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Abstract

The GEO-Stationary Coastal and Air Pollution Events (GEO-
CAPE) mission plans to put a visible spectrum imaging in-
strument on a satellite in geo-stationary orbit to perform
ocean color remote sensing. Two different instrument de-
signs, Filter Radiometer (FR) and COastal Ecosystems Dy-
namic Imager (COEDI), with different shape for the im-
aged area and image acquisition time, are being evaluated.
Scheduling observations for either instrument requires opti-
mizing science objectives in the presence of predicted cloud
cover and available daylight. We model this scheduling prob-
lem as both Mixed Integer Linear Program (MILP) and Con-
straint Programming (CP) problems, and compare these two
formulations for FR and COEDI using real cloudiness data
collected at different times throughout the year. Our results
show that MILP is the more suitable technique, and the sched-
ule quality metric shows FR is the preferred design. We have
reported our results to the GEO-CAPE mission team to as-
sist them making an informed decision for the next step in
formulating this mission.

Introduction

GEO-CAPE is a proposed Earth-observing satellite mission
capable of measuring many properties of Earth’s air and wa-
ter from space. These observations are to be achieved from
a geo-stationary vantage point over the equator, in view of
North and South America as well as the adjacent oceans.
Multiple observations of the same area per day are required
to explore the physical, chemical, and dynamical processes
that determine atmosphere composition and air quality over
(1) spatial scales ranging from urban to continental, and (2)
temporal scales ranging from daily to seasonally. Likewise,
high frequency satellite observations are critical to studying
and quantifying biological, chemical, and physical processes
within the coastal ocean and beyond (Fishman et al. 2012).
Scheduling observations is complicated by several factors:

• Observations are constrained temporally by available day-
light, which varies by location and time of year.

• Cloud cover over the regions of interest changes through-
out the day.
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• Different classes of science objectives have different ideal
and acceptable intervals between consecutive observa-
tions (referred to as temporal separation), and the sched-
ule quality depends on the set of separations achieved in
the final schedule.

Given that the GEO-CAPE mission is in the planning
and feasibility study stage, two different instrument designs
are being considered: Filter Radiometer (FR) and COastal
Ecosystems Dynamic Imager (COEDI). One of the main
goals for our study is to assist the science team in selecting
the final instrument design. Specifically, the quality of the
observation schedules for different instruments will indicate
which instrument can provide better science. For either of
these instruments, the resulting scheduling problem is large,
even when scheduling observations for a single day.

For each instrument, we model the scheduling problem
in MILP and CP, create single-day problem instances uti-
lizing real cloudiness data provided by weather satellites at
different times of year, and solve them using the IBM ILOG
CPLEX and CP Optimizer solvers. The key results are:

1. MILP produces better schedules than CP.

2. FR is more promising than COEDI in terms of achieving
the desired science objectives.

We have reported our finding to the GEO-CAPE mission
team to assist them making an informed decision for the next
step in this mission.

In the next section we will provide some background on
the various aspects of GEO-CAPE. We then follow with the
description on how to formulate this problem in MILP and
CP, two of the most popular scheduling approaches. Next,
we compare MILP and CP formulations on different sce-
narios involving the two competing instruments (FR and
COEDI) at different times of the year. We finish the paper
with discussion on the related and future work.

Background

A satellite in a geo-stationary orbit is directly overhead the
same spot on Earth at all times. We refer to a scene as the
area captured by an imaging instrument on the satellite. The
set of scenes the satellite can scan (i.e. take picture of) is
fixed, and depends on the geometry of the instrument. The
instrument can scan one scene at a time, and the scanning
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Objective Threshold Baseline
Survey 2 hours 1 hour

Targeted Science 1 hour 0.5 hours

Table 1: Temporal separation for classes of science derived
from GEO-CAPE Ocean Science Traceability Matrix.

FR COEDI
Nadir Pixel size (m) 250 375
Footprint (km) 512 x 512 768 x 168
Resolution (pixels) 4096 x 4069 2048 x 448
Scan / point time (seconds) 158 224
Scenes 19 38

Table 2: Instrument performance characteristics.

time is fixed1 (and instrument-dependent). A scene can be
scanned if it is illuminated and is sufficiently clear of clouds.
Scenes will generally be scanned multiple times a day; the
exact number depends on the science objectives. The instru-
ment can be idle if no scene can be scanned.

Our satellite observation scheduling problem requires
choosing, at each time, which scene to scan to maximize
schedule quality, while respecting all constraints. The sci-
ence objectives, preferences, and constraints are further
elaborated in the remainder of this section.

Ocean Science

The GEO-CAPE Oceans Science Traceability Matrix (STM)
(Fishman et al. 2012) describes the ocean science ques-
tions of interest, and the constraints and preferences on
the observing strategies needed to answer these questions.
Two complementary operational modes will be employed to
meet different science objectives. The first is a Survey mode
for evaluation of daily, monthly, and yearly variability of
ocean chemistry and biology for river mouths, shallow wa-
ter coast regions, and deeper ocean regions near large river
outflows. The second is a Targeted mode, which employs
high-frequency sampling for observing episodic events that
feature daily variation on upper ocean constituents. These
include hazards such as harmful algal blooms, which can
cause red tides and other emergencies, as well as floods, oil
spills, and other disasters. Both of these modes are used for
observing the coastal waters of the United States.

The temporal separation constraints and preferences for
the Survey and Targeted science modes are described in Ta-
ble 1. The STM distinguishes between the maximum accept-
able separation of repeated observations of the same scene,
which is referred to as the Threshold separation, and the
ideal separation, referred to as the Baseline separation.

Imager Specification and Scene Layout

The GEO-CAPE satellite will notionally be located over the
equator at 94 degrees West longitude. When pointing the in-
strument straight down, or at nadir, each pixel is almost a

1We have assumed this for our study.

Figure 1: Scene layout for the Filter Radiometer covering
the coastal regions. Pixels are 250m at nadir (equatorial);
lighter pixels (bottom) are approximately 270m, while the
darker pixels (top) are over 360m. The cloudiness thresholds
for each scene are also shown.

square. However, when pointing the instrument elsewhere,
these square pixels become distorted along the off-nadir
axes, and also cover a larger area. The GEO-CAPE cover-
age requirement is to scan the ocean to a distance of 375 km
offshore of the United State coastline, as well as the Great
Lakes. The scene layout is assumed to be static (scene co-
ordinates do not change day to day in response to predicted
clouds or changing science needs). Given an instrument, the
first task is to lay out the scenes to cover the coastal regions
and the Great Lakes with the fewest scenes (to minimize
the time taken to scan all scenes while meeting the tempo-
ral separation objectives from the STM). To accomplish this,
we used the Satellite Tool Kit (STK) to manually lay out the
scenes.

Table 2 shows the specifications of the two instruments,
FR and COEDI. One FR scene covers 512km × 512km at
nadir. With a resolution of 4096 pixels × 4096 pixels, each
pixel covers a square of 250 m × 250 m. The time taken
to scan a scene and reorient to a new scene is 158 seconds.
COEDI is a more complex imager design, consisting of two
long parallel slits separated by 20 pixels. For the purposes
of scheduling, we assumed that consecutive East-West scans
are performed to assemble a ‘pseudo-scene’ with dimension
768km × 156km at nadir. In this case each pixel covers a
375m × 375m square at nadir. It takes 224 seconds to per-
form one scan and reorient COEDI to a new scene. Figure 1
shows the final set of 19 scenes for the FR imager that cover
all the interested regions. The comparable scene layout for
COEDI is 38 scenes.

Cloudiness Threshold

The picture of a given scene has no value if the acquired
image is too cloudy. Specifically, a scene S is deemed to
be clear if Y% of S is not covered by cloud. The threshold
value Y depends on the average cloudiness over different
parts of the coastline. Figure 1 shows the cloud threshold
values Y for different FR scenes.

We utilize real cloud data provided by the Geostation-
ary Operational Environment Satellites (GOES). GOES are
geo-stationary satellites providing a large number of weather
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forecasting and data products covering the U.S. and neigh-
boring oceans. These satellites produce 4km resolution
weather data every 30 minutes, 24 hours a day. Specifically,
each GOES time-stamped image file is a grid of 2000 × 750
pixels. We use the following data: the Latitude and Longi-
tude values that define the coordinate of that pixel in the
Earth coordinate system, and the Cloud Phase value, which
specifies if a given pixel is covered by a particular type of
cloud.

The procedure to decide if a given scene S is clear (not-
cloudy) enough to be imaged at time t is:

1. Find the GOES image F of size 2000× 750 pixels (1.5M
pixels) that was last collected before t (guaranteed to be
within 30 minutes of t).

2. Find the polygon P within F that best represents S. This
is done by mapping the 〈latitude, longitude〉 coordi-
nates of S with the Latitude and Longitude values of the
pixels in F .

3. Calculate the number N of pixels in P that are not cov-
ered by cloud using each pixel’s Cloud-Phase value.

4. Take C = N/|P | as the ratio of P that is clear. If
C is smaller than the cloudiness threshold value pre-
determined for S (see Figure 1), then we decide that S
is clear enough to be scanned.

This approach creates problem instances with ‘omni-
scient’ knowledge of the clouds throughout the day and as-
sumes that they do not change significantly except on these
30 minute boundaries. However, it is sufficient to ensure that
the resulting scheduling problems have similar characteris-
tics to those that will be encountered in practice.

Land Masks

As shown in Figure 1, most scenes cover both water and land
areas. However, given that we are only interested in the wa-
ter pixels, we mask out the land pixels to avoid biasing the
cloudiness count. Let’s take as example a scene S covering
part of the Great Lakes area (Figure 1) to see why this is
important. For S, the water body W only makes up a small
portion of the whole scene. Therefore, at a given time t, if
most of the land area is covered by cloud but the water re-
gion W is not covered, using the procedure described in the
previous section would conclude that S is too cloudy to take
a picture – even though the region of interest W is clear.

To overcome this issue, we manually used Google Earth
to create polygons covering only the water region W of each
scene S. We then used the same procedure described in the
previous section but only applied to W to determine if S
is cloudy or not. Given that: (1) there can be multiple dis-
connected water regions within each scene; and (2) there
can be land region totally enclosed within a water region
(e.g., islands), isolating and reasoning only with water re-
gions within each scene is decidedly more time-consuming
but it gives us unbiased cloudiness assessments.

From now on, when we mention scene S, we mean the
collection of water regions (polygons) within S.

Scene Illumination

FR and COEDI can only take images of scene S when it is
illuminated. Sunrise and sunset times can vary by minutes
over the locations within one scene; there are also seasonal
differences in illumination throughout the year. Therefore,
for each day that we need to schedule the GEO-CAPE satel-
lite, we need to find the earliest and latest times when each
scene S is fully lit. Specifically:

1. Find the point pr and ps within S that have respec-
tively the latest sunrise time tr and earliest sunset time
ts, among all points within S.2

2. Set [tr, ts] as the interval during which S is under sunlight
and can be taken pictures of.

Science Objective

Translating the Baseline and Threshold temporal separations
in Table 1 into formal criteria for schedule quality required
extensive discussion with the science team. Below are the
key assumptions that we made:

• Each scene is classified either as containing only Survey
science or Targeted science.

• The overall schedule score is the sum of the values ac-
crued for the full set of separations of each scene.

• Using the STM as guidance, values of consecutive scans
are linear in the temporal separation between those con-
secutive observations.

Consider the Survey objective: the temporal separation
Threshold value is 2 hours, and the Baseline value is 1 hour.
This means two consecutive observations must be scheduled
2 hours (or less) apart to achieve the Threshold objective.
Consecutive observations are more valuable if the separa-
tion is between the Baseline of 1 hour and the Threshold of
2 hours, but the STM provides no insight into the relative
value of separations between the two extremes (e.g., sepa-
ration of 1.5 hours). In consultation with the ocean science
community, it was clear that schedules should ensure that
the Threshold objectives are achieved before attempting to
achieve the Baseline objectives. We started with a value of
0.9 for the Threshold separation of 2 hours, and a value of
0.5 for satisfying the Baseline separation of 1 hour. Thus,
meeting the Threshold objective is relatively more impor-
tant than meeting the Baseline. However, if three scans of
the same scene can be scheduled in two hours (exactly one
hour apart), the accumulated value of 1 = 0.5 × 2 is more
valuable than only scheduling two conservative scans that
are 2 hours apart (only worth 0.9).

The STM leaves undetermined the relative value of Sur-
vey and Targeted science objectives. Understanding how
these objectives are prioritized is important when some
scenes have targeted science, and others do not; the tradeoffs
must be formalized to ensure that the schedules produced are
consistent with the scientists’ objectives. Since the Baseline
Survey separation of 1 hour equals the Threshold Targeted

2The sunrise and sunset time for a particular location on a par-
ticular day can be calculated following the equations described at:
http://users.electromagnetic.net/bu/astro/sunrise-set.php
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science objective of 1 hour (see Table 1), and since Targeted
science is more valuable than Survey science, it is evident
that two Targeted science scans separated by 1 hour should
be more valuable than two Survey scans separated by 1 hour.
Consultation with the ocean science community led to the
following objective value for the Targeted science: (1) an
objective value of 1 for satisfying the Threshold separation,
and (2) an objective value of 0.6 for satisfying the Baseline
separation. Similar to the Survey objective, these values en-
sure scheduling three observations for Targeted science half
an hour (Baseline separation) apart is preferred to schedul-
ing two observations 1 hour apart (Threshold separation).

Finally, the STM does not explain how valuable con-
secutive observations separated by less than the Baseline
should be. Allowing any value for intervals of less than
the Baseline introduces schedules in which observing
the same scene many times is equally valued to observing
multiple scenes with Baseline separations, assuming a linear
value function. To prevent the scheduler from considering
such scenes, we assume there is no value to observing two
scenes with a separation of less than the Baseline separation.

Summary: Let V be the value of two consecutive scans
of the same scene S separated by a duration D such that:
SB ≤ D ≤ ST , with SB and ST represent the Baseline and
Threshold separations. Let VB and VT be the schedule qual-
ity values if the temporal separation is equal to the Threshold
value ST and Baseline value SB . Then:

V = D × VT − VB

ST − SB
−
(
SB × VT − VB

ST − SB

)
+ VB (1)

Note that V = 0 when D > ST or D < SB . This equa-
tion applies for both Survey and Targeted science objectives.
Thus, for Survey objectives: V = 0.4×D+0.1 and for tar-
geted science V = 0.8×D + 0.2.

Problem Formulation

To solve the GEOCAPE observation scheduling problem,
we utilize Mixed Integer Linear Programming (MILP) and
Constraint Programming (CP) frameworks. MILP and CP
represent the current state-of-the-art techniques for schedul-
ing problems with out-of-the-box solvers and is commonly
used in the scheduling literature (Heinz and Beck 2012;
Lam, Van Hentenryck, and Kilby 2015; Pesant, Rix, and
Rousseau 2015). The two formulations will use the follow-
ing shared notations:
• Ψ: the set of all scenes.
• H: the set of all timeslots in the schedule horizon and each

observation takes one timeslot. For example, on January
1, 2015, the duration between the first time that any of the
scenes in Ψ becomes observable and the last time that a
scene can be observed is ≈ 13 hours. Since FR takes 158
seconds to scan a scene and reorient, the scheduling win-
dow for FR on January 1 contain |H| = 13×3600/158 =
296 timeslots.

• Si
B and Si

T : the number of timeslots representing the
Baseline and Threshold temporal separation for scene i.

For example, if we use FR for a scene i in the Survey
mode then: Si

B = 3600/158 = 23.

• V i
B and V i

T : the value of performing two consecutive ob-
servations of scene i separated by a duration equal to the
Baseline or Threshold separation.

• Ci: the set of timeslots within the scheduling horizon that
scene i is observable (i.e., illuminated and not cloudy).

A Time-Indexed MILP Formulation

Our MILP encoding uses a time-indexed formulation (i.e.,
timeslots are indexed) and the full set of variables are:

• oi,j : A binary decision variable equal to 1 if scene i is
observed at time j.

• ti,j and di,j : di,j is the separation time between an ob-
servation of scene i at time j and the last observation of
scene i before j; ti,j is a proxy for di,j .

• vi,j : The additional objective value accumulated if an ob-
servation of scene i is made at time j. Note that this value
depends on the separation time di,j .

• zi,j : A binary decision variable indicating whether or not
an observation of scene i at time j will add value to the
objective function.

max
∑
i∈Ψ

∑
j∈H

vi,j

s.t.
∑
i∈Ψ

oi,j ≤ 1 ∀j ∈ H (2)

oi,j = 0 ∀i ∈ Ψ; j ∈ H \ Ci (3)

j+Si
B∑

t=j

oi,j ≤ 1 ∀i ∈ Ψ; j ∈ H (4)

ti,j = j · oi,j −
j−1∑
k=1

di,k ∀i ∈ Ψ; j ∈ H (5)

di,j ≥ ti,j ∀i ∈ Ψ; j ∈ H (6)
di,j ≥ 0 ∀i ∈ Ψ; j ∈ H (7)
di,j ≤ |H|oi,j ∀i ∈ Ψ; j ∈ H (8)
di,j ≤ ti,j + |H|(1− oi,j) ∀i ∈ Ψ; j ∈ H (9)

zi,j ≤
j−Si

B∑
k=j−Si

T

oi,k ∀i ∈ Ψ; j ∈ H (10)

vi,j ≤ V i
T · zi,j ∀i ∈ Ψ; j ∈ H (11)

vi,j ≤ V i
B + |H|(1− zi,j)

+
(di,j − Si

B)(V
i
T − V i

B)

(Si
T − Si

B)
∀i ∈ Ψ; j ∈ H (12)

vi,j ≤ V i
T · oi,j ∀i ∈ Ψ; j ∈ H (13)

Model 1: MILP Formulation.
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The full MILP encoding is presented in Model 1. The ob-
jective is to maximize the total value obtained from making
observations of the different scenes. Constraint (2) enforces
that at most there is a single observation at each timeslot.
Constraint (3) enforces that an observation is not made when
a scene is cloudy. The minimum Baseline separation of a
scene is guaranteed by constraint (4). Constraints (5 - 9) are
used to calculate the actual separation time di,j between two
successive observations. Constraint (10) ensures that an ob-
servation will add value only if there was a previous obser-
vation that would result in a separation between Si

B and Si
T

time units. Finally, constraints (11 - 13) calculate the added
value vi,j of an observation. For our particular parameters
where V i

T ≤ 1, using |H| in constraint(12) is sufficient for
guaranteeing that vi,j will not be forced to be less than 0

since H > Si
B ×

(
V i
T−Bi

B

Si
T
−ST i

B

)
. However, it is not generally

the case that this will be true if the input parameters VT and
VB are changed to have larger rewards. Thus, scaling the
second term to some sufficiently large value may be neces-
sary.

A CP Formulation

The CP model makes use of interval variables that are de-
fined by a start time x, end time y, and duration d = 1
unit of time. Each interval variable represents an observa-
tion of a scene and thus there are |Ψ| sets of interval vari-
ables, one for each scene. Prior to obtaining a schedule, it
is not known how many observations of a scene are made.
However, it is necessary to impose an upper bound on the
number of interval variables considered per scene in order
to formulate the problem as a CP. Given the set Ai of inter-
val variables for scene i, a valid upper bound is |Ai| = |H|,
one observation per timeslot. This upper bound is equivalent
to the potential observations in the MILP model since one
oi,j variable is created for each timeslot and for each scene.
For the CP formulation, it is possible to use a tighter upper
bound to reduce the size of the model. The bound we use
is |Ai| = �maxCi−minCi

Si
B

�, since we know that at most one

observation can occur every Si
B time slots.

The CP model is presented in Model 2. Here, the decision
variables are:

• ai,j : An interval variable indicating the jth observation of
scene i.

• xi,j : The start time of an interval variable ai,j .

• di,j : Separation time between observations ai,j and ai,j−1

• zi,j : A binary variable indicating that separation di,j will
contribute to the objective function.

• vi,j : The added value of separation di,j to the objective
function.

We also use additional parameters:

• A: Set of all interval variables (observations).

• Ai: Set of all observations of scene i.

• Āi: Set of all observations of scene i except the first ob-
servation.

max
∑
i∈Ψ

∑
j∈Āi

vi,j

s.t. forbid(ai,j , C
i) ∀i ∈ Ψ; j ∈ Ai (14)

di,j = xi,j − xi,j−1 ∀i ∈ Ψ; j ∈ Āi (15)

di,j ≤ Si
T

+ |H|(1− pres(ai,j)) ∀i ∈ Ψ; j ∈ Āi (16)

di,j ≥ Si
B

− |H|(1− pres(ai,j)) ∀i ∈ Ψ; j ∈ Āi (17)

pres(ai,j) ≤ pres(ai,j−1) ∀i ∈ Ψ; j ∈ Āi (18)

xi,j ≥ xi,j−1 ∀i ∈ Ψ; j ∈ Āi (19)

vi,j ≤ pres(ai,j)V
i
T ∀i ∈ Ψ; j ∈ Āi (20)

vi,j ≤ V i
B + |H|(1− pres(ai,j))

+
(di,j − Si

B)(V
i
T − V i

B)

(Si
T − Si

B)
∀i ∈ Ψ; j ∈ Āi (21)

NoOverlap(A) (22)

Model 2: CP Formulation.

The objective is the same as the MILP model. Constraint
(14) enforces that if an observation is made, it is made
during a time slot where the scene is observable. Constraint
(15) compute observation separation value di,j . With
pres(ai,j), a function that returns 1 if observation ai,j
is scheduled and 0 otherwise, constraints (16) and (17)
enforce that an observation will only ever contribute to
the objective function if the observation is made, and the
separation is within the Baseline and Threshold values for
the science objectives of that scene. Constraint (18) and (19)
enforce that ai,j will represent the jth observation of scene
i if at least j observations are made. The added value of
observations are calculated with constraints (20) and (21).
Finally, constraint (22) is a global constraint that ensures
none of the observations are performed at the same time.

Discussion: An equally common alternative to the time-
indexed model using MILP is a disjunctive model. However,
our study was built around designing a scheduler to provide
insights to the GEO-CAPE mission team regarding their in-
strument design. Due to the application nature of the prob-
lem and the rapidly changing requirements of the mission
team, the time-indexed model was chosen so that we could
easily adapt the formulation to their requirements. Problem
characteristics such as optional observations (require model-
ing more observations than desired) and the observation sep-
aration are less straight-forward to deal with in a disjunctive
model.

While both MILP and CP have been heavily used for
scheduling problems, each has different strengths and weak-
nesses. A more expressive formulation in CP allows more
straight-forward representations of problem characteristics
through not just linear, but also logical and non-linear con-
straints. CP can also take advantage of specialized inference
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FR COEDI
Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov

Max 6 6 7 11 9 11 9 11 11 13 9 12 14 16 27 22 24 18 21 26 21 16
Avg 3.3 4.0 4.2 7.6 5.7 7.0 4.9 7.7 7.3 8.4 5.7 7.5 8.14 9.7 19.0 14.1 14.9 9.0 14.0 18.1 15.6 9.8

Never 10 6 7 1 6 3 4 6 4 5 5 20 13 10 2 6 6 7 11 5 10 17

Table 3: Cloudiness data for scheduling problem instances for the scene layouts of FR and COEDI. The ‘Max’ row shows the
maximum number of scenes visible at any time slot during the day. The ‘Avg’ row shows the average number of scenes visible.
The ‘Never’ row shows the number of scenes never visible during that day.

algorithms to assist in finding solutions. CP makes it easier
to model complex constraints, and is able to perform well
in searching for feasible solutions. MILP on the other hand
is more restrictive in the modeling capability and does not
have as many inference algorithms tuned to assist the solver
to find feasible solutions quickly. However, MILP uses du-
ality and problem relaxations to drive the solver towards an
objective. When using complex and irregular objective func-
tions, CP can be a poor performer due to its constraint fo-
cused approach rather than MILP’s objective function driven
strategies.

Empirical Evaluation

The main purpose of our evaluation is to find and analyze
the best observation schedule for FR and COEDI at vastly
different weather conditions throughout the year. Since only
one of those instrument candidates can be installed on the
GEOCAPE satellite, our results can give an objective and
informed advice to the mission design team on which in-
strument is advantageous (and in which way) over the other.

In order to evaluate the candidate instruments more thor-
oughly, we created a suite of daily problem instances. We
picked the first day of each month of 2015 and for each
day we (1) first analyzed sunrise and sunset times to cre-
ate the set of observation timeslots for each instrument’s
scenes, then (2) used the cloudiness data to determine ob-
servable timeslots for each scene, and finally (3) decided
whether each scene contains Survey science or Targeted sci-
ence objectives. Next, we modeled and solved each prob-
lem instance using both the MILP and CP formulations de-
scribed in the previous section.

Cloud Cover Effect on Observation Schedule

Assuming no clouds, FR can scan all scenes of the U.S.
coastal waters in 50 minutes (scan time of 158 seconds ×
19 scenes). This is less than the Baseline temporal separa-
tion for Survey science, and less than the Threshold tempo-
ral separation for Targeted science (both are 1 hour as shown
in Table 1). By contrast, COEDI can scan U.S. coastal wa-
ters in 142 minutes (scan time of 224 seconds × 38 scenes),
which does not even meet the Threshold temporal separation
for Survey science (2 hours). Only 16 COEDI scenes can be
scanned in 1 hour (Baseline for Survey) and 32 scenes can
be scanned in 2 hours (Threshold for Survey). On the sur-
face, COEDI appears uncompetitive compared to FR. How-
ever, this analysis optimistically assumes all scenes are vi-
able throughout the day. Taking cloudiness into considera-
tion will generally reduce contention for scenes, and may
affect the decision regarding instrument choice, motivating

Figure 2: Number of visible and cloud free scenes in April
1 for COEDI. The red line shows the 16 scene limit of the
number of scenes that can be scanned once per hour, achiev-
ing the Baseline separation for Survey science.

our empirical evaluation.
Table 3 shows the cloudiness statistics for the two instru-

ments (by analyzing the GOES satellite data as described
earlier). It is apparent that cloudiness drastically reduces
contention for the instruments, and that the specific effect
of the reduction depends on the time of year. Of special in-
terest is the last row, showing the number of scenes that is
not visible at any time of day. This demonstrates that the
simple instrument performance analysis assuming no clouds
is too optimistic. It is notable that in January, more than half
of the scenes cannot be observed at all. By contrast, in April
only one or two scenes are not visible throughout the day.
The difference between the maximum and average number
of scenes visible shows that cloudiness varies considerably
over a single day as well. While some of this variation is
explained by illumination (in the evening, for instance, the
only scenes visible are in the Western United States), other
variations depend on daily cloud variation. Figure 2 shows
the number of visible scenes per timeslot for April 1, 2015
for COEDI where the number of visible scenes varies be-
tween 21 and 27 (out of 38) throughout the middle of the
day.

Classes of Science

In our discussions with the ocean science community, even
though values of Baseline and Threshold separation were
provided for Survey and Targeted science, the tradeoffs be-
tween classes of science were not yet fully settled for this
mission. Instead of creating arbitrary mixes of Survey and
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Figure 3: Schedule quality and efficiency comparisons for FR (left graphs) and COEDI (right graphs). The top graphs compare
schedule quality for both Survey and Targeted science, and for MILP and CP. The bottom graphs compare schedule efficiency
(percentage of timeslots during which the instrument scans a scene).

Targeted science and using the existing prioritization to as-
sess the schedules, we opted to create two problem instances
for each day: one consisting solely of Survey science, and
the other consisting solely of Targeted science.

Scheduler Results

Each problem instance was solved by running the appropri-
ate solver (either CPLEX or CP Optimizer) for an hour on
an Intel Core i7 3.00 GHz CPU (in 64 bit mode) with 2 MB
cache per core, 12 GB of main memory, running Linux.

Figure 3 compares the schedule quality and efficiency for
FR and COEDI problem instances. The quality measure was
described in the earlier part of the paper and efficiency is the
percentage of the available timeslots where the instrument
was scanning a scene. On balance, the MILP formulation
performs better than the CP formulation for the FR prob-
lem instances. The MILP schedule score difference is quite
large (see July and August in particular for both Survey and
Targeted science), while there is little difference in schedule
efficiency.

The COEDI problem instances show a different pattern.
While the MILP solver creates poor quality schedules for
some COEDI problems (specifically the September and
October Targeted science problem instances), CP creates at
least acceptable schedules for all problems. However, most
of the time, the MILP formulation is still better at creating

schedules of higher quality than the CP formulation,
with quality differences as high as a factor of 3. The CP
formulation is as good or slightly better at creating efficient
schedules for targeted science problems.

Discussion: Comparing the schedule efficiency score with
scene availability (see Table 3) indicates that both MILP and
CP are effective in scheduling observations when scenes
are available; however, neither solver was able to prove that
the optimal solution was found for any of the problems. As
noted earlier, the MILP solver failed to find a reasonable
solution to two COEDI instances, and the CP solver was
unable to find good quality solutions. As mentioned in the
previous section, MILP is objective driven and can better
handle the complex objective function that we have, while
CP in general finds poorer quality schedules as it cannot
handle the complex objective function adequately. In fact,
other than for two COEDI instances, the MILP dominates
the CP in schedule quality, often by a very significant
amount. When even finding a schedule is difficult, MILP
can perform very poorly, but finding feasible schedules is
much easier for CP. The fact that MILP consistently returns
schedules with higher overall quality even with similar
efficiency scores, compared to CP, indicates that it was
able to space out observations much closer to the optimal
separation range between the Baseline and Threshold values.
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Figure 4: Comparison of schedule scores for FR and
COEDI. COEDI scores are halved to account for the larger
number of scenes needed to cover the U.S. Coastal waters.

FR vs. COEDI: For the remainder of this section, we will
use the MILP results to evaluate the relative tradeoffs be-
tween FR and COEDI. The schedule quality for the two in-
struments is not directly comparable because (1) there are
twice as many scenes for COEDI as there are for FR (38
small scenes vs 19 large scenes) and (2) the schedule quality
is a function of the temporal separation between consecu-
tive observations of the same scene, without accounting for
the larger number of scenes. For this reason, in Figure 4 we
compare the FR score to the COEDI score divided by 2.
This figure shows that FR outperforms COEDI by a mod-
est amount on most of the Survey science problems, achiev-
ing almost a factor of 2 improvement in August and Oc-
tober. The margin is much higher on the Targeted science
problems, reaching almost a factor of 3 improvement on the
June and August instances. These results show that, based
solely on the schedules that can be generated, FR domi-
nates COEDI. However, the dominance is not complete. In
the presence of significant clouds, the two instruments are
more closely matched, and the gap for the Survey science
problems is not as high as it is for the Targeted science prob-
lems. Overall, our detailed analysis not only gives more con-
fidence to the instrument designers that FR is currently supe-
rior, but also may drive design changes to COEDI to improve
its performance, and make it more competitive.

We observe a significant increase in the schedule score be-
tween the Survey and Targeted mode. This is because both
preclude scheduling consecutive observations with less than
the Baseline temporal separation. The score increase reflects
slack in the Survey schedules that can be filled in the Tar-
geted science schedules. Since the Targeted Baseline separa-
tion is half the Survey Baseline separation, we expect to see
the score roughly double between the Survey and Targeted
science problems. This pattern is observed for the FR prob-
lems, but the increase is not as large in the COEDI problems.
The explanation is that the longer scan times for COEDI fill
the schedule for the Survey problems, leading to less slack,
and less opportunity to improve the score.

Finally, we noted earlier in this section that some scenes

were too cloudy over the entire day to observe. Cloudy pe-
riods can also exceed the Threshold temporal separation,
imposing an implicit cost to the scheduler to add obser-
vations and ‘restart’ observing a scene. Additionally, the
scheduler may simply focus on one scene at the expense
of others. Table 4 compares the number of scenes never ob-
served in MILP schedules with the number of scenes that are
too cloudy to observe all day. We see FR schedules include
most (but not all) scenes that are visible at least once. How-
ever, COEDI schedules are missing many observable scenes,
again pointing to increased contention and insufficient time
to meet the mission objectives.

Related Work
Our problem differs from scheduling low-earth observing
satellites, e.g. (Pemberton 2000), where the orbital dynam-
ics dominate scene visibility considerations. It shares some
aspects with cyclic scheduling (Draper et al. 1999) since
each observation is ideally repeated at regular intervals daily.
However, the combination of cloudiness, variable visible
light, and competition between scenes for the instrument,
breaks the regularity otherwise present in the problem. In
(Verfaillie and Sebbag 2012), the authors discuss planning
image acquisitions of multiple satellites for ocean surveil-
lance mission. While the overall objective is similar to GEO-
CAPE, the main differences are: (1) it employs several
low-earth-orbit satellites; (2) it is a planning problem with
scheduling components; (3) it employs local-search tech-
niques. Also, while this paper does briefly mention ‘regu-
larity’ of coverage in the optimization criteria it is not quan-
tified formally, unlike the criteria for the GEO-CAPE mis-
sion.

A unique aspect of this problem is the use of separation
between observations as a metric of performance. Although
separation between tasks is not new to the scheduling liter-
ature, our understanding is that no other work has looked at
the separation in the objective function. All other works only
deal with separation constraints, with many looking at ei-
ther the minimum or maximum separations rather than both
simultaneously. An analogous representation of minimum
separation that is well studied in the scheduling literature
is setup time, as some amount of time must pass between
execution of two tasks (Allahverdi et al. 2008). On the other
hand, maximum separation problems are more sparse, but
do exist. Studies have looked at restricting the maximum
separation of jobs in a cyclic schedule (Han and Lin 1992).
Works that look at both minimum and maximum separation
in the constraints can be found in simple temporal networks
(Dechter, Meiri, and Pearl 1991) and resource constrained
scheduling problems (Brucker et al. 1999).

Producing schedules with temporal flexibility (Nicola Po-
licella and Oddi 2014) is a viable mean to provide robustness
against actual real-time cloud coverage that differ from pre-
dictions. We could take the schedules produced by either the
CP or MILP approaches and make them temporally flexible,
or use a first-principles means to produce temporally flex-
ible schedules, including ensuring that two observations of
the same scene are never more than Sb apart. At this time,
this is premature since the real-time rescheduling policy for
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FR COEDI
Schedule Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov

Survey 13 10 9 4 9 7 9 6 5 5 7 26 23 15 9 16 14 17 14 9 14 21
Targeted 12 8 7 4 7 7 8 6 4 5 6 24 19 15 14 17 17 17 19 38 37 22

Not-visible 10 6 7 1 6 3 4 6 4 5 5 20 13 10 2 6 6 7 11 5 10 17

Table 4: Number of scenes never observed (vs not-visible) in schedules generated using the MILP formulation.

this mission has not been settled by the ocean science com-
munity. Furthermore, classical temporal flexibility does not
easily extend to preserving schedule quality.

Conclusion and Future Work

We have described GEO-CAPE, namely, scheduling the ob-
servations of a visual spectrum instrument whose job is to
scan parts of the ocean adjacent to the United States during
daylight hours. Since instrument designs are still being as-
sessed, one objective of this work is to provide feedback to
the GEO-CAPE mission concerning the two instrument de-
signs; the second objective is to evaluate automated schedul-
ing techniques for solving this problem. We formalized the
problem as an MILP and as a CP and used CPLEX and CP
Optimizer to solve it. Scheduling GEO-CAPE is amenable
to automated scheduling, but the performance on the models
suggests that improvements are needed; the problems are too
large and complex to be solved optimally in an hour’s run-
time. The MILP model appears to give better performance
than the CP model with respect to schedule quality. With re-
gard to instrument selection, it is clear that schedules for FR
have higher quality than those for COEDI. It is difficult for
the slower COEDI instrument to meet the science objectives,
even when clouds reduce contention for the instrument.

There are several avenues for future work. In discussions
with the GEO-CAPE Oceans community, it is plain that
the instrument performance characteristics, especially for
COEDI, are still in flux. The scene layout was performed
manually, and the science community suggested that some
scenes could be eliminated from the current COEDI scene
layout, although perhaps not enough to offset the slow scan
time. The science community has identified a number of dif-
ferent science classes not considered in this paper, including
‘target of opportunity’ modes, which in general will lead to a
more complex scheduling problem. Investigating problems
with mixes of Survey and Targeted science will be needed
once tradeoffs between the different science types are avail-
able. We are also looking at relaxing the assumption that the
scanning time for each scene is fixed. Finally, it is notable
that there is considerable interest in re-scheduling through-
out the day, leading to problems of scheduling a few hours
into the future, but with regard to the prior schedule and min-
imum disruption of customers’ expectations. The prelimi-
nary results suggest that heuristics or greedy search may be
needed to solve the problems more effectively. Alternatively,
changes to the MILP and CP models may improve the final
solution quality.
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