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Abstract

Existing methods for dealing with knowledge updates differ
greatly depending on the underlying knowledge representa-
tion formalism. When Classical Logic is used, update opera-
tors are typically based on manipulating the knowledge base
on the model-theoretic level. On the opposite side of the spec-
trum stand the semantics for updating Answer-Set Programs
where most approaches need to rely on rule syntax. Yet, a
unifying perspective that could embrace all these approaches
is of great importance as it enables a deeper understanding
of all involved methods and principles and creates room for
their cross-fertilisation, ripening and further development.
This paper bridges these seemingly irreconcilable approaches
to updates. It introduces a novel monotonic characterisation
of rules, dubbed RE-models, and shows it to be a more suit-
able semantic foundation for rule updates than SE-models.
A generic framework for defining semantic rule update op-
erators is then proposed. It is based on the idea of viewing
a program as the set of sets of RE-models of its rules; up-
dates are performed by introducing additional interpretations
to the sets of RE-models of rules in the original program.
It is shown that particular instances of the framework are
closely related to both belief update principles and traditional
approaches to rule updates and enjoy a range of plausible syn-
tactic as well as semantic properties.

1 Introduction
In this paper we propose a novel generic method for speci-
fying rule update operators. By viewing a logic program as
the set of sets of models of its rules, and seeing updates as
exceptions to those sets, we are able to define concrete op-
erators which simultaneously obey many (syntactic) proper-
ties usually discussed in the rule update literature, and many
(semantic) properties discussed in the belief change area of
research, until now considered irreconcilable.

One of the main challenges for knowledge engineering
and information management is to efficiently and plausi-
bly deal with the incorporation of new, possibly conflicting
knowledge and beliefs. In their seminal work, Alchourrón,
Gärdenfors, and Makinson (1985) addressed the issues re-
lated to this process in the context of Classical Logic, result-
ing in the ample research area of belief change.
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Update is a belief change operation that consists of bring-
ing a knowledge base up to date when the world it describes
changes (Winslett 1990; Katsuno and Mendelzon 1991). The
study of update operators commenced with the introduc-
tion of KM postulates for update (Katsuno and Mendel-
zon 1991). Though the desirability of half of the eight KM
postulates has later been questioned by many (Brewka and
Hertzberg 1993; Boutilier 1995; Doherty, Lukaszewicz, and
Madalinska-Bugaj 1998; Herzig and Rifi 1999), the fourth
postulate, that we refer to as syntax-independence, is gener-
ally considered very desirable as it guarantees that insignifi-
cant syntactic differences in the representation of knowledge
do not affect the result of an update (Herzig and Rifi 1999).

Updates were later studied in the context of Answer-
Set Programs. Earlier methods were based on literal iner-
tia (Marek and Truszczynski 1998) but proved not suffi-
ciently expressive. Though the state-of-the-art approaches
are guided by the same basic intuitions and aspirations as
belief update, they build upon fundamentally different prin-
ciples and methods. While many are based on the causal re-
jection principle (Leite and Pereira 1997; Alferes et al. 2000;
Eiter et al. 2002; Alferes et al. 2005; Osorio and Cuevas
2007), others employ syntactic transformations and other
methods, such as abduction (Sakama and Inoue 2003), for-
getting (Zhang and Foo 2005), prioritisation (Zhang 2006),
preferences (Delgrande, Schaub, and Tompits 2007), or
dependencies on defeasible assumptions (Šefránek 2011;
Krümpelmann 2012).

Despite the variety of techniques used in these ap-
proaches, certain properties are common to all of them. First,
the stable models assigned to a program after one or more
updates are always supported: for each true atom p there ex-
ists a rule in either the original program or its updates that
has p in the head and whose body is satisfied. Second, all
mentioned rule update semantics coincide when it comes to
updating sets of facts by newer facts. We conjecture that any
reasonable rule update semantics should indeed be in line
with the basic intuitions regarding support and fact update.

But in difference to belief update, rule updates exercise
rule inertia instead of literal inertia. Rather than operating
on the models of a logic program, they refer to its syntac-
tic structure: the individual rules and, in many cases, also
the literals in heads and bodies of these rules. These proper-
ties render them seemingly irreconcilable with belief update
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where literal inertia and syntax-independence are central.
Yet, a unifying framework that could embrace both belief

and rule updates is of great importance as it enables a deeper
understanding of all involved methods and principles and
creates room for their cross-fertilisation, ripening and fur-
ther development. It is also important for the development
of update semantics for Hybrid Knowledge Bases – recently
introduced tight semantic and computational frameworks for
the combination of decidable fragments of first-order logic,
such as Description Logics, with Answer-Set Programs
(Motik and Rosati 2010; Knorr, Alferes, and Hitzler: 2011;
de Bruijn et al. 2010; 2011).

Moreover, we argue that syntax-independence, central to
belief updates, is essential and should be pursued at large
in order to encourage a logical underpinning of all update
operators and so facilitate analysis of their semantic prop-
erties. When equivalence with respect to classical models is
inappropriate, as is the case with rules, syntax-independence
should be retained by finding an appropriate notion of equiv-
alence, specific to the underlying formalism and its use.

With these standpoints in mind, we proceed with our
previous work addressing the logical foundations of rule
updates. Though it has previously been shown that strong
equivalence and an associated monotonic characterisation of
rules, SE-models, can be used to define syntax-independent
rule revision (Delgrande et al. 2008) and rule update (Slota
and Leite 2010) operators, it also turned out that these ap-
proaches are severely limited because the resulting operators
cannot respect both support and fact update (Slota and Leite
2010). This can be demonstrated on programs P = { p., q. }
and Q = { p., q ← p. } which are strongly equivalent, so,
due to syntax independence, an update asserting that p is
now false ought to lead to the same stable models in both
cases. Because of fact update, such an update on P must
lead to a stable model where q is true. But in case of Q such
a stable model would be unsupported.

This led us to the study of stronger notions of program
equivalence. In (Slota and Leite 2011) we proposed to view
a program as the set of sets of models of its rules in order to
acknowledge rules as the atomic pieces of knowledge and, at
the same time, abstract away from unimportant differences
between their syntactic forms, focusing on their semantic
content. In this paper we develop these ideas further and
• introduce a novel monotonic characterisation of rules,

RE-models, and show that they form a more suitable se-
mantic foundation for rule updates than SE-models;

• propose a generic framework for defining semantic rule
update operators: a program, viewed as the set of sets of
RE-models of its rules, is updated by introducing addi-
tional interpretations to those sets of RE-models;
• identify instances of the framework that bridge belief up-

date with rule update semantics: they combine syntax-
independence with support and fact update and have other
desirable syntactic as well as semantic properties.
This paper is structured as follows: We introduce the nec-

essary theoretical background in Sect. 2 and in Sect. 3 we de-
fine RE-models and associated notions of equivalence. Sec-
tion 4 introduces the framework for semantic rule updates,

defines some of its instances instances, and analyses their
theoretical properties. We point at possible future directions
in Sect. 5.

2 Background
Propositional Logic. We consider a propositional language
over a finite set of propositional variables L and the usual set
of propositional connectives to form propositional formulae.
A (two-valued) interpretation is any I ⊆ L. Each atom p is
assigned one of two truth values in I: I(p) = T if p ∈ I
and I(p) = F otherwise. This assignment is generalised in
the standard way to all propositional formulae. The set of
all models of a formula φ is denoted by [[φ]]. We say φ is
complete if [[φ]] is a singleton set. For two formulae φ, ψ we
say that φ entails ψ, denoted by φ |= ψ, if [[φ]] ⊆ [[ψ]], and
that φ is equivalent to ψ, denoted by φ ≡ ψ, if [[φ]] = [[ψ]].
Logic Programs. The basic syntactic building blocks of
rules are also propositional atoms from L. A negative lit-
eral is an atom preceded by ∼ denoting default negation.
A literal is either an atom or a negative literal. As a con-
vention, double default negation is absorbed, so that ∼∼p
denotes the atom p. Given a set of literals B, we introduce
the following notation: B+ = { p ∈ L | p ∈ B }, B− =
{ p ∈ L | ∼p ∈ B }, ∼B = { ∼L | L ∈ B }.

A rule is a pair of sets of literals ρ = 〈H(ρ), B(ρ)〉. We
say that H(ρ) is the head of ρ and B(ρ) is the body of ρ.
Usually, for convenience, we write ρ as

H(ρ)+;∼H(ρ)− ← B(ρ)+,∼B(ρ)−.

A rule is called non-disjunctive if its head contains at most
one literal; a fact if its head contains exactly one literal and
its body is empty. A program is any set of rules. A program
is non-disjunctive if all its rules are; acyclic if it satisfies the
conditions set out in (Apt and Bezem 1991).

Throughout the rest of the paper, we need to refer to a
single, fixed representative of the class of all tautological
rules. We call this representative the canonical tautology.
Definition 1 (Canonical Tautology). Let pτ be a fixed atom
from L. The canonical tautology τ is the rule pτ ← pτ .

In the following, we define stable models of a logic pro-
gram (Gelfond and Lifschitz 1988; 1991) as well as two
monotonic model-theoretic characterisations of rules. One is
that of classical models, where a rule is simply treated as a
classical implication. The other, SE-models (Turner 2003),
is based on the logic of Here-and-There (Heyting 1930;
Pearce 1997) and is expressive enough to capture both clas-
sical models and stable models.

Classical models, or C-models, of a rule ρ are defined
as models of the propositional formula obtained from ρ
by treating the arrow as material implication and default
negation as classical negation. The set of all C-models of
a rule ρ is denoted by [[ρ]]C and for any program P , [[P ]]C =⋂
ρ∈P [[ρ]]C. A program P is consistent if [[P ]]C 6= ∅. For a

set of literals B and interpretation J , we write J |= B if
J(p) = T for all p ∈ B+ and J(p) = F for all p ∈ B−.

The stable and SE-models are defined in terms of reducts.
Given a rule ρ and an interpretation J , the reduct of ρ w.r.t.
J , denoted by ρJ , is (H(ρ)+ ← B(ρ)+.) if all atoms from

159



B(ρ)− are false in J and all atoms from H(ρ)− are true in
J ; otherwise it is the canonical tautology τ . The reduct of a
program P w.r.t. J is defined as P J =

{
ρJ
∣∣ ρ ∈ P }.

An interpretation J is a stable model of a program P if
J is a subset-minimal C-model of P J . The set of all stable
models of P is denoted by [[P ]]SM.

SE-models are semantic structures that can be seen as
three-valued interpretations. In particular, we call a pair of
interpretations X = 〈I, J〉 such that I ⊆ J a three-valued
interpretation. Each atom p is assigned one of three truth
values in X: X(p) = T if p ∈ I; X(p) = U if p ∈ J \ I;
X(p) = F if p ∈ L \ J . The set of all three-valued in-
terpretations is denoted by X . A three-valued interpreta-
tion 〈I, J〉 is an SE-model of a rule ρ if J is a C-model
of ρ and I is a C-model of ρJ . The set of all SE-mod-
els of a rule ρ is denoted by [[ρ]]SE and for any program P ,
[[P ]]SE =

⋂
ρ∈P [[ρ]]SE. Note that J is a stable model of P if

and only if 〈J, J〉 ∈ [[P ]]SE and for all I ( J , 〈I, J〉 /∈ [[P ]]SE.
Also, J ∈ [[P ]]C if and only if 〈J, J〉 ∈ [[P ]]SE. We say that
a rule ρ is (SE-)tautological if [[ρ]]SE = X . Note that the
canonical tautology (c.f. Def. 1) is tautological.
Belief Update. A belief update operator is a function that as-
signs a formula to each pair of formulae. The following pos-
tulates were suggested by Katsuno and Mendelzon (1991)
for belief update operators:

(U1) φ � µ |= µ.

(U2) If φ |= µ, then φ � µ ≡ φ.

(U3) If [[φ]] 6= ∅ and [[µ]] 6= ∅, then [[φ � µ]] 6= ∅.
(U4) If φ ≡ ψ and µ ≡ ν, then φ � µ ≡ ψ � ν.

(U5) (φ � µ) ∧ ν |= φ � (µ ∧ ν).

(U6) If φ � µ |= ν and φ � ν |= µ, then φ � µ ≡ φ � ν.

(U7) (φ � µ) ∧ (φ � ν) |= φ � (µ ∨ ν) if φ is complete.

(U8) (φ ∨ ψ) � µ ≡ (φ � µ) ∨ (ψ � µ).

However, update operators defined in the literature do not
always satisfy all eight postulates. In fact, half of the postu-
lates, namely (U2), (U5), (U6) and (U7), are controversial: the
first three lead to undesirable behaviour while the last one is
very hard to explain intuitively and is satisfied only by a mi-
nority of update operators (Herzig and Rifi 1999). Note also
that (U2) entails the following three weaker principles:

(U2.>) φ � > ≡ φ.

(U2.1) φ ∧ µ |= φ � µ.

(U2.2) (φ ∧ µ) � µ |= φ.

The first two are uncontroversial as they are satisfied by
all update operators. In addition, the latter two together are
powerful enough to entail (U2). Thus, the controversial part
of (U2) is (U2.2) (Herzig and Rifi 1999).
Rule Update. Rule update semantics assign stable models
to pairs or sequences of programs where each component
represents an update of the preceding ones. In the following,
we formalise some of the intuitions behind these semantics.
Subsequent sections will then present and tackle the issues
with finding syntax-independent rule update operators that
satisfy these intuitions.

We start with the basic concepts. A dynamic logic pro-
gram (DLP) is a finite sequence of non-disjunctive pro-
grams. Given a DLP P , we use all(P) to denote the multiset
of all rules appearing in components of P . We say that P
is acyclic if all(P) is acyclic. A rule update semantics SEM
defines SEM-stable models for every DLP P .

As indicated in the introduction, rule update semantics
implicitly follow certain basic intuitions. Particularly, they
produce supported models and their behaviour coincides
when it comes to updating sets of facts by newer facts. In
the following we formalise these two properties w.r.t. rule
update semantics for DLPs.1 We call them syntactic because
their formulation requires that we refer to the syntax of the
respective DLP.

In the static setting, support (Apt, Blair, and Walker 1988;
Dix 1995) is one of the basic conditions that Logic Program-
ming semantics are intuitively designed to satisfy. Its gener-
alisation to the dynamic case is straight-forward.
Syntactic Property 1 (Support). Let P be a program, p an
atom and J an interpretation. We say that P supports p in J
if p ∈ H(ρ) and J |= B(ρ) for some rule ρ ∈ P .

A rule update semantics SEM respects support if for every
DLP P and every SEM-stable model J of P the following
condition is satisfied: Every atom p ∈ J is supported by
all(P) in J .

Thus, if a rule update semantics SEM respects support,
then there is at least some justification for every atom that is
true in a SEM-stable model.

The second syntactic property that is generally adhered to
is the usual expectation regarding how facts are to be up-
dated by newer facts. It enforces a limited notion of atom
inertia but only for the case when both the initial program
and its updates are consistent sets of facts.
Syntactic Property 2 (Fact Update). A rule update seman-
tics SEM respects fact update if for every finite sequence of
consistent sets of facts P = 〈Pi〉i<n, the unique SEM-stable
model of P is the interpretation

{ p | ∃j : (p.) ∈ Pj ∧ (∀i : j < i < n =⇒ (∼p.) /∈ Pi) } .

We also introduce two further syntactic properties that are
more tightly bound to approaches based on the causal rejec-
tion principle (Leite and Pereira 1997; Alferes et al. 2000;
Eiter et al. 2002; Alferes et al. 2005). The first one states the
principle itself, under the assumption that a conflict between
rules occurs if and only if the rules have opposite heads.
Syntactic Property 3 (Causal Rejection). A rule update
semantics SEM respects causal rejection if for every DLP
P = 〈Pi〉i<n, every SEM-stable model J of P , all i < n
and all rules ρ ∈ Pi, if J is not a C-model of ρ, then there
exists a rule σ ∈ Pj with j > i such that H(ρ) = ∼H(σ)
and J |= B(σ).

Intuitively, the principle requires that all rejected rules,
i.e. rules that are not satisfied in a SEM-stable model J , must

1Note that although many rule update semantics disallow de-
fault negation in rule heads and consider programs with strong
negation, both of these properties can be naturally adjusted to such
situations. This is, however, outside the scope of this contribution.
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be in conflict with a more recent rule whose body is satisfied
in J . This rule then provides a cause for the rejection.

The final syntactic property stems from the fact that all
rule update semantics based on causal rejection coincide on
acyclic DLPs (Homola 2004; Alferes et al. 2005). Thus, the
behaviour of any rule update semantics on acyclic DLPs can
be used as a way to compare it to all these semantics simul-
taneously. In order to formalise this property, we reproduce
here the historically first of these update semantics, the jus-
tified update semantics (Leite and Pereira 1997).

The set of rejected rules in P w.r.t. an interpretation J is
rej(P, J) = { ρ | ∃i ∃j ∃σ : ρ ∈ Pi ∧ σ ∈ Pj ∧

i < j ∧H(ρ) = ∼H(σ) ∧ J |= B(σ) } .
We say that J is a justified update model of P if J is a stable
model of all(P)\ rej(P, J). We denote the set of all justified
update models of P by [[P]]JU.

The final syntactic property is then stated as follows:
Syntactic Property 4 (Acyclic Justified Update). A rule
update semantics SEM respects acyclic justified update if
for every acyclic DLP P , the set of SEM-stable models is
[[P]]JU.
Program Equivalence. While in propositional logic equiv-
alence under classical models is the equivalence, there is no
such single notion of program equivalence. When consider-
ing Answer-Set Programs, the first choice is stable equiva-
lence (or SM-equivalence) that compares programs based on
their sets of stable models.

In many cases, however, SM-equivalence is not strong
enough because programs with the same stable models,
when augmented with the same additional rules, may end up
having completely different stable models. This gives rise
to the notion of strong equivalence (Lifschitz, Pearce, and
Valverde 2001) which requires that stable models stay the
same even in the presence of additional rules. It is a well-
known fact that programs are strongly equivalent if and only
if they have the same set of SE-models (Turner 2003). Thus,
we refer to strong equivalence as SE-equivalence.

But even SE-equivalence is not satisfactory when used as
a basis for syntax-independent rule update operators because
such operators cannot respect both support and fact update.
In the following we state this result formally.

By a rule update operator we understand a function that
assigns a program to each pair of programs. A rule update
operator ⊕ is extended to DLPs as follows:

⊕
〈P0〉 = P0;⊕

〈Pi〉i<n+1 = (
⊕
〈Pi〉i<n)⊕Pn. Note that such an opera-

tor naturally induces a rule update semantics SEM⊕: given a
DLP P , the SEM⊕-stable models of P are the stable models
of
⊕
P . In the rest of this paper we exercise a slight abuse

of notation by referring to the operators and their associated
update semantics interchangeably. The syntax-independence
of a rule update operator w.r.t. SE-equivalence, denoted by
≡SE, can be captured by a reformulation of the belief update
postulate (U4), stating that for all programs P , Q, U , V ,
(PU4)SE If P ≡SE Q and U ≡SE V , then P ⊕U ≡SE Q⊕V .
The results of (Slota and Leite 2010) entail the following:
Theorem 2. A rule update operator that satisfies (PU4)SE
cannot respect both support and fact update.

Thus, in order to arrive at syntax-independent rule update
operators that respect both support and fact update, we need
to search for a notion of program equivalence that is stronger
than SE-equivalence. One candidate is the strong update
equivalence (or SU-equivalence) (Inoue and Sakama 2004),
which requires that under both additions and removals of
rules, stable models of the two programs in question remain
the same. It has been shown in (Inoue and Sakama 2004)
that this notion of equivalence is very strong – programs
are SU-equivalent only if they contain exactly the same non-
tautological rules and, in addition, each of them may contain
some tautological ones. Thus, this notion of program equiv-
alence seems perhaps too strong as it is not difficult to find
rules such as ∼p ← p. and ← p. that are syntactically dif-
ferent but carry the same meaning.

This observation resulted in the definition of strong rule
equivalence (or SR-equivalence) in (Slota and Leite 2011)
that, in terms of strength, falls between SE-equivalence and
SU-equivalence. It is based on the idea of viewing a pro-
gram P as the set of sets of SE-models of its rules 〈〈P 〉〉SE =
{ [[ρ]]SE | ρ ∈ P }. Formally:

Definition 3 (Program Equivalence). Let P,Q be pro-
grams, P τ = P ∪ { τ } and Qτ = Q ∪ { τ }. We write

P ≡SM Q whenever [[P ]]SM = [[Q]]SM;
P ≡SE Q whenever [[P ]]SE = [[Q]]SE;
P ≡SR Q whenever 〈〈P τ 〉〉SE = 〈〈Qτ 〉〉SE;
P ≡SU Q whenever [[(P \Q) ∪ (Q \ P )]]SE = X .

We say that P is X-equivalent to Q if P ≡X Q.

So two programs are SR-equivalent if they contain the
same rules, modulo SE-models; the canonical tautology τ
is added to both programs so that presence or absence of
tautological rules in a program does not influence program
equivalence – without it, programs such as ∅ and { τ }would
not be considered SR-equivalent.

To formally capture the comparison of strength between
these notions of program equivalence, we write ≡X�≡Y if
P ≡Y Q implies P ≡X Q and ≡X≺≡Y if ≡X�≡Y but not
≡Y�≡X. We obtain the following (Slota and Leite 2011):

Proposition 4. ≡SM≺≡SE≺≡SR≺≡SU.

3 Robust Equivalence Models
In (Slota and Leite 2011) we also studied the expressivity
of SE-models with respect to a single rule. On the one hand,
SE-models turned out to be a useful means of stripping away
irrelevant syntactic details. On the other hand, a rule with a
negative literal in its head is indistinguishable from an in-
tegrity constraint (Inoue and Sakama 1998; Janhunen 2001;
Cabalar, Pearce, and Valverde 2007). For example, the rules

← p, q. ∼p← q. ∼q ← p. (1)

have the same set of SE-models. In a static setting, these
rules indeed carry essentially the same meaning: “it must
not be the case that p and q are both true”. But in a dynamic
context, the latter two rules may, in addition, express that
the truth of one atom gives a reason for the other atom to
become false (Leite and Pereira 1997; Alferes et al. 2000;
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2005). These classes of rules can be formally captured as
follows:
Definition 5 (Constraint and Abolishing Rule). A rule ρ is
a constraint if H(ρ) = ∅ and B(ρ)+ is disjoint with B(ρ)−.

A rule ρ is abolishing if H(ρ)+ = ∅, H(ρ)− 6= ∅ and the
sets H(ρ)−, B(ρ)+ and B(ρ)− are pairwise disjoint.

So in the context of updates, what we need is a semantic
characterisation of rules that

1) distinguishes constraints from related abolishing rules;
2) discards irrelevant syntactic details (akin to SE-models);
3) is clearly related to stable models (akin to SE-models).
In the following we introduce a novel monotonic semantics
that exactly meets these criteria. We show that it possesses
the desired properties and use it to introduce a notion of pro-
gram equivalence that is strong enough as a basis for syntax-
independent rule update operators.

Without further ado, robust equivalence models, or
RE-models for short, are defined as follows:
Definition 6 (RE-Model). A three-valued interpretation
〈I, J〉 is an RE-model of a rule ρ if I is a C-model of ρJ .

The set of all RE-models of a rule ρ is denoted by [[ρ]]RE

and for any program P , [[P ]]RE =
⋂
ρ∈P [[ρ]]RE.

A rule ρ is RE-tautological if [[ρ]]RE = X . Rules ρ, σ are
RE-equivalent if [[ρ]]RE = [[σ]]RE;

Thus, unlike with SE-models, it is not required that J be
a C-model of ρ in order for 〈I, J〉 to be an RE-model of ρ.
As a consequence, RE-models can distinguish between rules
in (1): while both 〈{ q } , { p, q }〉 and 〈{ p } , { p, q }〉 are
RE-models of the constraint, the former is not an RE-model
of the first abolishing rule and the latter is not an RE-model
of the second abolishing rule. This result holds in general,
establishing requirement 1):
Proposition 7. If ρ, σ are two different abolishing rules
or an abolishing rule and a constraint, then ρ, σ are not
RE-equivalent.

As for requirement 2), we first note that RE-equivalence
is a refinement of SE-equivalence – there are no rules that
are RE-equivalent but not SE-equivalent. The following re-
sult also shows that it is only the ability to distinguish be-
tween constraints and abolishing rules that is introduced by
RE-models. Rules that are not RE-equivalent to abolishing
rules are distinguishable by RE-models if and only if they
are distinguishable by SE-models. Furthermore, the class of
tautological rules is the same under SE- and RE-models, so
we can simply use the word tautological without ambiguity.
Proposition 8 (RE- vs. SE-Equivalence). If two rules are
RE-equivalent, then they are SE-equivalent.
If two rules, neither of which is RE-equivalent to an abolish-
ing rule, are SE-equivalent, then they are RE-equivalent.
A rule is RE-tautological if and only if it is SE-tautological.

The affinity between SE-models and stable models is fully
retained by RE-models, which establishes requirement 3).
Proposition 9 (RE-Models vs. Stable Models). An inter-
pretation J is a stable model of a program P if and only if
〈J, J〉 ∈ [[P ]]RE and for all I ( J , 〈I, J〉 /∈ [[P ]]RE.

SM

SE

SR

RR

SU

RE

Figure 1: Program equivalences from the weakest in the bot-
tom to the strongest on top. A missing link between X and
Y indicates that ≡X is neither stronger nor weaker than ≡Y.

Worth noting is also that any set of three-valued inter-
pretations can be represented by a program using RE-mod-
els. This is not the case with SE-models since only sets of
three-valued interpretations R such that 〈I, J〉 ∈ R implies
〈J, J〉 ∈ R have corresponding programs.

Proposition 10. Let R be a set of three-valued interpreta-
tions. Then there exists a program P such that [[P ]]RE = R.

Since RE-models are a refinement of SE-models that
keep their essential properties while at the same time they
are able to distinguish constraints from abolishing rules,
we henceforth adopt them as the basis for defining syntax-
independent rule update operators. We denote the set of sets
of RE-models of rules inside a program P by 〈〈P 〉〉RE =
{ [[ρ]]RE | ρ ∈ P }. We also introduce two additional notions
of program equivalence: RE- and RR-equivalence that are
analogous to SE- and SR-equivalence.

Definition 11 (Program Equivalence Using RE-Models).
Let P,Q be programs, P τ = P ∪ { τ }, Qτ = Q∪ { τ }. We
write

P ≡RE Q whenever [[P ]]RE = [[Q]]RE;
P ≡RR Q whenever 〈〈P τ 〉〉RE = 〈〈Qτ 〉〉RE.

Note that it follows directly from previous considera-
tions that RR-equivalence is stronger than SR-equivalence
and RE-equivalence is stronger than SE-equivalence. Fig-
ure 1 compares all six notions of equivalence in terms of
strength (c.f. also Prop. 4). Note that RE-equivalence is nei-
ther stronger nor weaker than SR-equivalence: programs
such as { p., q. } and { p., q ← p. } are RE-equivalent but not
SR-equivalent while programs such as {∼p. } and {← p. }
are SR-equivalent but not RE-equivalent.

4 Exception-Driven Rule Update Operators
In this section we propose a generic framework for defining
semantic rule update operators. We define instances of the
framework and show that they enjoy a number of plausible
properties, ranging from the respect for support and fact up-
date to syntax-independence and other semantic properties.

As suggested above, a program is semantically charac-
terised by the set of sets of RE-models of its rules. Our up-
date framework is based on a simple yet novel idea of intro-
ducing additional interpretations – exceptions – to the sets
of RE-models of rules in the original program. The formal-
isation of this idea is straight-forward: an exception-driven
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update operator is characterised by an exception function ε
that takes three inputs: the set of RE-models [[ρ]]RE of a rule
ρ ∈ P and the semantic characterisations 〈〈P 〉〉RE, 〈〈U〉〉RE of
the original and updating programs. It then returns the three-
valued interpretations that are to be introduced as exceptions
to ρ, so the characterisation of the updated program contains
the augmented set of RE-models,

[[ρ]]RE ∪ ε
(
[[ρ]]RE, 〈〈P 〉〉RE, 〈〈U〉〉RE

)
. (2)

Hence, the semantic characterisation of P updated by U is{
[[ρ]]RE ∪ ε

(
[[ρ]]RE, 〈〈P 〉〉RE, 〈〈U〉〉RE

) ∣∣ ρ ∈ P }∪〈〈U〉〉RE . (3)
In other words, the set of RE-models of each rule ρ from P
is augmented with the respective exceptions while the sets
of RE-models of rules from U are kept untouched.

From the syntactic viewpoint, we want a rule update op-
erator ⊕ to return a program P ⊕ U with the semantic char-
acterisation (3). This brings us to the following issue: What
if no rule exists whose set of RE-models is equal to (2)?
In that case, no rule corresponds to the augmented set of
RE-models of a rule ρ ∈ P , so the program P ⊕ U cannot
be constructed. Moreover, such situations may occur quite
frequently since a single rule has very limited expressivity.
For instance, updating the fact p. by the rule ∼p ← q, r.
may easily result in a set of RE-models representable by the
program { p← ∼q., p← ∼r. } but not representable by any
single rule. To keep a firm link to operations on syntactic ob-
jects, we henceforth deal with this problem by allowing the
inputs and output of rule update operators to be sets of rules
and programs, which we dub rule bases. In other words, the
result of updating a rule, i.e. introducing exceptions to it,
may be a set of rules, so the result of updating a program may
be a rule base. Technically, a rule base can capture any pos-
sible result of an exception-driven update due to Prop. 10.

Formally, a rule base is any set of rules and programs R.
We put [[R]]C =

⋂
Π∈R[[Π]]C; 〈〈R〉〉SE = { [[Π]]SE | Π ∈ R };

[[R]]SE =
⋂
〈〈R〉〉SE; 〈〈R〉〉RE = { [[Π]]RE | Π ∈ R }; [[R]]RE =⋂

〈〈R〉〉RE;RJ =
{

ΠJ
∣∣ Π ∈ R

}
for every interpretation J .

We say that J is a stable model ofR if J is a subset-minimal
C-model ofRJ . The set of stable models ofR is denoted by
[[R]]SM. All notions of program equivalence are extended to
rule bases by using the same definition. Note that a program
is a special case of a rule base. Each element Π of a rule
base, be it a rule or a program, represents an atomic piece
of information. Exception-driven update operators view and
manipulate Π only through its set of RE-models [[Π]]RE. Due
to this, we refer to all such elements Π as rules, even if for-
mally they may actually be programs.

Having resolved this issue, we can proceed to the defini-
tion of an exception-driven rule update operator.
Definition 12 (Exception-Driven Rule Update Operator).
A rule update operator ⊕ is exception-driven if for some
exception function ε, 〈〈R ⊕ U〉〉RE is equal to{

[[Π]]RE ∪ ε
(
[[Π]]RE, 〈〈R〉〉RE, 〈〈U〉〉RE

) ∣∣ Π ∈ R
}
∪〈〈U〉〉RE (4)

for all rule bases R, U . In that case we also say that ⊕ is
ε-driven.

Note that for each exception function ε there is a whole
class of ε-driven rule update operators that differ in the syn-
tactic representations of the sets of RE-models in (4).

Simple Exception Functions
Of particular interest to us is a constrained class of excep-
tion functions that requires less information to determine the
resulting exceptions. Not only does it lead to simpler defini-
tions and to modular, more efficient implementations, but the
study of restricted classes of exception functions is also es-
sential in order to understand their expressivity, i.e. the types
of update operators they are able to capture. We focus on ex-
ception functions that produce exceptions based on conflicts
between pairs of rules, one from the original and one from
the updating program, while ignoring the context in which
these rules are situated. More formally:

Definition 13 (Simple Exception Function). An exception
function ε is simple if for all R ⊆ X andM,N ⊆ 2X ,

ε(R,M,N ) =
⋃
S∈N δ(R,S)

where δ : 2X × 2X → 2X is a local exception function. If ⊕
is an ε-driven rule update operator, then we also say that ⊕
is δ-driven, that δ generates ⊕ and that ⊕ is simple.

As we shall see, despite their local nature, particular sim-
ple exception functions generate rule update operators that
satisfy all syntactic properties laid out in Sect. 2 and are
closely related to the justified update semantics for DLPs.

Our goal is now to investigate concrete local exception
functions δ that generate rule update operators with inter-
esting properties. We take inspiration from the rule update
semantics based on the causal rejection principle. However,
the relevant concepts, such as that of a conflict or rule rejec-
tion, rely on rule syntax to which an exception function has
no direct access. Our goal is thus to investigate similar con-
cepts on the semantic level. In particular, we need to define
conditions under which two sets of RE-models are in con-
flict. Similarly as with rule rejection in the syntactic case,
we define these conflicts w.r.t. a two-valued interpretation.
We first introduce two preparatory concepts.

We define a truth value substitution as follows: Given an
interpretation J , an atom p and a truth value V ∈ {T,U,F },
by J [V/p] we denote the three-valued interpretation X such
that X(p) = V and X(q) = J(q) for all atoms q 6= p.

This enables us to introduce the main concept needed for
defining a conflict between two sets of three-valued inter-
pretations. Given a set of three-valued interpretations R, an
atom p, a truth value V0 and a two-valued interpretation J ,
we say that R forces p to have the truth value V0 w.r.t. J ,
denoted by RJ(p) = V0, if

J [V/p] ∈ R if and only if V = V0 .

In other words, the three-valued interpretation J [V0/p] must
be the unique member of R that either coincides with J or
differs from it only in the truth value of p. Note that RJ(p)
stays undefined in case no V0 with the above property exists.

Two sets of three-valued interpretations R, S are in con-
flict on atom p w.r.t. J , denoted by R onJp S, if RJ(p) 6=
SJ(p). The following example illustrates all these concepts.

Example 14. Consider rules ρ = (p.), σ = (∼p ← ∼q.)
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with the respective sets of RE-models2

R = { 〈p, p〉, 〈p, pq〉, 〈pq, pq〉 } ,

S = { 〈∅, ∅〉, 〈∅, q〉, 〈q, q〉, 〈∅, pq〉, 〈p, pq〉, 〈q, pq〉, 〈pq, pq〉 } .

Intuitively, R forces p to T w.r.t. all interpretations and S
forces p to F w.r.t. interpretations in which q is false. For-
mally it follows that R∅(p) = T because 〈p, p〉 belongs to
R and neither 〈∅, p〉 nor 〈∅, ∅〉 belongs to R. Similarly it
follows that S∅(p) = F. Hence, R on∅p S. Using similar ar-
guments we can conclude thatR onpp S. However, it does not
hold that R onpqp S because Spq(p) is undefined.

We are ready to introduce the local exception function δa.

Definition 15 (Local Exception Function δa). The local
exception function δa is for all R,S ⊆ X defined as

δa(R,S) =
{
〈I, J〉 ∈ X

∣∣ ∃p : R onJp S
}
.

Thus, if there is a conflict on some atom w.r.t. J , the ex-
ceptions introduced by δa are of the form 〈I, J〉 where I
is an arbitrary subset of J . This means that δa introduces
as exceptions all three-valued interpretations that preserve
false atoms from J while the atoms that are true in J may be
either true or undefined. This is somewhat related to the defi-
nition of a stable model where the default assumptions (false
atoms) are fixed while the necessary truth of the remaining
atoms is checked against the rules of the program. The syn-
tactic properties of δa-driven operators are as follows.

Theorem 16 (Syntactic Properties of δa). Every δa-driven
rule update operator respects support and fact update. Fur-
thermore, it also respects causal rejection and acyclic justi-
fied update w.r.t. DLPs of length at most two.

This means that δa-driven rule update operators enjoy a
combination of desirable syntactic properties that operators
based on SE-models do not (c.f. Thm. 2). However, these op-
erators diverge from causal rejection, even on acyclic DLPs,
when more than one update is performed.

Example 17. Consider again the rules ρ, σ and their sets
of RE-models R, S from Example 14 and some δa-driven
rule update operator ⊕. Then 〈〈{ ρ } ⊕ {σ }〉〉RE will contain
two elements: R′ and S, where R′ = R ∪ δa(R,S) = R ∪
{ 〈∅, ∅〉, 〈∅, p〉 }. An additional update by the fact { q. } then
leads to the characterisation 〈〈

⊕
〈{ ρ } , {σ } , { q. }〉〉〉RE

which contains three elements: R′′, S and T where R′′ =
R′ ∪ { 〈∅, q〉, 〈q, q〉 } and T is the set of RE-models of q.

Furthermore, due to Prop. 9, the interpretation J = { q }
is a stable model of

⊕
〈{ ρ } , {σ } , { q. }〉 because 〈q, q〉

belongs to all members of 〈〈
⊕
〈{ ρ } , {σ } , { q. }〉〉〉RE and

〈∅, q〉 does not. However, J violates causal rejection and it
is not a justified update model of 〈{ ρ } , {σ } , { q. }〉.

This shortcoming of δa can be overcome as follows:

Definition 18 (Local Exception Functions δb, δc). The lo-
cal exception functions δb, δc are for all R,S ⊆ X defined

2We sometimes omit the usual set notation when we write in-
terpretations. For example, instead of { p, q } we write pq.

as
δb(R,S) = { 〈I,K〉 ∈ X | ∃J ∃p : R onJp S ∧

I ⊆ J ⊆ K ∧ (p ∈ K \ I =⇒ K = J) } ,
δc(R,S) = X if R = S; otherwise δc(R,S) = δb(R,S) .

The functions δb and δc introduce more exceptions than
δa. A conflict on p w.r.t. J leads to the introduction of in-
terpretations in which atoms either maintain the truth value
they had in J , or they become undefined. They must also
satisfy an extra condition: when p becomes undefined, no
other atom may pass from false to undefined. Interestingly,
this leads to operators that satisfy all syntactic properties.
Theorem 19 (Syntactic Properties of δb and δc). Let ⊕
be a δb- or δc-driven rule update operator. Then ⊕ respects
support, fact update, causal rejection, acyclic justified up-
date.

The difference between δb and δc is in that δc additionally
“wipes out” rules from the original program that are repeated
in the update by introducing all interpretations as exceptions
to them, rendering them tautological.
Example 20. Consider again the rules ρ, σ and their sets
of RE-models R, S from Example 14. Furthermore, let P =
{ ρ } and U = { ρ, σ }.

If⊕ is δb-driven, then 〈〈P⊕U〉〉RE contains three elements:
R, S andR∪δb(R,S) = R∪{ 〈∅, ∅〉, 〈∅, p〉, 〈∅, q〉, 〈∅, pq〉 }.
Equivalently, P ⊕ U contains rules that are RE-equivalent
to the rules ρ, σ and p ← q. Notice that the latter rule is a
weakened version of the rule ρ.

On the other hand, if⊕ is δc-driven, then 〈〈P ⊕U〉〉RE con-
tains the setsR, S andR∪δc(R,R)∪δc(R,S) = X . Equiv-
alently, P ⊕ U contains rules that are RE-equivalent to the
rules ρ, σ and to the canonical tautology τ .

The differences between δb- and δc-driven rule update
operators will become more pronounced when we examine
their semantic properties.

Before that, however, it is worth noting that δb- and
δc-driven operators are very closely related to the justified
update semantics, even on programs with cycles. They di-
verge from it only on rules with an appearance of the same
atom in both the head and body. Formally, we say a rule is a
local cycle if (H(ρ)+ ∪H(ρ)−) ∩ (B(ρ)+ ∪B(ρ)−) 6= ∅.
Theorem 21. Let P be a DLP, J an interpretation and ⊕ a
δb- or δc-driven rule update operator. Then,
• [[
⊕
P]]SM ⊆ [[P]]JU and

• if all(P) contains no local cycles, then [[P]]JU ⊆ [[
⊕
P]]SM.

This means that up to the marginal case of local cycles,
δb and δc can be seen as semantic characterisations of the
justified update semantics: they lead to stable models that,
typically, coincide with justified update models. This tight
relationship also sheds new light on the problem of state
condensing where the goal is to transform a DLP into a sin-
gle program over the same alphabet that would behave just
as the original DLP when further updates are performed.
While this cannot be done if the result must be a non-
disjunctive program (Leite 2003), it follows from Thm. 21
that a rule base is sufficiently expressive. It stays an open
question whether a disjunctive program would suffice or not.
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Corollary 22 (State Condensing into a Rule Base). Let
P = 〈Pi〉i<n be a DLP such that all(P) contains no local
cycles, ⊕ be an δb- or δc-driven rule update operator and
j < n. Then there exists a rule base R such that [[P]]JU =
[[
⊕
P ′]]SM where P ′ = 〈R, Pj+1, . . . , Pn−1〉.

Semantic Properties
We proceed by examining further properties of rule update
operators – of those generated by simple exception functions
in general, and of the δa-, δb- and δc-driven ones in particu-
lar. The properties we consider in this section are semantic
in that they put conditions on the models of a result of an up-
date and do not need to refer to the syntax of the original and
updating programs. Our results are summarised in Table 1;
in the following we explain and discuss them.

The properties in the upper part of the table were intro-
duced in (Eiter et al. 2002; Alferes et al. 2005; Delgrande,
Schaub, and Tompits 2007). All of them are formalised for
non-disjunctive programs P , Q, U , V and a rule update op-
erator ⊕. Each can be seen as a meta-property that is instan-
tiated once we adopt a particular notion of program equiva-
lence. Therefore, each row of Table 1 has six cells that stand
for particular instantiations of the property. This provides a
more complete picture of how simple rule update operators,
properties and program equivalence are interrelated.

Unless stated otherwise (in a footnote), each tick (3) sig-
nifies that the property in question holds for all simple rule
update operators. A missing tick signifies that the property
does not hold in general for simple rule update operators
and, in particular, there are δa-, δb- and δc-driven operators
for which it is violated. A tick is smaller if it is a direct con-
sequence of a preceding larger tick in the same row and of
the interrelations between the notions of program equiva-
lence (c.f. Fig. 1).

The lower part of Table 1 contains a straightforward re-
formulation of the first six KM postulates for programs. We
omit the last two postulates as they require a definition of
program disjunction and it is not clear how an approapriate
one can be obtained. Furthermore, (PU7) has been heavily
criticised in the literature as being mainly a means to achieve
formal results instead of an intuitive principle (Herzig and
Rifi 1999). And though (PU8) reflects basic intuition behind
belief update – that of updating each model independently
of the others – we believe that such point of view is hardly
transferable to knowledge represented using rules because a
single model, be it a stable, C-, SE- or RE-model, fails to
encode the interdependencies between atoms expressed in
rules that are necessary for properties such as support.

Some KM postulates also require a notion of entailment.

Definition 23 (Program Entailment). Let R,S be rule
bases,Rτ = R∪ { τ }, Sτ = S ∪ { τ }. We write

R |=SE S whenever [[R]]SE ⊆ [[S]]SE;
R |=RE S whenever [[R]]RE ⊆ [[S]]RE;
R |=SR S whenever 〈〈Rτ 〉〉SE ⊇ 〈〈Sτ 〉〉SE;
R |=RR S whenever 〈〈Rτ 〉〉RE ⊇ 〈〈Sτ 〉〉RE;
R |=SU S whenever [[S \ R]]SE = X .

In terms of strength, the defined notions of entailment
maintain all the relationships depicted in Fig. 1. They are
also in line with the associated notions of equivalence:

Proposition 24. For X one of SE, RE, SR, RR, SU and rule
basesR and S,R ≡X S if and only ifR |=X S and S |=X R.

Note that we refrain from defining SM-entailment, mainly
due to the fact that stable models are non-monotonic and the
usage of entailment in KM postulates is clearly a monotonic
one. For instance, (PU1) requires that R ⊕ U |= U , though
there is no reason for R⊕ U to have less or the same stable
models as U . Therefore, KM postulates that refer to entail-
ment have the SM column marked as “n/a”.

At a first glance, it is obvious that none of the semantic
properties is satisfied under SU-equivalence. This is because
the conditions placed on a rule update operator by an excep-
tion function are at the semantic level, while SU-equivalence
effectively compares programs syntactically. For instance,
an exception-driven operator ⊕, for any exception function
ε, may behave as follows: ∅⊕{∼p← p. } = {← p. }. This
is because the rules before and after update are RE-equiva-
lent. However, due to the fact that the programs {∼p← p. }
and {← p. } are considered different under SU-equivalence,
⊕ cannot satisfy Initialisation w.r.t. SU-equivalence. The sit-
uation with all other properties is analogous.

A closer look at Table 1 reveals that many properties are
satisfied “by construction”, regardless of which simple rule
update operator we consider and of which notion of equiva-
lence we pick. It also turns out that most simple rule update
operators, including δa-, δb- and δc-driven ones, naturally
satisfy Tautology and Immunity to Tautologies, properties that
are generally acknowledged as very desirable although most
existing rule update semantics fail to comply with them.

The properties of Idempotence, Absorption and Augmen-
tation are the only ones that reveal differences amongst δa,
δb and δc. They are not satisfied by δa- and δb-driven oper-
ators under SR- and RR-equivalence. The reason for this is
that when a program is updated by a program that includes
the original program, exceptions may still be introduced to
some rules, resulting in weakened versions of the original
rules . Since such rules are not part of the original program,
the programs before and after update are considered differ-
ent under SR- and RR-equivalence. As illustrated in Exam-
ple 20, this problem is dodged in δc by completely eliminat-
ing original rules that also appear in the update.

Nevertheless, this also seems to indicate that SR- and
RR-equivalence are slightly too strong for characteris-
ing updates because programs such as such as { p. } and
{ p., p← q. } are not considered equivalent even though
we expect the same behaviour from them when they are
updated. We speculated in (Slota and Leite 2011) that
this could be solved by adopting a weaker equivalence:
SMR-equivalence. However, it turns out that SMR-equiva-
lence is too weak because programs such as {∼q. } and
{∼q., p← q. } are SMR-equivalent although, when updated
by { q. }, different results are expected for each of them. The
same applies to a counterpart of SMR-equivalence based on
RE-models.

Moreover, δa-driven operators fail to satisfy Absorption
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Table 1: Semantic properties of simple rule update operators.

Type of ≡, |= and [[·]]
Property Formalisation SU RR SR RE SE SM

Initialisation ∅ ⊕ U ≡ U . 3 3 3 3 3

Disjointness If P , Q are over disjoint alphabets,
then (P ∪Q)⊕ U ≡ (P ⊕ U) ∪ (Q⊕ U). 3 3 3 3 3

Non-interference If U , V are over disjoint alphabets,
then (P ⊕ U)⊕ V ≡ (P ⊕ V )⊕ U . 3abc

3abc 3abc 3abc 3abc

Tautology If U is tautological, then P ⊕ U ≡ P . 3?
3? 3? 3? 3?

Immunity to
Tautologies

If Q and V are tautological,
then (P ∪Q)⊕ (U ∪ V ) ≡ P ⊕ U . 3?

3? 3? 3? 3?

Idempotence P ⊕ P ≡ P . 3c
3c 3 3 3

Absorption (P ⊕ U)⊕ U ≡ P ⊕ U . 3c
3c 3bc

3bc 3bc

Augmentation If U ⊆ V , then (P ⊕ U)⊕ V ≡ P ⊕ V . 3c
3c 3bc

3bc 3bc

Associativity P ⊕ (U ⊕ V ) ≡ (P ⊕ U)⊕ V .

(PU1) P ⊕ U |= U 3 3 3 3 n/a

(PU2.>) P ⊕ ∅ ≡ P 3 3 3 3 3

(PU2.1) P ∪ U |= P ⊕ U 3 3 n/a

(PU2.2) (P ∪ U)⊕ U |= P n/a

(PU3) If [[P ]] 6= ∅ and [[U ]] 6= ∅, then [[P ⊕ U ]] 6= ∅ n/a n/a n/a

(PU4) If P ≡ Q and U ≡ V , then P ⊕ U ≡ Q⊕ V 3?

(PU5) (P ⊕ U) ∪ V |= P ⊕ (U ∪ V ) 3 3 n/a

(PU6) If P ⊕ U |= V and P ⊕ V |= U , then P ⊕ U ≡ P ⊕ V n/a
a Holds if ⊕ is generated by δa.
b Holds if ⊕ is generated by δb.
c Holds if ⊕ is generated by δc.
? Holds if ⊕ is generated by a local exception function δ such that δ(R,X ) ⊆ R for all R ⊆ X . This is satisfied by δa, δb, δc.

and Augmentation. Along with Thm. 16, this seems to indi-
cate that δa does not correctly handle iterated updates.

Associativity is one of the few properties that is not satis-
fied by any of the defined classes of operators. This is closely
related to the question of whether rejected rules are allowed
to reject, studied in literature on causal rejection-based up-
date semantics (Leite 2003). Associativity can be seen as pos-
tulating that an update operator must behave the same way
regardless of whether rejected rules are allowed to reject or
not. However, many semantics generate unwanted models
when rejected rules are not allowed to reject earlier rules.

Turning to KM postulates, (PU2.1) is not satisfied under
SR- and RR-equivalence for the same reasons, described
above, that prevent δa- and δb-driven operators from satisfy-
ing Idempotence. The situation with (PU5) is the same since
it implies (PU2.1) in the presence of (PU2.>).

Postulate (PU2.2) requires that { p.,∼p. } ⊕ {∼p. } |= p
which, in the presence of (PU1), amounts to postulating that
one can never recover from an inconsistent state, contrary
to most rule update semantics which do allow for recovery
from such states. The case of (PU6) is the same since it im-
plies (PU2.2) in the presence of (PU1) and (PU2.>).

Postulate (PU3) relies on a function that returns the set of
models of a rule base. Thus, [[·]]SM, [[·]]SE and [[·]]RE can be used
for this purpose while the other columns in the correspond-
ing row in Table 1 make little sense, so they are marked as
“n/a”. Furthermore, this postulate is not satisfied by any of
the defined classes of exception-driven operators. It is also
one of the principles that most existing approaches to rule
update chronically fail to satisfy. In order to satisfy it, a
context-aware exception function would have to be used be-
cause conflicts may arise between more than two rules that
are otherwise pairwise consistent. For instance, when updat-
ing { p. } by { q ← p.,∼q ← p. }, one would somehow need
to detect the joint conflict between these three rules. This
is however impossible with a simple exception function be-
cause it only considers conflicts between pairs of rules, one
from the original program and one from the update.

Finally, (PU4) is the postulate that requires update op-
erators to be syntax-independent. As motivated in the in-
troduction, the failure to satisfy it under SM-, SE- and
RE-equivalence is inevitable if properties such as support
and fact update are to be respected. On the other hand,
due to the semantic underpinning of simple rule update op-
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erators, (PU4) is satisfied by most of them, including all
δa-, δb- and δc-driven ones, under RR-equivalence. It might
be interesting to look for constrained classes of exception
functions that satisfy syntax-independence w.r.t. SR-equiv-
alence. Such functions, however, will not be able to satisfy
the causal rejection principle anymore because of the inabil-
ity of SE-models to distinguish abolishing rules.

5 Concluding Remarks
We defined a new monotonic characterisation of rules, the
RE-models, and introduced a generic method for specify-
ing semantic rule update operators in which a logic program
is viewed as the set of sets of RE-models of its rules and
updates are performed by introducing additional interpreta-
tions to the sets of RE-models of rules in the original pro-
gram. This framework allowed us to define concrete update
operators that enjoy an interesting combination of syntactic
as well as semantic properties that had never been reconciled
before. These findings are essential to better understand the
interrelations between belief update and syntax-based rule
update semantics and so serve as stepping stones to address-
ing updates of Hybrid Knowledge Bases.

Our investigation directly points to challenges that need
to be tackled next. First, semantic characterisations of addi-
tional rule update semantics need to be investigated. This
poses a number of challenges due to the need to detect
non-tautological irrelevant updates (Alferes et al. 2005;
Šefránek 2006; 2011). For instance, simple functions exam-
ined in this paper cannot distinguish an update of { p. } by
U = {∼p← ∼q.,∼q ← ∼p }, where it is plausible to in-
troduce the exception 〈∅, ∅〉, from an update of { p., q. } by
U , where such an exception should not be introduced due
to the cyclic dependency of justifications to reject p. and q.
In such situations, context-aware functions need to be used.
In addition, such functions have the potential of satisfying
properties such as (PU3) and (Associativity).

Another challenge is to find further logical characterisa-
tions of rules, namely a notion of program equivalence that
is weaker than RR-equivalence but stronger than RE-equiv-
alence so that both (PU4) and properties such as (PU2.1) can
be achieved under a single notion of program equivalence.

Finally, computational properties of different classes of
exception-driven update operators should be investigated.
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