
Paradoxes of Multiple Elections: An Approximation Approach

Vincent Conitzer
Department of Computer Science

Duke University
Durham, NC 27708, USA

conitzer@cs.duke.edu

Lirong Xia
School of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138, USA

lxia@seas.harvard.edu

Abstract
When agents need to make decisions on multiple issues, ap-
plying common voting rules becomes computationally hard
due to the exponentially large number of alternatives. One
computationally efficient solution is to vote on the issues se-
quentially. In this paper, we investigate how well the winner
under the sequential voting process approximates the winners
under some common voting rules that admit natural scoring
functions that can serve as a basis for approximation results.
We focus on multi-issue domains where each issue is bi-
nary and the agents’ preferences are O-legal, separable, rep-
resented by LP-trees, or lexicographic. We show some gener-
alized paradoxes of multiple elections: Sequential voting does
not approximate many common voting rules well even when
the preferences are O-legal or separable. However, these
paradoxes are much alleviated or even completely avoided
when the preferences are lexicographic or represented by
LP-trees. Our results thus draw a border for conditions un-
der which sequential voting rules, which have extremely low
computational and communicational cost, are good approxi-
mations of some common voting rules w.r.t. their correspond-
ing scoring functions.

Introduction
In many situations, a set of agents (voters) has to decide col-
lectively on the value of each one of a finite set of variables,
or issues. Each of the issues can take its value from a given
finite domain. Typical examples of such situations include
multiple referenda, were local communities have to make
decisions on possibly interrelated issues, or committee elec-
tions, where a set of voters has to choose a representative
committee.

Arguably the simplest solution consists in voting sepa-
rately on each variable in parallel. This solution is imple-
mented in many real-life settings, presumably because of
its simplicity. As (Brams, Kilgour, and Zwicker 1998) and
later (Lacy and Niou 2000) show, this solution can lead
to extremely undesirable outcomes; examples of this phe-
nomenon are called multiple election paradoxes. The first
type of multiple election paradox, analyzed in (Brams, Kil-
gour, and Zwicker 1998), can be seen in the following ex-
ample. Suppose we have 3 binary issues A,B,C whose do-
mains are, respectively, {a, ā}, {b, b̄}, {c, c̄}, on which the
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voters vote in parallel. Let there be 3 voters, one voting abc̄,
one ab̄c, and one ābc. Then the winning outcome is abc,
although abc did not receive a single vote. A more severe
example arises with 4 issues (Example 3 in (Brams, Kil-
gour, and Zwicker 1998), where the winning alternative is
the unique alternative receiving the fewest plurality votes.
Therefore, parallel voting can elect the plurality loser, and
since the example does not require any restriction of the
voters’ preferences below their top alternative, this prop-
erty holds even if all voters have separable preferences. (A
voter’s preferences are separable if her preferences for each
issue do not depend on the values of the other issues.)

However, the impact of this result is arguably limited, be-
cause it focuses on plurality. We may wonder to what extent
it extends to other voting rules. We will focus on those based
on a score: given a rule r consisting in electing an alterna-
tive that maximizes a score function Sr, and given a profile
consisting of separable preference relations on a multi-issue
domain (composed of binary issues), what can we say about
the score of the winner obtained by applying issue-wise ma-
jority? How does it compare to the score of the winner ac-
cording to r? A natural way to answer these questions is
to analyze the worst possible ratio between the score of the
issue-wise majority winner and the score of the winner ac-
cording to r. These ratios will help us to identify voting rules
that issue-wise majority approximates best, and thus help us
to better understand the properties of issue-wise majority.

Now, there is no reason to consider only profiles of sep-
arable preferences. As shown in (Lang and Xia 2009), pro-
vided that there exists an order O on the p binary issues,
say x1 > · · · > xp, such that for every i ≤ p, every
agent’s preference for xi does not depend on the values
of {xi+1, . . . ,xp} (in which case the profile is called O-
legal), then sequential majority voting can be defined in a
natural way: elicit the voters’ preferences for x1 and fix
the value (0 or 1) according to the majority rule (possibly
with a tie-breaking mechanism if we have an even num-
ber of voters); then, elicit the voters’ preferences for x2

given the value collectively chosen for x1; etc. This results
in a sequential majority winner (with respect to the order
O = x1 > · · · > xp). Just as we argued above for issue-
wise majority, we would like to know how well sequen-
tial majority approximates standard voting rules. This will
give us insight into the fundamental properties of sequential
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majority voting and help to justify (or not) its use. Specifi-
cally, if we can prove that sequential majority voting approx-
imates a given voting rule r well, then, given that applying
sequential majority voting is computationally and commu-
nicationally cheap (while r will generally not be, given the
prohibitive size of the domain), this is a good reason to use
sequential majority voting instead of applying r directly.

Our Contributions
Some common voting rules, include Borda, k-approval,
Copeland, maximin, Bucklin, and Dodgson, admit natural
scoring functions that can serve as a basis for approximation
results. Our results are summarized in Table 1. We note that
m is the number of alternatives, that is, m = 2p, where p is
the number of issues and n is the number of voters.

Rule O-legal Separable LP-trees Lex.
Borda Θ(

√
m) 3/2 + o(1)

k-approval ∞
(k < m− 2

√
m)

∞ (k < m/4)
Θ(n) (m/4 ≤ k < m/2)
Θ(1) (m/2 ≤ k ≤ m)

Bucklin Θ(m) 2 + o(1)
Copeland Θ(m/ logm) 1
Maximin 2n/(n + 1) 1
Maximin

(alt. score) ∞ 1

Dodgson Ω(m) 1

Table 1: The approximation ratio obtained by the sequential win-
ner for several common rules with a natural scoring function. We
investigate two score functions for maximin.

It can be seen from the table that for many common rules,
sequential majority voting is not a good approximation when
profiles are all O-legal or even if they are all separable (in
which case sequential voting coincides with parallel issue-
wise majority). However, when profiles are lexicographic,
or composed of LP-trees (Booth et al. 2010) with the same
structure, we obtain much more positive results. (We will de-
fine these concepts shortly.) For most voting rules we study,
there is a huge improvement in the approximation ratio. In
particular, in these cases, there always exists a Condorcet
winner, and the sequential majority rule always selects it.
Therefore, the sequential majority rule coincides with every
Condorcet consistent voting rule, e.g., Copeland, maximin,
and Dodgson. As can be seen from the table, the ratio is also
much improved for rules that are not Condorcet consistent.
These positive results suggest that, among voting methods
with a low cost in terms of computation and communica-
tion, sequential majority voting is a promising one—at least
in settings where the voters’ preferences are lexicographic,
or, more generally, where they can be represented by LP-
trees with the same structure.

In addition to these technical contributions, we also feel
that the approximation approach taken in this paper has the
following conceptual contributions. On the social choice
side, we view traditional paradoxes of multiple elections
as inapproximability results, which provides us a princi-
pled way to examine whether voting in multi-issue domains
exhibits more general paradoxes. On the computer science
side, we show that voting in multi-issue domains is a rich

setting where the idea of approximation can be adopted to
explore the tradeoff between computational complexity of
the voting process and the quality of the winner.

Previous Work

The idea of approximating common voting rules that are
based on scoring functions is not new to this paper. Ap-
proximately computing the Dodgson score has been stud-
ied in (Caragiannis et al. 2009; 2010); approximately com-
puting the Young score has been studied in (Caragiannis
et al. 2010); approximating some common voting rules by
strategy-proof voting rules has been studied in (Procaccia
2010); approximating Copeland by voting trees has been
studied in (Fischer, Procaccia, and Samorodnitsky forthcom-
ing 2011); and scoring functions have been used as the basis
for computing alternatives that minimize the maximum re-
gret when there is some uncertainty in the profile (Lu and
Boutilier 2011). We note that in all of these papers, the set
of alternatives has no combinatorial structure, and a voter is
free to choose any linear order over the alternatives. In con-
trast, in our paper, we focus on multi-issue domains (so that
the number of alternatives is already exponentially large and
directly applying most common voting rules becomes com-
putationally intractable), and we restrict the voters’ prefer-
ences.

Discussions

One important question to ask is: Does this idea of approx-
imation based on specific scoring functions make sense?
Technically, any voting rule can be defined as the maxi-
mizer or minimizer of some scoring function (for example,
the score of an alternative can be 1 if it wins and 0 if it loses).
We feel that the approximation approach in multi-issue do-
mains is justified in two ways. First, as we have mentioned
earlier, in the social choice literature, paradoxes of multi-
ple elections can be interpreted as a special type of inap-
proximability results w.r.t. plurality scores. It is natural to
study the approximability and inapproximability w.r.t. some
other well-defined metrics, e.g., Borda score, Bucklin score,
Copeland score, etc. Second, as it has been argued in pre-
vious work, voting rules studied in this paper admit very
natural scoring functions that measure the quality of an al-
ternative. Hence, these scoring functions serve well as bases
for approximation. For example, the Borda score of an al-
ternative (which we will define shortly) can be seen as the
social welfare in terms of a specific type of utility functions.
Moreover, in combinatorial domains, the number of alterna-
tives is already exponentially large, so that it is not clear how
to efficiently compute the winners for these common voting
rules.1 It should also be noted that a scoring function can
produce ties, but this does not matter from the perspective
of approximation.

1Brams, Kilgour, and Zwicker (1997) argued that, when the
number of issues is not large, applying common voting rules seems
to be better than applying sequential majority.
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Preliminaries
Let X be the set of alternatives, |X | = m. A vote is a linear
order over X . The set of all linear orders over X is denoted
by L(X ). For any c ∈ X and V ∈ L(X ), we let rankV (c)
denote the position of c in V . An n-profile P is a collection
of n votes for some n ∈ N, that is, P ∈ L(X )n. A voting
rule r is a mapping that assigns to each n-profile a unique
winning alternative. That is, r : L(X )n → X . A scoring
function S is a mapping L(X )n × X → R. Often, a voting
rule is defined to be the mapping that finds the alternative
that maximizes or minimizes the score according to a partic-
ular scoring function. Below are some common voting rules.
In all these voting rules, we assume that n is odd.
• Positional scoring rules: Given a scoring vector ~v =

(v(1), . . . , v(m)) composed ofm integers, for any vote V ∈
L(X ) and any c ∈ X , let S~v(V, c) = v(rankV (c)). For any
profile P = (V1, . . . , Vn), let S~v(P, c) =

∑n
j=1 S~v(Vj , c).

The rule will select c ∈ X so that S~v(P, c) is maximized.
Some examples of positional scoring rules are Borda, for
which the scoring vector is (m − 1,m − 2, . . . , 0) and the
scoring function is denoted by SBorda; k-approval (Appk,
with k ≤ m), for which v(1) = · · · = v(k) = 1 and
v(k + 1) = · · · = v(m) = 0, and the scoring function is
denoted by Sk

App; and plurality (=1-approval), for which the
scoring vector is (1, 0, . . . , 0).
• Bucklin: An alternative c’s Bucklin score SBl(P, c) is

the smallest number l such that more than half of the voters
rank c in their top l positions. The winner is an alternative
that has the lowest Bucklin score.
• Copeland: For any two alternatives c and d, we can sim-

ulate a pairwise election between them, by seeing how many
votes rank c ahead of d, and how many rank d ahead of c;
the winner of the pairwise election is the one ranked higher
more often. Then, an alternative c’s Copeland score SC(P, c)
is the number of times it wins in pairwise elections. Since
we assume an odd number of voters, there can be no pair-
wise ties. The winner is an alternative that has the highest
Copeland score.
• Maximin: Let NP (c, d) denote the number of votes that

rank c ahead of d. The SMM score of an alternative c is de-
fined to be SMM(P, c) = max{NP (c′, c) : c′ ∈ X , c′ 6= c}.
The winner is an alternative c that has the lowest SMM score.
Alternatively, we can define the score of c to be the min-
imum number of times that c beats another alternative in
their pairwise election, and maximin selects the alterna-
tive that maximizes this score. That is, let SMMA(P, c) =
min{NP (c, c′) : c′ ∈ X , c′ 6= c}, and the winner is an alter-
native c that has the highest SMMA. The maximin rule itself,
of course, is unchanged. As we will see later, different met-
rics give us different approximation ratios.
• Dodgson: Given a profile P , an alternative c is the Con-

dorcet winner if it beats all other alternatives in pairwise
elections. The Dodgson score of an alternative c is the min-
imum number of swaps of neighboring alternatives in the
votes needed to make c a Condorcet winner. Let SD(P, c)
denote the Dodgson score. The winner is an alternative c
that has the lowest Dodgson score.

A voting rule r is Condorcet consistent if it always se-

lects the Condorcet winner whenever one exists. For exam-
ple, Copeland, maximin, and Dodgson are Condorcet con-
sistent.

Multi-Binary-Issue Domains
In this paper, the set of all alternatives X is a multi-binary-
issue domain. That is, let I = {x1, . . . ,xp} (p ≥ 2) be a
set of issues, where each issue xi takes a value in a binary
local domain Di = {0i, 1i}. The set of alternatives is X =
D1 × · · · ×Dp, that is, an alternative is uniquely identified
by its values on all issues. For any Y ⊆ I we denote DY =∏

xi∈Y Di.
CP-nets are a popular language that is used to model pref-

erences over multi-issue domains (Boutilier et al. 2004). A
CP-net N over X consists of the following two parts:

(a) a directed graph G = (I, E), and

(b) for each issue xi, a conditional preference table
CPT(xi), which consists of conditional linear preferences
�i

~d
over Di, for every setting ~d of the parents of xi in G

(denoted by ParG(xi)).

When G is acyclic, N is said to be an acyclic CP-net.
The preference relation �N induced by N is the tran-
sitive closure of {(ai, ~d, ~z) � (bi, ~d, ~z) | i ≤ p; ~d ∈
DParG(xi); ai, bi ∈ Di, ai �i

~d
bi;~z ∈ D−(ParG(xi)∪{xi})}.

If �N is asymmetric then N is consistent. It is known that
if G is acyclic, then N is consistent (Boutilier et al. 2004).

We say that a CP-net N is compatible with (or, follows)
an ordering O = x1 > x2 > · · · > xp, if xi being a par-
ent of xj in the graph of N implies that i < j. That is,
preferences over issues only depend on the values of earlier
issues inO. A CP-net is separable if there are no edges in its
graph, which means that there are no preferential dependen-
cies among issues. A linear order V overX extends a CP-net
N , denoted by V ∼ N , if it extends the partial order that
N induces. If N is compatible with O, then we say that V
is O-legal. V is separable if it extends a separable CP-net.
To present our results, we will use notations that represent
the projection of a vote/CP-net onto an issue xi (that is, the
voter’s local preferences over xi) given the setting of all par-
ents of xi, defined as follows. For any issue xi, any setting ~d
of ParG(xi), and any linear order V that extends N , we let
V |xi:~d

and N|xi:~d
denote the the projection of V (or, equiv-

alently, N ) to xi, given ~d. That is, each of these notations
evaluates to the linear order �i

~d
in the CPT associated with

xi.
The O-lexicographic extension of an O-legal CP-net N

is a linear order V over X such that for any 1 ≤ i ≤ p,
any ~di ∈ D1 × · · · × Di−1, any ai, bi ∈ Di, and any
~y, ~z ∈ Di+1×· · ·×Dp, if ai �N|

xi:
~di
bi, then (~di, ai, ~y) �V

(~di, bi, ~z). Intuitively, in the lexicographic extension of N ,
x1 is the most important issue, x2 is the next-most impor-
tant issue, and so forth; a desirable change to an earlier is-
sue always outweighs any changes to later issues. We note
that the O-lexicographic extension of any CP-net is unique
w.r.t. the orderO. We say that V ∈ L(X ) isO-lexicographic

181



(or lexicographic for short, when there is no risk of confu-
sion) if it is theO-lexicographic extension of anO-legal CP-
net N . For example, 0102 � 1102 � 0112 � 1112 is sepa-
rable (01 and 02 are always preferred) but not (x1 > x2)-
lexicographic (0102 � 1112 but 1102 � 0112). On the
other hand, 0102 � 0112 � 1112 � 1102 is (x1 > x2)-
lexicographic but not separable.

A profile P is O-legal (respectively, separable or lexico-
graphic) if each of its votes is O-legal (respectively, sepa-
rable or lexicographic). For any O-legal profile P , P |xi:~d

is the profile over Di that is composed of the projec-
tions of all votes in P on xi, given ~d. That is, suppose
P = (V1, . . . , Vn), and for any 1 ≤ i ≤ p, Vi ex-
tends Ni. Then, we have P |xi:~d

= (V1|xi:~d
, . . . , Vn|xi:~d

) =

(N1|xi:~d
, . . . ,Nn|xi:~d

).

We can now define the sequential majority rule Seqmaj
O .

For any O-legal profile P , Seqmaj
O (P ) = (d1, . . . , dp) ∈ X

is defined as follows. Let maj denote the majority rule. For
every i ≤ p, di = maj(P |xi:d1···di−1

). That is, the winner
is selected in p steps, one for each issue, in the following
way: in step i, di is selected by applying the majority rule
to the preferences of voters over Di, conditioned on the val-
ues d1, . . . , di−1 that have already been determined for the
issues that precede xi.

In this paper, we also study the case where the voters’
preferences are represented by Lexicographic Preference
trees (LP-trees) (Booth et al. 2010). LP-trees are a gener-
alization of lexicographic orders. An LP-tree is composed
of two parts: (1) a tree T where each node t is labeled by
an issue, denoted by Iss(t), such that each issue appears
once and only once on each path from the root to a leaf;
each non-leaf node either has two outgoing edges, labeled
by 0 and 1 respectively, or one outgoing edge, labeled by
{0, 1}. (2) A conditional preference table CPT(t) for each
node t, which is defined as follows. Let Anc(t) denote the
set of issues labeling the ancestors of t. Let Inst(t) (respec-
tively, NonInst(t)) denote the set of issues in Anc(t) that
have two (respectively, one) outgoing edge(s). There is a set
Par(t) ⊆ NonInst(t) such that CPT(t) is composed of the
agent’s local preferences over DIss(t) for all valuations of
Par(t). That is, suppose Iss(t) = xi, then for every valua-
tion ~u of Par(t), there is an entry in the CPT which is either
~u : 0i � 1i or ~u : 1i � 0i. Again, we can define the restric-
tion of an LP-tree/profile of LP-trees to t given ~u.

An LP-tree T represents a linear order �T over X as fol-
lows. Let ~d and ~e be two different alternatives. We start at the
root node troot and trace down the tree according to the value
of ~d, until we find the first node t∗ such that ~d and ~e differ on
Iss(t∗). That is, w.l.o.g. letting Iss(troot) = x1, if d1 6= e1,
then we let t = troot; otherwise, we follow the edge d1 to
examine the next node, and so on. Once t∗ is found, we let
U = Par(t∗) and let dU denote the sub-vector of ~d whose
components correspond to the nodes in U . In CPT(t∗), if
dU : dt∗ � et∗ , then ~d �T ~e; otherwise, ~e �T ~d. We
note that any lexicographic order is both O-legal and can be
represented by an LP-tree. However, LP-trees and O-legal
orders are not comparable in general. We use T and �T in-

terchangeably.
Example 1. Suppose there are three issues. An LP-tree is
illustrated in Figure 1. We have Iss(t) = x2, Anc(t) =
{x1,x2}, Inst(t) = {x1}, NonInst(t) = {x2}, and
Par(t) = {x2}. The linear order represented by the LP-tree
is 000 � 001 � 010 � 011 � 111 � 101 � 100 � 110,
where 000 is the abbreviation for 010203.

Figure 1: An LP-tree.

The sequential majority rule can easily be extended to ag-
gregate preferences represented by LP-trees with the same
structure. Let PT = (T1, . . . , Tn) denote a profile of LP-
trees with the same structure T (meaning that the graph of
each LP-tree is T ). We note that across these LP-trees the
parents as well as the CPTs of each node can be differ-
ent (but the labels on the nodes and branches must be the
same). In this paper, we will always assume that all LP-
trees in a profile have the same structure. The sequential
majority rule Seqmaj

T selects the winner ~d in the following
p steps. Let t denote the current node, starting at the root
node t1. In the first step, we use the majority rule to se-
lect the value of Iss(t1), denoted by dIss(t1), from the pro-
jection of PT onto t1; in the second step, we follow the path
dIss(t1) and reach a node t = t2. Then, we use the major-
ity rule to select dIss(t2) from the projection of PT onto t2
given dIss(t1); etc. We note that if a profile P composed of
LP-trees with the same structure T is also O-lexicographic,
then Seqmaj

T (P ) = Seqmaj
O (P ).

Approximating Common Rules when Profiles
are O-legal or Separable

In this section, we study how well the sequential major-
ity rule Seqmaj

O approximates certain common voting rules
when the profiles areO-legal or even separable. We first give
the general definition of the approximation ratio.
Definition 1. Let r1 and r2 be two voting rules, and let S
be a scoring function. We say that r1 is a θ-approximation
to r2 w.r.t. S if

max
P

{
S(P, r1(P ))

S(P, r2(P ))
,
S(P, r2(P ))

S(P, r1(P ))

}
= θ

By definition, if r2 selects an alternative whose S score
is maximized, then θ = maxP

{
S(P,r2(P ))
S(P,r1(P ))

}
; if r2 se-

lects an alternative whose S score is minimized, then θ =

maxP

{
S(P,r1(P ))
S(P,r2(P ))

}
.

In this section, P is taken over all n-profiles that are
O-legal (or that are separable). We note that any sep-
arable profile is also O-legal. Therefore, suppose r1 is
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a θ1-approximation (respectively, θ2-approximation) to r2
w.r.t. S when the profiles are O-legal (respectively, separa-
ble), then θ2 ≤ θ1. In other words, a lower bound on the ap-
proximation ratio for separable profiles is also a lower bound
on the approximation ratio for O-legal profiles; conversely,
an upper bound on the approximation ratio for O-legal pro-
files is also an upper bound on the approximation ratio for
separable profiles.

Generally, we will be interested in approximating a rule r
that maximizes (or minimizes) the scoring function S. The
reason that we need to mention S separately in the defi-
nition, rather than just saying that we try to approximate
r, is that r maximizes (or minimizes) many different scor-
ing functions—for example, for any number K ∈ R, r
also maximizes (or minimizes) S + K. However, usually
there is one such scoring function that is particularly natu-
ral. Throughout the paper, we assume that n is sufficiently
large, that is, n ≥ 2p+ 1 = 2 logm+ 1. This avoids triv-
ial versions of the question such as when there is only one
voter (in which case both Seqmaj

O and any other voting rule
in this paper select the top-ranked alternative of this voter).
We also assume that n is odd, so that there are no ties in the
rounds of sequential majority voting. We first give the fol-
lowing bounds, which are folklore results in social choice,
and whose proof is straightforward.

Proposition 1. For any profile P , we have the following.

1. If r~v is the positional scoring rule associated with the
vector ~v = (v(1), . . . , v(m)), then S~v(P, r~v(P )) ≥
dn

∑m
i=1 v(i)

m e. In particular, SBorda(P,Borda(P )) ≥
d(m− 1)n/2e and Sk

App(P,Appk(P )) ≥ dkn/me.
2. SC(P,Copeland(P )) ≥ d(m− 1)/2e.
3. SBl(P,Bucklin(P )) ≤ d(m+ 1)/2e.
4. SMM(P,Maximin(P )) ≤ n− 1.
5. SMMA(P,Maximin(P )) ≥ 1.
6. SD(P,Dodgson(P )) ≤ (m− 1)(bn/2c+ 1).

The following proposition (which follows from Theo-
rem 4 in (Xia, Conitzer, and Lang 2011)) states that the se-
quential winner can be ranked in an exponentially low po-
sition in every vote in a separable profile. We recall that in
multi-binary-issue domains, m = 2p.

Proposition 2 (Follows from Theorem 4 in (Xia, Conitzer,
and Lang 2011)). There exists a separable n-profile P such
that Seqmaj

O (P ) is ranked within the bottom 2bp/2c+1 + 1
positions in every vote in P .

By Proposition 1 and Proposition 2, we immediately ob-
tain the following proposition.

Proposition 3. When profiles are separable, Seqmaj
O is

an Ω(
√
m)-approximation to Borda w.r.t. SBorda; for any

k < m − 2
√
m, it is an ∞-approximation to Appk

w.r.t. Sk
App; for any positional scoring rule r~v , it is

an Ω

( ∑m
i=1 v(i)

m · v(m− 2
√
m)

)
-approximation to r~v; it is an

Ω(
√
m)-approximation to Copeland w.r.t. SC.

Proof. Let P be the separable profile in Proposition 1.
Let c = Seqmaj

O (P ). For Borda, the lower bound follows
from the observation that SBorda(P, c) ≤ 2bp/2c+1n ≤
2
√
mn = O(

√
mn) and SBorda(P,Borda(P )) = Ω(mn).

For k-approval, when k < m − 2bp/2c+1, Sk
App(P, c) = 0.

We note that m− 2bp/2c+1 ≥ m− 2
√
m. For any positional

scoring rule r~v , the lower bound follows after the observa-
tion that S~v(P, c) ≤ n~v(m − 2bp/2c+1) ≤ n~v(m − 2

√
m).

For Copeland, the total number of times that c is ranked
higher than an alternative (across all votes) is no more
than 2bp/2c+1n. Therefore, SC(P, c) ≤ 2bp/2c+1n/(n/2) ≤
4
√
m. Hence, SC(P,Copeland(P ))/SC(P, c) = Ω(

√
m). 2

The result for k-approval when k < m− 2
√
m consider-

ably strengthens the result obtained for plurality in (Brams,
Kilgour, and Zwicker 1998) (see Example 4), thus showing
that multiple election paradoxes go far beyond plurality vot-
ing.
Theorem 1. When profiles are O-legal (or profiles are
separable), Seqmaj

O is a Θ(
√
m)-approximation to Borda

w.r.t. SBorda.
Proof. We only need to prove the lower bound for sep-
arable profiles and the upper bound for O-legal profiles.
The lower bound has already been proved in Proposition 3.
We next prove the upper bound for O-legal profiles. Let
P = (V1, . . . , Vn) be an O-legal profile. Without loss of
generality, Seqmaj

O (P ) = ~1 = (11, . . . , 1p). For any j ≤ n,
let Ij ⊆ I denote the set of issues xi such that 11 · · · 1i−1 :
1i �Vj 0i. We have the following claim.

Claim 1. For any j ≤ n, there are at least 2|Ij | − 1 alter-
natives ranked lower than ~1 in Vj .

Proof. For any ~d = (d1, . . . , dp) ∈ X such that ~d takes
value 1 on all issues outside Ij (and ~d takes value 0 on
at least one issue in Ij), we next prove that ~1 �Vj

~d. Let
xi1 , . . . ,xiL be the issues for which ~d takes value 0 (with
L ≥ 1, {xi1 , . . . ,xiL} ⊆ Ij , and i1 < i2 < · · · < iL).
We recall that for any xi ∈ Ij , 11 · · · 1i−1 : 1i �Vj

0i.
Therefore, for any l ≤ L, we have the following preference
relationship. (11, . . . , 1il−1, 1il , dil+1, . . . , dp) �Vj

(11, . . . , 1il−1, 0il , dil+1, . . . , dp) =
(11, . . . , 1il−1, dil , dil+1, . . . , dp). We obtain the fol-
lowing preference relationship by chaining the above
preference relationships.
(11, . . . , 1p)

�Vj (11, . . . , 1iL−1, 0iL , 1iL+1, . . . , 1p)

= (11, . . . , 1iL−1, diL , diL+1, . . . , dp)

�Vj
(11, . . . , 1iL−1−1, 0iL−1

, 1iL−1+1, . . . , 1iL−1, diL , . . . , dp)

= (11, . . . , 1iL−1−1, diL−1
, diL−1+1, . . . , dp)

...
�Vj (11, . . . , 1i1−1, 0i1 , 1i1+1, . . . , 1i2−1, di2 , . . . , dp)

= (d1, . . . , dp) = ~d

The claim follows from the fact that the number of such al-
ternatives ~d is 2|Ij | − 1. 2
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Because ~1 is the sequential winner,
∑n

j=1 |Ij | ≥ p(n +

1)/2. Note that f(x) = 2x is convex. We have the following
calculation.

SBorda(P,~1) ≥
n∑

j=1

2|Ij |

≥n2
∑n

j=1 |Ij |/n (Jensen’s inequality)

≥n2(n+1)p/(2n) > n2p/2 = n
√
m

We note that SBorda(P,Borda(P )) ≤ n(m − 1). There-
fore, 1 ≤ SBorda(P,Borda(P ))/SBorda(P,~1) ≤

√
m, which

proves the upper bound. 2

Theorem 2. When profiles are O-legal (or profiles are
separable), Seqmaj

O is a Θ(m)-approximation to Bucklin
w.r.t. SBl.

Proof. The upper bound is trivial. We now prove the lower
bound for separable profiles. For each j ≤ (n−1)/2, letN ∗j
be the separable CP-net where for every i ≤ p, 1i �N∗j |xi

0i. For each i ≤ p, let N ∗(n−1)/2+i be the separable CP-
net whose projection on xi is 1i � 0i, and for every i′ 6=
i, its projection on xi′ is 0i′ � 1i′ . For each j such that
(n− 1)/2 + p+ 1 ≤ j ≤ n, letN ∗j be the separable CP-net
where for every i ≤ p, its projection on xi is 0i � 1i.

Let V ∗1 , . . . , V
∗
n be extensions of N ∗1 , . . . ,N ∗n , respec-

tively, such that for every i ≤ p, ~0 (respectively, ~1) is ranked
in the second (respectively, second from the bottom) posi-
tion in V ∗(n−1)/2+i. Let P ∗ = (V ∗1 , . . . , V

∗
n ). It follows that

Seqmaj
O (P ∗) = ~1 and for any j ≥ (n − 1)/2 + p + 1, ~0

(respectively, ~1) is ranked in the top (respectively, bottom)
position in V ∗j . We note that for any i ≤ p, the top-ranked
(respectively, bottom-ranked) alternative in V ∗(n−1)/2+i dif-

fers from ~0 (respectively, ~1) only on issue xi. It follows that
SBl(P

∗,~0) = 2 and SBl(P
∗,~1) = m − 1. Hence, the lower

bound for separable profiles is (m − 1)/2 = Ω(m). This
proves the theorem. 2

Theorem 3. When profiles are O-legal (or profiles are
separable), Seqmaj

O is a Θ(m/ logm)-approximation to
Copeland w.r.t. SC.

Proof. We will use the following lemma, whose proof is
straightforward and is thus omitted.
Lemma 1. LetN be an acyclic CP-net. For any alternative
~d, let DN (~d) = {~e : ~d �N ~e}. There exists an extension V
ofN where ~d is ranked in the (|DN (~d)|+1)th position from
the bottom.

We first prove the lower bound for separable profiles. We
construct n separable CP-nets N ∗1 , . . . ,N ∗n as follows. The
idea is to distribute 1 � 0 (for all issues) as even as possible
in these CP-nets. For each 1 ≤ j ≤ p, we let Ij = {j, j +
1, . . . , j+ bp/2c} and letN ∗j be the CP-net where for every
i ∈ Ij , N ∗j |xi

= [1i � 0i]. Here for any l ≤ p, we have
xl+p = xl, 1l+p = 1l, and 0l+p = 0l. For any N ∗j |xi

that is
not defined in the previous step, we let N ∗j |xi

= [0i � 1i].
Let k1 = · · · = kp = bn/2c − bp/2c. For each j such that

p + 1 ≤ j ≤ n, we let Ij = {i1, . . . , ibp/2c+1} be the set
of indices of the highest k’s. Then, for every i ∈ Ij we let
ki ← ki−1, and if ki ≥ 0 then we letN ∗j |xi

= [1i � 0i]; for
any other N ∗j |xi that is not defined in the previous step, we
letN ∗j |xi

= [0i � 1i]. Because n ≥ 2p+1, n(bp/2c+1) ≥
p(bn/2c + 1), which means that after n − p steps, for all
i ≤ p, ki ≤ 0. For each i ≤ p, 1i � 0i in exactly bp/2c +
1 CP-nets. Let V ∗1 , . . . , V

∗
n be extensions of N ∗1 , . . . ,N ∗n ,

respectively, such that for every j ≤ n, ~1 = (11, . . . , 1p) is
ranked as low as possible in V ∗j . Let P ∗ = (V ∗1 , . . . , V

∗
n ). It

follows that Seqmaj
O (P ∗) = ~1.

For any j ≤ n, let I ′j denote the set of indices i such that
1i �Nj |xi

0i. We have I ′j ⊆ Ij . It follows that for any j ≤ n,

|DNj (~1)| = 2|I
′
j | − 1, and ~e ∈ DNj (~1) if and only if ~e 6= ~1,

and ~e takes 0 only on the issues whose indices are in I ′j . We
have the following claim.
Claim 2. Let ~e be an alternative that takes 0 on at least two
issues. ~1 � ~e in more than n/2 votes in P ∗.
Proof. We only prove the case where ~e =
(01, 02, 13, . . . , 1p). The other cases can be proved
similarly. By Lemma 1, ~1 � ~e in Vj if and only {1, 2} ⊆ I ′j .
We note that |j ≤ n : 2 ∈ I ′j | = (n + 1)/2 (we recall that
n is odd), 2 ∈ I ′2 and 1 6∈ I ′2. Therefore, ~1 � ~e in no more
than n/2 votes in P . 2

By Claim 2, ~1 may only beats an alternative that takes
0 on only one issue. The number of such alternatives is p,
which means that SC(P ) ≤ p = logm. By Proposition 1,
SC(P,Copeland(P )) = Ω(m). Hence, we have the lower
bound Ω(m/ logm) for separable (therefore also O-legal)
profiles.

Next, we prove the upper bound for O-legal profiles. For
any i ≤ p, let ~ei denote the alternative that takes 0i on xi,
and takes 1 on all other issues. Let P = (V1, . . . , Vn) be an
O-legal profile and w.l.o.g. Seqmaj

O (P ) = ~1. For any j ≤ n
and any i ≤ p such that the projection of Vj on xi given
11 · · · 1i−1 is 1i � 0i, we have ~1 � ~ei. Because ~1 is the se-
quential winner, for any i ≤ p the majority of voters prefer
1i to 0i given 11 · · · 1i1 , which means that ~1 beats ~ei in their
pairwise elections. Therefore, SC(P,~1) ≥ p = logm. To-
gether with the trivial upper bound SC(P,Copeland(P )) ≤
m, we obtain the upper bound on the approximation ratio for
O-legal (therefore also seperable) profiles. 2

Theorem 4. When profiles are O-legal (or profiles are sep-
arable), Seqmaj

O is a [2n/(n + 1)]-approximation to max-
imin w.r.t. SMM; Seqmaj

O is an∞ -approximation to maximin
w.r.t. SMMA.
Proof. We first prove the lower bound for separable profiles.
Let N ∗1 , . . . ,N ∗ denote the CP-nets that are defined in the
proof for Theorem 3. Let V ∗1 , . . . , V

∗
n denote extensions of

N ∗1 , . . . ,N ∗, respectively, such that in each V ∗j , ~1 ranked as
low as possible and ~0 is ranked as high as possible (these
two objectives are consistent with each other, because there
is no alternative ~d such that~1 �N∗j � ~d �N∗j ~0.) Similarly to
the proof for Theorem 3, we can prove that SMM(P ∗,~0) =
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(n + 1)/2 (via (11, 02, . . . , 0p)). We also note that for any
j ≤ n, ~0 �Vj

~1. Therefore, SMM(P ∗,~1) = n. This gives
us the lower bound 2n/(n + 1) for SMM. Because in each
vote ~0 is ranked above ~1, SMMA(~1) = 0, and the maximin
winner has a non-zero MMA score, which means that the
approximation ratio for maximin w.r.t. SMMA is∞.

Next, we prove the upper bound for O-legal profiles. Let
P be an O-legal profile. W.l.o.g. Seqmaj

O (P ) = ~1. For any
alternative ~d 6= ~1, let i∗ be the smallest number such that
di∗ = 0i∗ . Let ~e be the alternative that differs from ~d only
on xi∗ . Because ~1 is the sequential winner, in at least (n +
1)/2 votes we have 11 · · · 1i∗−1 : 1i∗ � 0i∗ . Therefore, in
each of these votes we must have that ~e � ~d, which means
that SMM(P, ~d) ≥ (n + 1)/2. Because SMM(P,~1) ≤ n, the
approximation ratio is at most 2n/(n + 1). This proves the
theorem. 2

Theorem 5. When profiles are O-legal (or profiles are
separable), Seqmaj

O is an Ω(m)-approximation to Dodgson
w.r.t. SD.

Proof. The lower bound can be proved using the same sepa-
rable profile P ∗ defined in the proof for Theorem 3. 2

Approximating Common Rules when Profiles
are Composed of LP-Trees or Lexicographic

Orders
In this section, we study the approximation ratio when the
profiles are composed of LP-trees with the same structure,
or are lexicographic. We will see that for each voting rule
and its scoring function studied in this paper, the approxi-
mation ratio is significantly improved, which means that se-
quential voting rules provides much better approximations
of common voting rules in such cases.

Suppose r1 is a θ1-approximation (respectively, θ2-
approximation) to r2 w.r.t. S when the profiles are com-
posed of LP-trees with the same structure (respectively, lex-
icographic orders), then θ2 ≤ θ1, because any lexicographic
order can be represented by an LP-tree.

We have the following positive result, strengthening
Proposition 3 in (Lang and Xia 2009).

Theorem 6. For any profile P of LP-trees with the same
structure T , Seqmaj

T (P ) is the Condorcet winner for P .

Proof. W.l.o.g. Seqmaj
T (P ) = ~1 and the root is labeled x1,

which has an outgoing edge labeled 1 or {0, 1} to a node la-
beled x2, which has an outgoing edge labeled 1 or {0, 1} to a
node labeled x3, etc. Let ~d 6= ~1. Let i∗ be the smallest num-
ber such that di∗ = 0i∗ . Let t denote the node reached from
the root by following the branch labeled with 1 or {0, 1}
a total of i∗ − 1 times. It follows that Iss(t) = xi∗ . Then,
because ~1 is the sequential majority winner, the majority of
voters prefer 1i∗ to 0i∗ at t, given that all issues in Anc(t)

take value 1. Therefore, these votes also prefer ~1 to ~d, which
means that ~1 beats ~d in their pairwise election. Hence, ~1 is
the Condorcet winner. 2

Therefore, for any Condorcet consistent voting rule r (in-
cluding Copeland, maximin, and Dodgson), the sequential
majority winner is the same as the winner under r, which
means that when profiles are composed of LP-trees (with
the same structure), the sequential majority rule is a 1-
approximation to any Condorcet consistent voting rule.

Theorem 7. When profiles are composed of LP-trees
with the same structure T (respectively, profiles are O-
lexicographic), Seqmaj

T (respectively, Seqmaj
O ) is a (3/2 +

o(1))-approximation to Borda w.r.t. SBorda.

Proof. We first prove the lower bound for lexicographic pro-
files. We define n CP-nets N ∗1 , . . . ,N ∗n as follows. For any
j ≤ (n + 1)/2, let 11 � 01 in N ∗j ; for any j such that
(n + 1)/2 ≤ j ≤ n and any i such that 2 ≤ i ≤ p,
let 11 · · · 1i−1 : 1i � 0i in N ∗j ; and for all j ≤ n, let
all the other local preferences in N ∗j not defined above be
0 � 1. Let V ∗1 , . . . , V

∗
n be the lexicographic extensions

of N ∗1 , . . . ,N ∗n , respectively. Let P ∗ = (V ∗1 , . . . , V
∗
n ). We

have that Seqmaj
O (P ∗) = ~1, SBorda(P

∗,~1) = 2p−1(n −
1)/2 + (2p − 1) + (2p−1 − 1)(n− 1)/2 = 2p−1(n+ 1)−
(n+ 1)/2 = (m−1)(n+ 1)/2 = mn/2 +o(mn). We have
SBorda(P

∗,~0) = (2p−1−1)(n+1)/2+(2p−1)(n−1)/2 =
3mn/4 + o(mn). Therefore, the approximation ratio is at
least 3mn/4+o(mn)

mn/2+o(mn) = 3/2 + o(1).
Next, we prove the upper bound for profiles composed

of LP-trees with the same structure. Let P = (T1, . . . , Tn)
be composed of n LP-trees with the same structure T . (We
recall that for any LP-tree T , we also use T to represent the
linear order to which it corresponds.) W.l.o.g. Seqmaj

T (P ) =
~1, and in T , x1 is the issue labeling the root, and its outgoing
edge labeled 1 or {0, 1} goes to a node labeled by x2, whose
outgoing edge labeled 1 or {0, 1} goes to a node labeled by
x3, etc. For any LP-tree T whose structure is T , we define
I(T ) to be a set that is composed of all i ≤ p such that in
the CPT of the node labeled by xi along the branch x1−→1
x2−→1 · · ·−→1 xp, we have 1i � 0i given 11 · · · 1i−1. We have
the following two lemmas, whose proofs are straightforward
and are therefore omitted.
Lemma 2. For any LP-tree T with structure T ,
SBorda(T ,~1) =

∑
i∈I(T ) 2p−i.

Lemma 3. Let ~d 6= ~1. For any i ≤ p such that d1 =

11, . . . , di = 1i, |SBorda(T , ~d)− SBorda(T ,~1)| < 2p−i.

Claim 3. For any profile P composed of LP-trees with the
same structure T , SBorda(P, Seqmaj

T (P )) ≥ (2p − 1)(n +
1)/2.
Proof. W.l.o.g. Seqmaj

T (P ) = ~1. By Lemma 2,
SBorda(P,~1) =

∑n
j=1

∑
i∈I(Tj) 2p−i. Because ~1 is the se-

quential winner, for any i ≤ p, i is in an I(Tj) at least
(n + 1)/2 times. Hence, we have that SBorda(P,~1) ≥∑

i≤p 2p−i(n+ 1)/2 = (2p − 1)(n+ 1)/2. 2

Now, we prove the upper bound by induction on p. We
note that even though in this paper we assume that p ≥ 2,
in this proof, the base case is p = 1. It is easy to check that
when p = 1, Seqmaj

T (P ) = maj(P ) = Borda(P ), which
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means that the approximation ratio is 1. Hence, the upper
bound holds for p = 1.

Suppose the upper bound holds for p − 1. We next prove
that it also holds for p. Let ~d be an arbitrary alternative.

Case 1: d1 = 01. Because ~d is ranked within the
bottom 2p−1 positions for at least (n + 1)/2 times (in
those LP-trees where 11 � 01), we have SBorda(P, ~d) <
2p−1(n + 1)/2 + 2p(n − 1)/2. Therefore, by Claim 3,
SBorda(P, ~d)/SBorda(P,~1) < 3/2 + o(1).

Case 2: d1 = 11. For any j ≤ n, we let T ′j denote
the sub-LP-tree of Tj whose root is the child of x1 follow-
ing the edge labeled by 1 or {0, 1}. It follows that P ′ =
(T ′1 , . . . , T ′n) is a profile of LP-trees with the same struc-
ture defined over the multi-issue domain D2 × · · · × Dp.
Let K = |j ≤ n : 11 �Tj 01|. Let ~d′ denote the al-
ternative in D2 × · · · × Dp such that ~d = (11, ~d

′). By
Lemma 2 we have SBorda(P,~1) = 2p−1K + SBorda(P

′,~1)

and SBorda(P, ~d) = 2p−1K + SBorda(P
′, ~d′). Therefore,

if SBorda(P, ~d) > SBorda(P,~1), then
SBorda(P, ~d)

SBorda(P,~1)
=

2p−1K + SBorda(P
′, ~d′)

2p−1K + SBorda(P ′,~1)
<
SBorda(P

′, ~d′)

SBorda(P ′,~1)
≤ 3

2
+ o(1). The

last inequality follows from the induction hypothesis.
Therefore, the upper bound holds for all p ∈ N. This com-

pletes the proof. 2

Theorem 8. Let

θ(n) =

{ ∞ when k < m/4
Θ(n) when m/4 ≤ k < m/2
Θ(1) when m/2 ≤ k ≤ m

If profiles are composed of LP-trees with the same struc-
ture T (respectively, profiles are O-lexicographic), then
Seqmaj

T (respectively, Seqmaj
O ) is a θ(n)-approximation to

k-approval w.r.t. Sk
App.

Proof. Case 1: k < m/4. We prove that there exists
an O-lexicographic profile P ∗ = (V ∗1 , . . . , V

∗
n ) such that

Seqmaj
O (P ∗) = ~1 and for all j ≤ n, ~1 is not ranked within

the top 2p−2 − 1 positions in Vj . For any j ≤ p, let 11 � 01
and 11 · · · 1j−1 : 1j � 0j in Nj ; for any j such that
p + 1 ≤ j ≤ (n + 1)/2, let 11 � 01 in N ∗j ; for any j
such that (n + 1)/2 + 1 ≤ j ≤ n, for every i ≤ p, let
11 · · · 1i−1 : 1i � 0i in N ∗j . All the other local preferences
in N ∗1 , . . . ,N ∗n that are not mentioned above are defined to
be 0 � 1. For any j ≤ n, let V ∗j be the lexicographic exten-
sion ofN ∗j w.r.t.O. It is easy to check that Seqmaj

O (P ∗) = ~1

and ~1 is not ranked within the top 2p−2 − 1 positions in all
votes.

Case 2: m/4 ≤ k < m/2. The lower bound is proved
by the same profile P ∗ defined in Case 1. We next prove
the upper bound for all profiles composed of LP-trees with
the same structure T . Let P ′ = (T1, . . . , Tn) be such a pro-
file and Seqmaj

T (P ) = ~1. Again, we assume that there is a
branch x1−→1 x2−→1 · · ·−→1 xp. There exists j ≤ n where
11 � 01 in Tj and 11 : 12 � 02 in the CPT of the child
of the root following the edge labeled by 1 or {0, 1}. By

Lemma 2 (and also note that the Borda score c in a vote V
is the number of alternatives that is ranked below c in V ),
~1 is ranked within the top 2p−2 positions, which means that
Sk

App(P,~1) ≥ 1. This proves the upper bound.
Case 3: m/2 ≤ k ≤ m. The lower bound is triv-

ial. We note that for any LP-tree T , if the root is labeled
x1 and 11 � 01 in T , then ~1 is ranked within the top
m/2 positions. Hence, for any profile P composed of LP-
trees with the same structure T , if Seqmaj

T (P ) = ~1, then
Sk

App(P,~1) ≥ (n+ 1)/2. This gives the upper bound. 2

Theorem 9. When profiles are composed of LP-trees
with the same structure T (respectively, profiles are O-
lexicographic), Seqmaj

T (respectively, Seqmaj
O ) is a (2 +

o(1))-approximation to Bucklin w.r.t. SBl.

Proof. The lower bound can be proved by the same lexico-
graphic profile P ∗ that is used to prove the lower bound in
the proof of Theorem 7.

We next prove the upper bound for all profiles composed
of LP-trees with the same structure. Let P = (T1, . . . , Tn)
be a profile composed of n LP-trees with the same struc-
ture T . Suppose Seqmaj

T (P ) = ~1 6= ~d = Bucklin(P ).
W.l.o.g. there is a path x1−→1 x2−→1 · · · −→1 xp in T . For
any i ≤ p, let ti denote the node in T that is reached from
the root via the path x1−→1 x2−→1 · · ·−→1 xi. That is, ti is la-
beled by xi. For any i ≤ p, we say that an LP-tree T whose
structure is T has depth i, if for every i′ ≤ i, the CPT of ti′
contains 1i′ � 0i′ , given that all issues in Par(ti′) take 1.
For any i ≤ p, let Kl = {j ≤ n : Tj has depth i}. Let l be
the largest number such that |Kl| ≥ (n+ 1)/2. Without loss
of generality, let Kl = {1, . . . , q} (where q ≥ (n + 1)/2).
We have SBl(P,~1) ≤ 2p−l.

If there exists i ≤ l such that di = 0i, then for any
j ≤ q, ~d is ranked lower than the 2p−ith position in Tj ,
which means that SBl(P, ~d) > 2p−l ≥ SBl(P,~1). This con-
tradicts the assumption that ~d = Bucklin(P ). Therefore,
d1 = 11, . . . , dl = 1l. We prove the upper bound in the
following two cases.

Case 1: dl+1 = 0l+1. Let K∗l ⊆ {1, . . . , n} be the
set of numbers j such that in Tj , CPT(tl+1) has an entry
1Par(tl+1) : 1l+1 � 0l+1. Because ~1 is the sequential winner,
|K∗l | ≥ (n+1)/2. We note that in every j ∈ K∗l , ~d is ranked
below the 2p−l−1th position. Consequently, SBl(P, ~d) ≥
2p−l−1. We recall that SBl(P,~1) ≤ 2p−l. It follows that the
approximation ratio is at most 2p−l/2p−l−1 = 2 + o(1).

Case 2: dl+1 = 1l+1. For any j ≥ q, both ~1 and ~d are
ranked below the 2p−lth position in Tj . For any j ≤ q, j 6∈
K∗l , and any alternative ~e with e1 = 11, . . . , el = 1l, el+1 =

0l+1, we have that ~e is ranked above ~d in Tj . The number of
such alternatives ~e is 2p−l−1. Therefore, ~d is ranked within
top 2p−l−1 positions in no more than |Kl ∩ K∗l | time. By
the maximality of l, we have |Kl ∩K∗l | ≤ (n− 1)/p, which
means that SBl(P, ~d) ≥ 2p−l−1. Again, because SBl(P,~1) ≤
2p−l, the approximation ratio is at most 2p−l/2p−l−1 = 2 +
o(1).
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Therefore, 2 + o(1) is an upper bound on the approxima-
tion ratio for profiles composed of LP-trees. 2

Summary and Future Work
In this paper, we show how well sequential voting in multi-
binary-domains approximates some common voting rules
w.r.t. their respective scores. Our results can be interpreted
as generalized paradoxes of multiple elections. We showed
that when the profiles are O-legal or separable, such para-
doxes are quite strong. However, these paradoxes are much
alleviated or even completely avoided when the preferences
are lexicographic or represented by LP-trees.

Future research may focus on designing computationally
tractable voting rules for multi-issue domains. For example,
we can ask the following intriguing questions. Can we find
other restrictions on voter preferences such that sequential
majority is a good approximation to common voting rules?
Are there any voting rules with low overhead (in terms of
computation and communication) that are good approxima-
tions to common voting rules when profiles are O-legal?
Can we generalize to multi-issue domains composed of non-
binary issues?
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We thank Jérôme Lang for fruitful discussions and com-
ments. Vincent Conitzer acknowledges NSF IIS-0812113,
IIS-0953756, and CCF-1101659, as well as an Alfred P.
Sloan fellowship, for support. Lirong Xia is supported by
NSF under Grant #1136996 to the Computing Research As-
sociation for the CIFellows Project. We thank all anony-
mous AAAI-11 and KR-12 reviewers of this paper for help-
ful comments.

References
Booth, R.; Chevaleyre, Y.; Lang, J.; Mengin, J.; and Sombattheera,
C. 2010. Learning conditionally lexicographic preference rela-
tions. In Proc. of ECAI, 269–274.
Boutilier, C.; Brafman, R.; Domshlak, C.; Hoos, H.; and Poole, D.
2004. CP-nets: A tool for representing and reasoning with condi-
tional ceteris paribus statements. Journal of Artificial Intelligence
Research 21:135–191.
Brams, S. J.; Kilgour, D. M.; and Zwicker, W. S. 1997. Voting on
referenda: the separability problem and possible solutions. Elec-
toral Studies 16(3):359–377.
Brams, S.; Kilgour, D.; and Zwicker, W. 1998. The paradox of
multiple elections. Social Choice and Welfare 15(2):211–236.
Caragiannis, I.; Covey, J. A.; Feldman, M.; Homan, C. M.; Kak-
lamanis, C.; Karanikolas, N.; Procaccia, A. D.; and Rosenschein,
J. S. 2009. On the approximability of Dodgson and Young elec-
tions. In Proc. of SODA, 1058–1067.
Caragiannis, I.; Kaklamanis, C.; Karanikolas, N.; and Procaccia,
A. D. 2010. Socially desirable approximations for Dodgson’s vot-
ing rule. In Proc. of EC, 253–262.
Fischer, F.; Procaccia, A. D.; and Samorodnitsky, A. forthcoming,
2011. A new perspective on implementation by voting trees. Ran-
dom Structures and Algorithms.
Lacy, D., and Niou, E. 2000. A problem with referenda. Journal
of Theoretical Politics 12(1):5–31.

Lang, J., and Xia, L. 2009. Sequential composition of voting rules
in multi-issue domains. Mathematical Social Sciences 57(3):304–
324.
Lu, T., and Boutilier, C. 2011. Robust approximation and incre-
mental elicitation in voting protocols. In Proc. of IJCAI, 287–293.
Procaccia, A. D. 2010. Can approximation circumvent Gibbard-
Satterthwaite? In Proc. of AAAI, 836–841.
Xia, L.; Conitzer, V.; and Lang, J. 2011. Strategic sequential voting
in multi-issue domains and multiple-election paradoxes. In Proc. of
EC, 179–188.

187




