepts if
(i) A /∈ π(a′), (ii) C(c) ∈ AT ′,Σ′ implies C ∈ π(c), and
(iii) r(b, c) ∈ AT ′,Σ′ , C ∈ π(c), and ∃r.C ∈ cl(T ′,Σ′) im-
plies ∃r.C ∈ π(b). o

The best known lower bound for IQ-containment in ALC
and ALCI is EXPTIME. It stems from an easy reduction of
unsatisfiability inALC: a concept C is unsatisfiable w.r.t. T
iff A(x) ⊆T ,Σ B(x) where Σ = {A} and T = {A v C}.

We close with stating undecidability for ALCF .
Theorem 21. In ALCF , IQ-containment and CQ-
containment are undecidable.

7 Query Optimization
A classical result by Chandra and Merlin states that, in rela-
tional databases, any two CQs that are equivalent and min-
imal w.r.t. set inclusion must be isomorphic (Chandra and
Merlin 1977). Given a CQ q, one can thus find the unique
minimal CQ that is equivalent to q by applying lazy min-
imization: repeatedly remove atoms that are redundant in
the sense that dropping them preserves equivalence. The or-
der in which atoms are dropped is irrelevant, and thus the
only non-trivial part is checking equivalence (i.e., two query
containment checks).

It is not hard to see that, in the presence of TBoxes,
Chandra-Merlin uniqueness of minimal CQs fails. This is
true even for the classical version of query containment, the
full signature single TBox case, which we will generally as-
sume throughout this section. Given a TBox T , we call a
CQ q T -minimal w.r.t. set inclusion if there is no q′ (q
with q′ ≡T q.
Example 22. (1) Let T = {A ≡ B} and q(x) = A(x) ∧
B(x). Then q(x) ≡T A(x) and q(x) ≡T B(x), and both
A(x) and B(x) are T -minimal w.r.t. set inclusion, but not
isomorphic.

(2) T = {A w ∃r.(B1 u ∃s.>) u ∃r.(B2 u ∃s.>),

A v ∃r.(B1 uB2 u ∃s.>) }
q(x) = ∃y1, y2, y3.B1(y1) ∧B2(y2) ∧

r(x, y1) ∧ r(x, y2) ∧ s(y1, y3) ∧ s(y2, x3).

Then q(x) is T -minimal w.r.t. set inclusion, but equivalent
to the smaller (and non-isomorphic) query A(x).

Note that Example (1) above uses only CIs of the very sim-
ple form A v B and thus applies to any reasonable DL. The
second example, where the structural differences between
the original and minimized query is large, is formulated in
EL. While these examples demonstrate that naive lazy min-
imization does not yield the desired result in the presence of
DL TBoxes, we show in the following that strong guarantees
on minimized queries can be recovered when applying more
careful minimization strategies.

Optimization in DL-Lite
We consider the basic member DL-Litecore of the DL-Lite
family. A first observation is that, although the result of stan-
dard lazy minimization is not unique, it still yields queries of
minimum cardinality. In the following, we use #q to denote
the number of atoms in the CQ q. Clearly, one can view a
CQ q as an ABox Aq by treating concept atoms as concept
assertions and role atoms as role assertions. We say that q is
consistent with T if Aq and T have a common model.

Theorem 23. Let T be a DL-Litecore-TBox and q1, q2 CQs
such that q1 ≡T q2 and q1, q2 are T -minimal w.r.t. set in-
clusion and consistent with T . Then #q1 = #q2.

We now show that even stronger guarantees can be obtained,
concentrating on the class of rooted CQs, which are con-
nected CQs that contain at least one answer variable or indi-
vidual name. For these, we show that by adopting a suitable
minimization strategy, we can find an equivalent query that
is T -minimal w.r.t. set inclusion and whose relational struc-
ture (restriction to role atoms) can be found in any equivalent
query as a subquery. The strategy also guarantees a unique
result of query minimization, similarly to Chandra and Mer-
lin. We slightly generalize CQs and ABoxes by also admit-
ting concept atoms of the form ∃r(t) and ABox assertions
of the form ∃r(a).

Let T be a DL-Litecore-TBox. To break ties between
equivalent concepts during minimization (see Part (1) of Ex-
ample 22), we fix a strict partial order < on the concepts
that occur in T such that T |= C ≡ D implies C < D or
D < C and, conversely, C < D implies T |= C ≡ D.
Now, the minimization of a rooted CQ q that is consistent
with T proceeds in three phases:

1. maximally extend q w.r.t. concept atoms: add C(t) to q
whenever T ,Aq |= C(t) and t ∈ term(q);

2. exhaustively remove redundant role atoms, in any order;

3. exhaustively remove redundant concept atoms; when two
atomsC(t) andD(t) are both redundant, dropD(t) rather
than C(t) whenever (i) T |= C v D, but not T |= D v
C or (ii) T |= C ≡ D and C < D.

229

It can be shown that applying this minimization strategy to
a rooted CQ again yields a rooted CQ (or a CQ without any
atoms, a special case that is easy to handle). It is easy to
see that any query produced according to this strategy is T -
minimal w.r.t. set inclusion (thus Theorem 23 applies).

Example 24. Consider T = {A ≡ ∃r, ∃r− v B}, the
rooted CQ ∃y r(x, y) ∧ B(y), and < with A < ∃r. In
Step 1, we add the atoms A(x),∃r(x),∃r−(y). In Step 2,
we drop r(x, y), since this preserves equivalence under≡T .
In Step 3, we remove B(y) and ∃r−(y) since this again pre-
serves equivalence under ≡T . We also remove ∃r(x) since
∃r(x) ≡T A(x) but A < ∃r. We thus obtain A(x).

We can show that with the proposed strategy, we achieve
uniqueness of minimized queries as in the relational case.

Theorem 25. Let T be a DL-Litecore-TBox, q1, q2 rooted
CQs such that q1 ≡T q2 and q1, q2 are consistent with T ,
and q̂1, q̂2 CQs obtained from q1 and q2 by applying the min-
imization strategy. Then q̂1 and q̂2 are isomorphic.

To see why we need rooted CQs, consider the unrooted CQs
q1 = ∃xA(x) and q2 = ∃xB(x), the TBox T = {A ≡
∃r,B ≡ ∃r−}, and < such that A < ∃r and B < ∃r−.
Then q1 ≡T q2, q̂1 = q1, q̂2 = q2, but q1 and q2 are not
isomorphic.

We write qr to denote the CQ obtained from q by dropping
all concept atoms, i.e., only the role atoms are kept. The
queries produced by the strategy are optimal regarding their
relational structure in following sense.

Theorem 26. Let T be a DL-Litecore-TBox, q1, q2 rooted
CQs with q1 ≡T q2 that are consistent with T , and let q̂1

be obtained from q1 by the minimization strategy. Then q̂r1 is
isomorphic to a subquery of q2.

As a consequence, the minimization strategy yields an
acyclic CQ iff any acyclic CQ is equivalent to q w.r.t. T .
The same holds for queries of bounded treewidth or with
other desirable relational properties.

Optimization in EL
We show that, in EL, there is a minimization strategy which
is guaranteed to produce an acyclic CQ whenever the origi-
nal CQ is equivalent to any acyclic CQ.

Let T be an EL-TBox. We introduce a slightly different
notion of fork elimination than was used in Section 4. A
t1, t2-fork in a CQ q consists of atoms r(t1, t), r(t2, t) ∈ q
or r(t, t1), r(t, t2) ∈ q such that t1 6= t2. A t1, t2-fork is
eliminated by identifying t1 and t2. Starting with an input
CQ q, our minimization strategy is to exhaustively elimi-
nate forks such that T -equivalence is preserved, in any order.
By the following lemma and as any given CQ admits only
finitely many consecutive fork eliminations, we are guaran-
teed to find an acyclic CQ if there is one.

Lemma 27. Let T be an EL-TBox and q a CQ that is not
acyclic, but such that q ≡T p for some acyclic CQ p. Then
q contains a fork whose elimination yields q′ with q ≡T q′.

In the long version, we show that, in a second step, we can
further minimize the query such that it has a minimum num-
ber of variables among all equivalent queries while preserv-
ing acyclicity. This is at the expense of introducing query
atoms C(t) with C a subconcept of the TBox.

8 Related Work in Database Theory
Query containment is a central notion in relational database
theory, due to its importance in query optimization (cf.
(Abiteboul, Hull, and Vianu 1995) and references therein).
Of greater relevance to the present paper is work on con-
tainment of datalog programs. Formally, a datalog pro-
gram P is contained in another program P ′ with respect
to a target predicate q if for every input database D over
the (shared) input signature, the output tuples for q w.r.t.
(P,D) are a subset of those obtained for (P ′, D). This is
broadly similar to our setting, with the datalog rules play-
ing the role of the TBox. Datalog containment was studied
in the context of optimizing datalog programs by removing
atoms or rules while preserving equivalence. Because equiv-
alence of datalog programs is undecidable (Shmueli 1987),
the emphasis is on sound, but incomplete approaches (Sagiv
1987). It is relevant to note that containment of monadic
datalog programs is decidable (Cosmadakis et al. 1988),
which might conceivably be used to obtain an alternative
proof of decidability of some of our problems. Note, how-
ever, that any such proof would be rather involved (due to
the necessity of compiling away existential restrictions), and
would not yield optimal complexity results since the best-
known upper bound for monadic datalog containment is 2-
EXPTIME (Cosmadakis et al. 1988). Finally, we note that in
both the relational and deductive database settings, semantic
query optimization (Chakravarthy, Grant, and Minker 1990)
is based on a variant of containment that is relativized to
the class of databases satisfying a given set of integrity con-
straints. This can be compared to our setting in which both
the restricted ABox signature and the required consistency
with the TBox act as constraints on the possible ABoxes.

9 Future Work
As noted earlier, using the ABox signature during optimiza-
tion can lead to shorter equivalent queries. Unfortunately,
the guarantees we obtained in Section 7 regarding the out-
come of query minimization no longer hold in the presence
of an ABox signature or two TBoxes. Thus, a relevant ques-
tion for future research is the design of minimization strate-
gies for the generalized versions of query containment.

It would be worthwhile to extend our investigation to
other query languages, like unions of conjunctive queries
(UCQs) or positive existential queries (PEQs). This enables
further applications, such as verifying query rewritings that
allow to implement CQ answering in the presence of DL
TBoxes using relational database systems (Calvanese et al.
2007): given a CQ q and TBox T and a rewriting of q and T
into a UCQ or PEQ q′, check whether (q, T) ≡ (q′, ∅), i.e.,
whether q′ is an ‘FO-rewriting’ of q relative to T .
Acknowledgements Carsten Lutz was supported by the
DFG SFB/TR 8 “Spatial Cognition”.

230

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.
Artale, A.; Calvanese, D.; Kontchakov, R.; and Za-
kharyaschev, M. 2009. The DL-Lite family and relations. J.
of Artificial Intelligence Research 36:1–69.
Baader, F.; McGuiness, D. L.; Nardi, D.; and Patel-
Schneider, P., eds. 2003. The Description Logic Handbook.
Cambridge University Press.
Baader, F.; Bienvenu, M.; Lutz, C.; and Wolter, F. 2010.
Query and predicate emptiness in description logics. In
Proc. of KR, 192–202.
Baader, F.; Brandt, S.; and Lutz, C. 2005. Pushing the EL
envelope. In Proc. of IJCAI, 364–369.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. J. of
Automated Reasoning 39(3):385–429.
Calvanese, D.; Giacomo, G. D.; Lembo, D.; Lenzerini, M.;
Poggi, A.; Rodriguez-Muro, M.; Rosati, R.; Ruzzi, M.; and
Savo, D. F. 2011. The MASTRO system for ontology-based
data access. Semantic Web 2(1):43–53.
Calvanese, D.; De Giacomo, G.; and Lenzerini, M. 1998.
On the decidability of query containment under constraints.
In Proc. of PODS, 149–158.
Calvanese, D.; Ortiz, M.; and Simkus, M. 2011. Contain-
ment of regular path queries under description logic con-
straints. In Proc. of IJCAI, 805–812.
Chakravarthy, U. S.; Grant, J.; and Minker, J. 1990. Logic-
based approach to semantic query optimization. ACM Trans-
actions on Database Systems 15(2):162–207.
Chandra, A. K., and Merlin, P. M. 1977. Optimal imple-
mentation of conjunctive queries in relational data bases. In
Proc. of STOC, 77–90.
Cosmadakis, S. S.; Gaifman, H.; Kanellakis, P. C.; and
Vardi, M. Y. 1988. Decidable optimization problems for
database logic programs (preliminary report). In Proc.of
STOC, 477–490.
Glimm, B.; Lutz, C.; Horrocks, I.; and Sattler, U. 2008.
Conjunctive query answering for the description logic
SHIQ. J. of Artificial Intelligence Research 31:157–204.
Gonçalves, R. S.; Parsia, B.; and Sattler, U. 2011. Analysing
the evolution of the NCI thesaurus. In Proc. of CBMS, 1–6.
Hemachandra, L. A. 1987. The strong exponential hierarchy
collapses. In Proc. of STOC, 110–122.
Hustadt, U.; Motik, B.; and Sattler, U. 2005. Data com-
plexity of reasoning in very expressive description logics.
In Proc. of IJCAI, 466–471.
IHTSDO. 2008. SNOMED Clinical Terms User Guide.
The International Health Terminology Standards Develop-
ment Organisation (IHTSDO). Available from http://www.
ihtsdo.org/publications/snomed-docs/.
Jimnez-Ruiz, E.; Grau, B. C.; Horrocks, I.; and Llavori,
R. B. 2011. Supporting concurrent ontology development:

Framework, algorithms and tool. Data & Knowledge Engi-
neering 70(1):146–164.
Klein, M. C. A.; Fensel, D.; Kiryakov, A.; and Ognyanov,
D. 2002. Ontology versioning and change detection on the
web. In Proc. of EKAW, 247–259.
Konev, B.; Ludwig, M.; Walther, D.; and Wolter, F.
2011. The logical diff for the lightweight description
logic EL. Technical report, University of Liverpool,
http://www.liv.ac.uk/∼frank/publ/.
Konev, B.; Walther, D.; and Wolter, F. 2008. The logical
difference problem for description logic terminologies. In
Proc. of IJCAR, 259–274.
Kontchakov, R.; Lutz, C.; Toman, D.; Wolter, F.; and Za-
kharyaschev, M. 2010. The combined approach to query
answering in DL-Lite. In Proc. of KR, 247–257.
Liu, H.; Lutz, C.; and Milicic, M. 2008. The projection
problem for EL actions. In Proc. of DL.
Lutz, C.; Toman, D.; and Wolter, F. 2009. Conjunctive
query answering in the description logic EL using a rela-
tional database system. In Proc. of IJCAI, 2070–2075.
Lutz, C. 2008. The complexity of conjunctive query an-
swering in expressive description logics. In Proc. of IJCAR,
179–193.
Noy, N. F., and Musen, M. A. 2002. PromptDiff: A fixed-
point algorithm for comparing ontology versions. In Proc.
of AAAI, 744–750.
Ortiz, M.; Rudolph, S.; and Simkus, M. 2011. Query
answering in the Horn fragments of the description logics
SHOIQ and SROIQ. In Proc. of IJCAI, 1039–1044.
Pérez-Urbina, H.; Horrocks, I.; and Motik, B. 2009. Effi-
cient query answering for OWL 2. In Proc. of ISWC, 489–
504.
Sagiv, Y., and Yannakakis, M. 1980. Equivalences among
relational expressions with the union and difference opera-
tors. J. of the ACM 27(4):633–655.
Sagiv, Y. 1987. Optimizing datalog programs. In Proc. of
PODS, 349–362.
Shmueli, O. 1987. Decidability and expressiveness of logic
queries. In Proc. of PODS, 237–249.
Sioutos, N.; de Coronado, S.; Haber, M.; Hartel, F.; Shaiu,
W.; and Wright, L. 2006. NCI thesaurus: a semantic model
integrating cancer-related clinical and molecular informa-
tion. J. of Biomedical Informatics 40(1):30–43.

231

