
Worst-Case Optimal Reasoning with Forest Logic Programs∗

Cristina Feier
Institute of Information Systems
Vienna University of Technology

Favoritenstrasse 11, A-1040 Vienna, Austria
feier@kr.tuwien.ac.at

Abstract

The paper introduces a worst-case optimal tableau al-
gorithm for reasoning with Forest Logic Programs, a
decidable fragment of Open Answer Set Programming.
FoLPs are a useful device for tight integration of the
Description Logic and the Logic Programming worlds:
reasoning with the DL SHOQ can be simulated within
the fragment. The algorithm reuses a knowledge com-
pilation technique previously introduced, but improves
on previous results by decreasing the worst-case run-
ning time with one exponential level. The decrease in
complexity is due to the usage in conjunction of a new
redundancy and of a new caching rule.

There has been lots of work recently combining logi-
cal rules and ontologies: starting with approaches like De-
scription Logic Programs (Grosof et al. 2003), DL-safe
rules (Motik, Sattler, and Studer 2005), DL+log (Rosati
2006), dl-programs (Eiter et al. 2008), Description Logic
Rules (Krötzsch, Rudolph, and Hitzler 2008), and consid-
ering more recent approaches like Datalog± (Calı̀, Gottlob,
and Lukasiewicz) and its fragments.

Most approaches impose safety restrictions on the rule
component: any deducible fact has as arguments elements
of the domain of the discourse, the Herbrand universe.One
rule-based formalism which allows to express facts about
unknown individuals is Forest Logic Programs (FoLPs)
(Heymans, Van Nieuwenborgh, and Vermeir 2007). FoLPs
is a decidable fragment of Open Answer Set Programming
(OASP) (Heymans, Van Nieuwenborgh, and Vermeir 2008),
an extension of Answer Set Programming (ASP) with open
domains. The syntax of OASP is identical to ASP syntax,
while its semantics (and implicitly, of FoLPs) is a hybrid
between the standard ASP semantics and the classical FOL
semantics: interpretations are relative to ’open’ domains, i.e.
non-empty supersets of the set of constants in the program.
Syntactically, FoLPs is a 2-variable fragment of ASP which
has the forest model property: every satisfiable unary predi-
cate is satisfied by a forest model. One can simulate within
FoLPs reasoning with the expressive DL SHOQ: as such,

∗This work is partially supported by the Austrian Science Fund
(FWF) under the project P20840, and by the European Commission
under the project OntoRule (IST2009231875).
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

FoLPs serve as an integrative device for f-hybrid knowledge
bases, a tightly-coupled combination of FoLPs themselves
and SHOQ KBs (Feier and Heymans 2011).

The contribution of this paper is a worst-case optimal al-
gorithm for checking satisfiability of unary predicates w.r.t.
FoLPs. The algorithm runs in the worst-case in exponen-
tial time, and it establishes a tight complexity characteriza-
tion for FoLPs. It improves on the worst-case running time
of previous approaches for reasoning with FoLPs with one
exponential level. Like previous approaches, it is tableau-
based: it constructs a so-called completion structure, which
eventually can be unraveled to a model. To this purpose,
it reuses a knowledge compilation technique introduced in
(Feier and Heymans 2010). However, the new algorithm em-
ploys different termination techniques: a new version of the
so-called redundancy rule which stops the unsuccessful ex-
pansion of a branch in the tableau is introduced along with a
new caching rule for reusing computation across branches.

Section 1 contains some preliminaries, including the
OASP semantics, while Section 2 introduces FoLPs. Section
3 describes the notion of completion structure and how this
can be evolved using the knowledge compilation technique
previously introduced. The termination rules of the new al-
gorithm are described in Section 4. Section 5 describes when
the expansion of the completion structure is complete, while
section 6 shows that the algorithm terminates, is sound, and
complete. The formal complexity analysis can be found in
section 7. Finally, section 8 draws some conclusions and
presents some related work.

1 Preliminaries
We recall the open answer set semantics (Heymans,
Van Nieuwenborgh, and Vermeir 2008). Constants
a, b, c, . . ., variables X,Y, . . ., terms s, t, . . ., and atoms
p(t1, . . . , tn) are as usual. A literal is an atom L or a
negated atom not L. We allow for inequality literals of the
form s 6= t, where s and t are terms. A literal that is not an
inequality literal is a regular literal.

For a set S of literals or (possibly negated) predicates,
S+ = {a | a ∈ S} and S− = {a | not a ∈ S}. For a
set S of atoms, not S = {not a | a ∈ S}. For a set of
(possibly negated) unary predicates S: S(X) = {a(X) |
a ∈ S}, and for a set of (possibly negated) binary predicates
S: S(X,Y) = {a(X,Y) | a ∈ S}.

608

Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning

A program is a countable set of rules α ← β, where α is
a finite set of regular literals and β is a finite set of literals.
The set α is the head and represents a disjunction, while β
is the body and represents a conjunction. Rules can also be
named, as in r : α ← β, where r is the name of the rule.
Atoms, literals, rules, and programs that do not contain vari-
ables are ground. For a rule or a programR, let cts(R) be the
constants inR, vars(R) its variables, and preds(R) its pred-
icates with upreds(R) the unary and bpreds(R) the binary
predicates. A universe U for P is a non-empty countable su-
perset of the constants in P : cts(P) ⊆ U . PU is obtained
from P by substituting every variable in P by every element
in U . Let BP be the set of regular atoms that can be formed
from a ground program P .

An interpretation I of a ground P is a subset of BP .
We write I |= p(t1, . . . , tn) if p(t1, . . . , tn) ∈ I and I |=
not p(t1, . . . , tn) if I 6|= p(t1, . . . , tn). Also, for ground
terms s, t, we write I |= s 6= t if s 6= t. For a set of ground
literals L, I |= L if I |= l for every l ∈ L. A ground rule
r : α ← β is satisfied w.r.t. I , denoted I |= r, if I |= l for
some l ∈ α whenever I |= β. A ground constraint ← β is
satisfied w.r.t. I if I 6|= β.

For a positive ground program P , i.e., a program without
not , an interpretation I of P is a model of P if I satisfies
every rule in P ; it is an answer set of P if it is a subset min-
imal model of P . For ground programs P containing not ,
the GL-reduct (Gelfond and Lifschitz 1988) w.r.t. I is de-
fined as P I , where P I contains α+ ← β+ for α← β in P ,
I |= not β− and I |= α−. I is an answer set of a ground P
if I is an answer set of P I .

A program is a finite set of rules; infinite programs may
appear by grounding with an infinite universe. An open in-
terpretation of a program P is a pair (U,M) where U is a
universe for P and M is an interpretation of PU . An open
answer set of P is an open interpretation (U,M) of P with
M an answer set of PU . An n-ary predicate p in P is sat-
isfiable if there is an open answer set (U,M) of P s. t.
p(x1, . . . , xn) ∈M , for some x1, . . . , xn ∈ U .

We introduce notation for trees which extend those in
(Vardi 1998). Let · be a concatenation operator between se-
quences of constants or natural numbers. A tree T with root
c (also denoted as Tc), where c is a specially designated
constant, is a set of nodes, where each node is a sequence
of the form c · s, where s is a (possibly empty) sequence
of positive integers formed with the help of the concate-
nation operator (we denote the set of all such sequences
with 〈N∗〉, where N∗ is the set of positive integers); for
x · d ∈ T , d ∈ N∗, we must have that x ∈ T . The set
AT = {(x, y) | x, y ∈ T, ∃n ∈ N∗ : y = x · n} is the set of
arcs of a tree T . For x, y ∈ T , we say that x <T y iff there
exists s ∈ 〈N∗〉 s.t. y = x · s and x 6= y. For nodes x, y ∈ T ,
let commonT (x, y) be the node z s. t. z <T x, z <T y, and
there is no z′ ∈ T s. t. z′ >T z, z′ <T x, and z′ <T y.
A node x ∈ T is said to be to the right of a node y ∈ T
and denoted with rightT (x, y) iff there exists a node z ∈ T ,
i, j ∈ N∗, and s1, s2 ∈ 〈N∗〉, s. t. x = z · i · s1, y = z · j · s2,
and i > j. The subtree of Tc at y, denoted Tc[y], is the set
{x | x ∈ Tc, x = y · s, s ∈ 〈N∗〉}.

A forest F is a set of trees {Tc | c ∈ C}, where C is a set

of distinguished constants. We denote with NF = ∪T∈FT
and AF = ∪T∈FAT the set of nodes and the set of arcs of
a forest F , respectively. An extended forest EF is a tuple
(F,ES) where F = {Tc | c ∈ C} is a forest and ES ⊆
NF ×C. We denote by NEF = NF the nodes of EF and by
AEF = AF ∪ ES its arcs.

Finally, a directed graph G is defined as usual by its sets
of nodes V and arcs A. pathsG denotes the set of paths in
G, where each path is a tuple of nodes from V : pathsG =
{(x1, . . . , xn) | ((xi, xi+1) ∈ A)1≤i<n}.

2 Forest Logic Programs
Definition 2.1. A FoLP is a program with only unary and
binary predicates, and s. t. a rule is either:
• a free rule: a(s)∨not a(s)← , or f(s, t)∨not f(s, t)←,

where s and t are terms;
• a unary rule:

a(s) ← β(s), (γm(s, tm), δm(tm))1≤m≤k , ψ, with ψ ⊆⋃
1≤i6=j≤k{ti 6= tj} and k ∈ N, or

a binary rule: f (s, t)← β(s), γ(s, t), δ(t), where:
a ∈ upreds(P) and f ∈ bpreds(P), s, t, and
(tm)1≤m≤k are terms, β, δ, (δm)1≤m≤k ⊆ upreds(P) ∪
not (upreds(P)) (sets of (possibly negated) unary pred-
icates), γ,(γm)1≤m≤k ⊆ bpreds(P) ∪ not (bpreds(P))
(sets of (possibly negated) binary predicates), and

1. inequality does not appear in any γ: {6=} ∩ γm = ∅,
for 1 ≤ m ≤ k, and {6=} ∩ γ = ∅;

2. there is a positive atom that connects the head term s
with any successor term which is a variable: γ+m 6= ∅,
if tm is a variable, for 1 ≤ m ≤ k, and γ+ 6= ∅, if t is
a variable;

• a constraint: ← a(s) or ← f (s, t), with s and t terms.
In every rule, all terms which are variables are distinct.

A forest model of a FoLP is a model whose universe can
be seen as the set of nodes of a forest, with every node and
arc of the forest being labeled with unary and binary predi-
cates, resp.: an atom is in the model iff it can be formed using
the unary/binary predicate in the label of some node/arc and
the respective node/arc as argument(s).
Definition 2.2. Let P be a program. A unary predicate p
is forest satisfiable w.r.t. P iff there is an open answer set
(U,M) of P and an extended forest EF ≡ ({Tε} ∪ {Ta
| a ∈ cts(P)},ES), with ε a constant, possibly one of the
constants appearing in P ,and a labeling functionL : {Tε}∪
{Ta | a ∈ cts(P)} ∪AEF → 2preds(P) s. t.:
• p ∈ L(ε),
• L(x) ∈ 2upreds(P)/2bpreds(P) for x ∈ NEF/AEF ,
• U = NEF , M = {L(x)(x) | x ∈ NEF ∪AEF}, and
• for every (z, z · i) ∈ AEF : L(z, z · i)+ 6= ∅.

We call such a (U,M) a forest model and a program
P has the forest model property if the following property
holds: if p ∈ upreds(P) is satisfiable w.r.t. P then p is forest
satisfiable w.r.t. P .
Proposition 2.3 ((Heymans, Van Nieuwenborgh, and Ver-
meir 2007)). FoLPs have the forest model property.

609

3 Tableau Reasoning with FoLPs
The algorithm we present in this paper (A3) builds on pre-
vious algorithms introduced in (Feier and Heymans 2009)
(A1) and (Feier and Heymans 2010) (A2). All three algo-
rithms for checking satisfiability of a unary predicate p w.r.t.
a FoLP P construct a forest model of P which satisfies p
by evolving a data structure, whose main element is an ex-
tended forest EF as in Definition 2.1. This data structure
is called completion structure. The set of nodes of EF is
the universe of the model, and every node and arc of EF is
labeled using a function ct (content), which assigns to ev-
ery node, resp. arc of EF , a set of possibly negated unary,
resp. binary predicates. The presence of a predicate symbol
p/not p in the content of some node or arc x indicates the
presence/absence of the atom p(x) in the open answer set.

The completion is evolved by progressively justifying the
presence/absence of certain atoms in the model. To this pur-
pose, A1 introduced so-called expansion rules which justify
the presence/absence in the model of one atom at a time.
They enforce that the body of a ground rule which has the
atom in the head is true (in case the atom is in the model)
or that the bodies of all ground rules which have the atom in
the head are false (in case the atom is not in the model).
Rules which guess the presence/absence of atoms in the
model are also part of the algorithm. A2 is an optimization
of A1 consisting in a knowledge compilation technique: all
possible building blocks of a model in the form of trees of
depth 1 are pre-computed using A1 and the completion is
evolved by matching and appending these blocks using sim-
ilar conditions for termination as A1. Such a building block
is called unit completion structure (UCS). The current al-
gorithm reuses this technique. In this setting, a completion
structure contains a ‘status’ function st which assigns one
the values exp or unexp to nodes of the forest, depending
whether their content has been justified or not.

Finally, the model has to be well-supported (Fages 1991):
no atom in the model may depend on itself and there should
be no infinite chain of dependencies between atoms. To
check this property, a graph G which keeps track of depen-
dencies between atoms in the model is also maintained.
Definition 3.1. A completion structure for a FoLP P is a
tuple 〈EF , ct, st, G〉, with EF an extended forest, ct :
NEF ∪AEF → 2preds(P)∪not (preds(P)) the ‘content’ func-
tion, st : NEF → {exp, unexp} the ‘status’ function, and
G = 〈V,A〉 a directed graph with V ⊆ BPNEF

.
The algorithm starts with an initial completion structure

for checking satisfiability of p w.r.t. P : it enforces that all
constants in P are part of the initial universe of the con-
structed model and that p is satisfied by some element ε of
the universe (either one of cts(P) or an anonymous individ-
ual) by asserting p to be part of ct(ε).
Definition 3.2. An initial completion structure for checking
satisfiability of a unary predicate p w.r.t. a FoLP P is a com-
pletion structure 〈EF , ct, st, G〉, where: EF = (F, ∅);
F = {Tε} ∪ {Ta | a ∈ cts(P)}, with ε a constant,
possibly in cts(P); Tx = {x}, for x ∈ {ε} ∪ cts(P);
st(x) = unexp, for x ∈ {ε} ∪ cts(P); G = 〈V, ∅〉, with
V = {p(ε)}, and ct(ε) = {p}.

As previously mentioned, a completion structure is
evolved by considering some unexpanded node in the ex-
tended forest and trying to justify all constraints associated
with that node by finding a UCS which ’matches’ that node
and replacing the node with the UCS. A UCS matches a
node, if the content of the node is included in the content of
the expanded node in the UCS. The result of replacing an un-
expanded node x in a completion structure CS with a UCS
UC which matches x is denoted as expandCS(x, UC).
All formal definitions can be found in (Feier and Heymans
2010). Next rule captures the basic step of the algorithm:

Match. For a node x ∈ NEF : if st(x) = unexp, non-
deterministically choose a unit completion structure UC
which matches x and perform expandCS(x, UC).

4 Blocking, Redundancy, Caching
This section describes the rules which stop the expansion
of a completion structure: a previously-introduced blocking
rule and a new redundancy and caching rule.

4.1 Blocking
All three algorithms employ a blocking technique which is a
generalization of the well-known subset blocking technique
(Baader et al. 2003): if the label of a an unexpanded node x
is included in the label of one of its ancestors y, x is said to
be ‘blocked’ and it is no longer expanded as it can expanded
similarly to y; either x is replaced by the subtree T [y] (1)
or the successors of y are reused as successors of x (2). In
our case, the subset blocking condition is not enough as by
applying either (1) or (2) one may introduce infinite paths or
cycles in G and thus, violate the well-supportedness prop-
erty. To avoid this, the blocking rule checks also that there is
no path in G from an atom p(y) to an atom q(x).

Blocking. A node x ∈ T ∈ NEF is blocked if there is
a node y <T x, y 6∈ cts(P), s. t. ct(x) ⊆ ct(y), and
connprG(y, x) = {(p, q) | (p(y), q(x)) ∈ pathsG} = ∅.
We call (y, x) a blocking pair. No expansions can be per-
formed on a blocked node.

4.2 Redundancy
While the content inclusion condition in the blocking rule
is eventually fulfilled when expanding a path in a comple-
tion structure, the extra condition regarding the nonexistence
of paths in G might never be fulfilled. (Feier and Heymans
2009) introduced a new rule, called redundancy to ensure
termination: if k nodes with equal content, where k is expo-
nential in the size of the program, had already been explored
on a branch, the algorithm aborts.

We introduce here a more refined strategy for abort-
ing expansion of a branch. First, one has to keep track of
the oldest path in G from which every atom in the con-
structed model makes part, where ’oldest’ is defined w.r.t.
the shallowest atom (as regards its depth in the extended
forest) which is part of the branch: the smaller the depth of
such an atom, the older the path in G it makes part from
is. Formally, let the rank of an atom a be the shallowest
depth of a node y s.t. there exists a unary/binary p/f with

610

(p(y)/f(x, y), a) ∈ pathsG, or the depth of its deepest ar-
gument, otherwise: rank(p(x)/f(x, y)) = min({|x|/|y|}∪
{rank(a)|(a, p(x)/f(x, y)) ∈ AG}). The rank of a node is
the minimum of the ranks of the unary atoms having that
node as an argument: rank(x) = minp∈ct(x) rank(p(x)).

Next, the idea is to minimize the set of oldest paths in
G running along a branch of the completion structure by
keeping track of the intersections of such paths in G with
nodes. By in(k, x), one understands the intersection of the
set of paths starting with an atom with rank k with node
x (presuming |x| ≥ k): in(k, x) = {p|rank(p, x) = k}.
Nodes with identical content are allowed on the same branch
only if every subsequent occurrence of such a node shrinks
the intersection of the nodes with the set of oldest paths.

Redundancy. A node x ∈ NEF is redundant if there is an
ancestor y of x in F , y <F x, y 6∈ cts(P), s. t.: ct(x) ⊆
ct(y), rank(x) = rank(y) = r, and in(r, x) ⊇ in(r, y).

The advantage of this new technique is that while before
failure was detected only when reaching a node with expo-
nential depth, the new strategy can potentially identify fail-
ure much earlier.

4.3 Caching
Blocking can be generalized to the so-called ‘anywhere
blocking’ or ‘caching’, where a cached node is justified sim-
ilarly to a caching node which belongs to a different branch
of the same tree in the extended forest. Again, the content
of the cached node has to be included in the content of the
caching node. Additionally, a condition regarding sets of
paths in G has to be fulfilled.

Caching. A node y ∈ T ∈ F is said to be cached if there
is a node x ∈ T ∈ F , y 6<T x, x 6<T y, x 6∈ cts(P),
s. t. rightT (y, x), ct(y) ⊆ ct(x), and connprG(z, y) ⊆
connprG(z, x), where z = commonT (x, y). We call (y, x)
a caching pair and y a caching node. A cached node is no
longer expanded.

Like in the case of blocking, when unraveling a com-
pletion structure containing a caching pair (x, y), the con-
tent of y is justified similarly to the content of x by copy-
ing the subtree Tx at y or by reusing the successors of x
as successors of y. In order to maintain well-supportedness
of the constructed model, it is essential that, by perform-
ing one of the two operations, one does not introduce cy-
cles or infinite paths in G: a necessary and sufficient con-
dition for this is connprG(z, y) ⊆ connprG(z, x), where
z = commonT (x, y).

For a cached node to not reuse its own justification in case
a successor of its caching node is at its turn a cached node,
we impose that a cached node is always ’to the right’ of the
corresponding caching node in their common tree. Together
with this requirement, we enforce the following expansion
strategy for the completion structure: a node x ∈ T ∈ F can
be expanded iff every node y s.t.: rightT (y, x) is expanded.
The Match rule becomes:

Match’. For a node x ∈ NEF : if st(x) = unexp and
for every node y s.t. rightT (y, x): st(x) = exp, non-
deterministically choose a unit completion structure UC
which matches x and perform expandCS(x, UC).

5 Complete/Clash-free Expansion
This section specifies when the expansion is finished, i.e. the
structure is ‘complete’ (no rules can be further applied), and
when the obtained completion is a good one, i.e. ‘clash-free’
(no node is redundant or unexpanded).

Definition 5.1. A complete completion structure for a FoLP
P and a p ∈ upreds(P), is a completion structure that re-
sults from the repeated application of the rule Match’ to an
initial completion structure for p and P , taking into account
the applicability rules Blocking, Redundancy, and Caching
s. t. no rules can be further applied.

Definition 5.2. A complete completion structure CS =
〈EF , ct, st, G〉 is clash-free if for every x ∈ NEF : x is not
redundant, and it is either blocked, cached, or st(x) = exp.

6 Termination, Soundness, and
Completeness

We show that the algorithm terminates by computing expo-
nential bounds on the branch length in any completion struc-
ture, and on the total number of nodes in a completion struc-
ture. The first bound is a direct consequence of using the re-
dundancy and the blocking rules. For computing the second
bound we use the first bound, and the atom ranks introduced
in Section 4.3, and the caching and the redundancy rule.

Proposition 6.1. Every path in a completion structure for a
unary predicate p and a FoLP P has at most an exponential
number of nodes in the size of P .

Proposition 6.2. A complete completion structure for a
unary predicate p and a FoLP P has at most an exponen-
tial number of nodes in the size of P .

The algorithm is sound and complete:

Proposition 6.3. Let P be a FoLP and p ∈ upreds(P).
There exists a complete clash-free completion structure for
p w.r.t. P iff p is satisfiable w.r.t. P .

Proof Sketch. “⇒”: From a complete clash-free comple-
tion structure for p w.r.t. P , one constructs an open interpre-
tation by expanding blocked/cached similarly to correspond-
ing blocking/caching nodes by reusing their successors. It is
not difficult to show that this interpretation is a model, but
one has to also prove minimality: the conditions regarding
paths in G in the termination rules are paramount for this.

“⇐”: If a unary p is satisfiable, then it is forest satisfiable.
A procedure is given to construct a complete clash-free com-
pletion structure from any arbitrary (possibly infinite size)
forest model of p. To this purpose, UCSs which are parts of
the forest model are appended to build a completion struc-
ture. For termination, the blocking and caching rules are em-
ployed as usually. In the case of redundant nodes, the path
between the redundant node and its redundancy witness is
eliminated from the completion structure in construction and
the process continues.

For complete proofs, see (Feier 2011).

7 Complexity
From Proposition 6.2 it follows that:

611

Proposition 7.1. A3 runs in the worst case in non-
deterministic exponential time.

One can transform A3 to a deterministic procedure
DETA3 which can be executed in exponential time. The pro-
cedure constructs an AND/OR extended forest with depth
double the size of the largest depth encountered when run-
ningA3. At odd levels, there are OR nodes with unexpanded
content (they contain just the constraints imposed by their
predecessor), while at even levels, there are AND nodes
which are ‘realizations’ of their predecessor, i.e., they (to-
gether with their outgoing arcs and direct successors) de-
scribe a possible way to expand the predecessor node. For
more details regarding the construction, please see (Feier
2011).
Proposition 7.2. DETA3 is sound, complete, and runs in
the worst case in deterministic exponential time.

Thus, satisfiability checking of a unary predicate p w.r.t.
a FoLP P can be evaluated in exponential time in the size
of P . This, together with the fact that the same task is EXP-
TIME-hard (see (Feier and Heymans 2009)), implies that the
problem is EXPTIME-complete. With this we close an exist-
ing gap regarding the complexity of reasoning with FoLPs.
Proposition 7.3. Satisfiability checking of a unary predicate
p w.r.t. a FoLP P is EXPTIME-complete.

Finally, this translates in a similar result concerning f-
hybrid knowledge bases (Feier and Heymans 2011) which
are a tight combination of FoLPs and the DL SHOQ.
As reasoning with f-hybrid knowledge bases (satisfiability
checking) can be reduced to reasoning with FoLPs, it fol-
lows that the task is EXPTIME-complete as well.
Proposition 7.4. Satisfiability checking w.r.t. f-hybrid
knowledge bases is EXPTIME-complete.

8 Conclusions and Related Work
We presented a worst-case optimal tableau algorithm for
reasoning with FoLPs which improves the performance
of its predecessors by employing a new redundancy rule
which deals with eliminating redundant computation along
a branch and a new caching rule which deals with eliminat-
ing redundant computation across branches.

Among rule-based formalisms, one which allows for un-
safe rules is Datalog± (Calı̀, Gottlob, and Lukasiewicz 2009;
): it extends Datalog with a special type of rules with existen-
tially quantified variables in the head, called tuple generating
dependencies (TGDs). The formalism is undecidable in the
general case. Like in the case of OASP, several syntactical
restrictions have been imposed on the shape of TGDs in or-
der to regain decidability. These restrictions are orthogonal
to the ones we imposed for achieving decidability on FoLPs.

Another decidable fragment of OASP which can simulate
the description logic SHIQ is Conceptual Logic Programs
under the Inverted World Assumption. The fragment has the
tree model property and in (Heymans, Van Nieuwenborgh,
and Vermeir 2006) reasoning with the fragment has been re-
duced to checking emptiness of a two-way alternating tree
automata. However, there is no practical algorithm for deal-
ing with such programs. Next step is to extend the algorithm
introduced in this paper to reason with CoLPs under IWA.

References
Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.; and (eds),
P. F. P.-S. 2003. The description logic handbook: Theory, im-
plementation, and applications. In Description Logic Handbook.
Cambridge University Press.
Calı̀, A.; Gottlob, G.; and Lukasiewicz, T. Datalog : A Unified
Approach to Ontologies and Integrity Constraints. In Proc. ICDT
2009, volume 9, 14–30.
Calı̀, A.; Gottlob, G.; and Lukasiewicz, T. 2009. A General
Datalog-Based Framework for Tractable Query Answering over
Ontologies. In Proc. PODS2009, 77–86. ACM Press.
Eiter, T.; Ianni, G.; Lukasiewicz, T.; Schindlauer, R.; and Tompits,
H. 2008. Combining answer set programming with description log-
ics for the Semantic Web. Artificial Intelligence 172(12-13):1495–
1539.
Fages, F. 1991. A new fix point semantics for generalized logic
programs compared with the wellfounded and the stable model se-
mantics. New Generation Computing 9(4).
Feier, C., and Heymans, S. 2009. Hybrid Reasoning with Forest
Logic Programs. In Proc. of 6th European Semantic Web Confer-
ence, volume 5554, 338–352. Springer.
Feier, C., and Heymans, S. 2010. An optimization for reason-
ing with forest logic programs. In Proc. of Workshop on Answer
Set Programming and Other Computing Paradigms (ASPOCP).
CoRR.
Feier, C., and Heymans, S. 2011. Reasoning with forest logic
programs and f-hybrid knowledge bases. TPLP. Accepted for pub-
lication. Preliminary version at: http://arxiv.org/abs/1110.2773.
Feier, C. 2011. Worst case optimal reasoning with forest logic pro-
grams. Technical report, Technical University of Vienna. Available
at: http://www.kr.tuwien.ac.at/research/reports/rr1107.pdf.
Gelfond, M., and Lifschitz, V. 1988. The Stable Model Semantics
for Logic Programming. In Proc. of ICLP’88, 1070–1080.
Grosof, B. N.; Horrocks, I.; Volz, R.; and Decker, S. 2003. Descrip-
tion logic programs: Combining logic programs with description
logic. In Proc. WWW 2003, 48–57. ACM.
Heymans, S.; Van Nieuwenborgh, D.; and Vermeir, D. 2006. Con-
ceptual Logic Programs. Annals of Mathematics and Artificial
Intelligence (Special Issue on Answer Set Programming) 47(1–
2):103–137.
Heymans, S.; Van Nieuwenborgh, D.; and Vermeir, D. 2007. Open
Answer Set Programming for the Semantic Web. J. of Applied
Logic 5(1):144–169.
Heymans, S.; Van Nieuwenborgh, D.; and Vermeir, D. 2008. Open
answer set programming with guarded programs. Transactions on
Computational Logic 9(4):1–53.
Krötzsch, M.; Rudolph, S.; and Hitzler, P. 2008. Description logic
rules. In Proc. ECAI, 80–84. IOS Press.
Motik, B.; Sattler, U.; and Studer, R. 2005. Query answering for
OWL-DL with rules. Journal of Web Semantics 3(1):41–60.
Rosati, R. 2006. DL+log: Tight Integration of Description Logics
and Disjunctive Datalog. In Proc. of the Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR), 68–78.
Vardi, M. Y. 1998. Reasoning about the Past with Two-way Au-
tomata. In Proc. 25th Int. Colloquium on Automata, Languages
and Programming, 628–641. Springer.

612

