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Abstract

Architectures that model language and vision together have
received much attention in recent years. Nonetheless, most
tasks in this field focus on end-to-end applications without
providing insights on whether it is the underlying semantics of
visual objects or words that is captured. In this paper we draw
on the established Definition Modeling paradigm and enhance
it by grounding, for the first time, textual definitions to vi-
sual representations. We name this new task Visual Definition
Modeling and put forward DEMETER and DIONYSUS, two
benchmarks where, given an image as context, models have
to generate a textual definition for a target being either i) a
word that describes the image, or ii) an object patch therein. To
measure the difficulty of our tasks we finetuned six different
baselines and analyzed their performances, which show that a
text-only encoder-decoder model is more effective than mod-
els pretrained for handling inputs of both modalities concur-
rently. This demonstrates the complexity of our benchmarks
and encourages more research on text generation conditioned
on multimodal inputs. The datasets for both benchmarks are
available at https://github.com/SapienzaNLP/visual-definition-
modeling as well as the code to reproduce our models.

Introduction
Two of the most important building blocks of human cog-
nition and Artificial Intelligence are text and image under-
standing, which are widely known, respectively, as Natu-
ral Language Processing and Image Processing. Recently,
these two worlds have joined forces and modality-specific
models are losing ground to more hybrid architectures that
were developed to leverage both textual and visual data (Su
et al. 2019; Tan and Bansal 2019). In fact, these models
showed that the key to achieving more comprehensive rea-
soning skills lies in exploiting both sources of information
at the same time. However, most multimodal tasks aim at
investigating the high-level understanding1 capabilities of
a model, such as Visual Semantic Role Labeling (Yatskar,

*The authors contributed equally.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1In line with Bender and Koller (2020), in this paper we do
not refer to the human process of “understanding”, but rather to
the ability of a machine to draw conclusions based on data, albeit
multimodal.

(a) A long walk usually for
exercise or pleasure.

(b) An aircraft that has a fixed
wing and is powered by pro-
pellers or jets.

Figure 1: An excerpt from the DEMETER (left) and DIONY-
SUS (right) datasets.

Zettlemoyer, and Farhadi 2016) and Image Captioning (Lin
et al. 2014). Indeed, while being apt at showing what kind of
patterns models can capture, these tasks do not provide any
fine-grained information about how models “perceive” image
and text components (objects and words). In fact, the seman-
tic understanding of these aspects is often overlooked, i.e.,
objects are just classified with coarse-grained classes (Zhang
et al. 2013) and words have been investigated by categoriz-
ing them according to a predefined discrete sense inventory
(Gella, Lapata, and Keller 2016; Gella, Elliott, and Keller
2019). Therefore, while we may have a picture reflecting the
extent to which multimodal architectures perform, we still do
not know how these approaches cope with a more in-depth
understanding of words and objects in context.

In this paper, with the goal of shedding some light on
these aspects, we draw inspiration from the recent Defini-
tion Modeling task (Noraset et al. 2017), where a word in
context has to be associated with a textual definition of the
concept it represents, and shift it to a multimodal perspec-
tive. Hence, we propose the new task of Visual Definition
Modeling (VDM), where a model is required to generate a
definition for i) a given word representative of the concept
depicted in an input image (Figure 1a), or ii) a visual object
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therein (Figure 1b). For the first of these two settings we intro-
duce the DEMETER (DEfining Multimodally-contExtualized
TERms) dataset, whereas for the second we put forward the
DIONYSUS (DefIning Objects Narrowed bY viSUal Subre-
gions) dataset. To briefly illustrate how these benchmarks
work, given the context image in Figure 1a and the word

“hike” (DEMETER dataset), or the visual context in Figure 1b
and the outlined visual object (DIONYSUS dataset), a model
has to generate definitions such as “a long walk usually for
exercise or pleasure” and “an aircraft that has a fixed wing
and is powered by propellers or jets”, respectively.

Furthermore, we also introduce six baselines relying on
state-of-the-art vision-and-language and text-only models
and test them on both our benchmarks, showing the impact
that a pretrained decoder can have on the final performance.

To summarize, our contributions are threefold:
1. Visual Definition Modeling: we extend the Definition

Modeling task to the visual modality and design a task to
probe the semantic understanding of neural models;

2. DEMETER and DIONYSUS: two new benchmarks aimed
at measuring the ability of neural models to define visual
and word objects in different settings.

3. Experimental Analysis: an extensive experimental anal-
ysis, presenting various baselines for both our tasks and
an evaluation of the capability of a pretrained text-only
model to deal with multimodal inputs.

Related Work
Models for vision and language can mainly be divided into
two different classes: single- and dual- stream architectures.
While single-stream models process both visual and language
inputs through a single transformer architecture (Su et al.
2019), dual-stream models first treat the two inputs separately
with different transformer layers, then apply a mechanism of
intra-modality attention to fuse the two representations (Tan
and Bansal 2019; Lu et al. 2019). Unfortunately, while some
effort has recently been put into unifying the evaluation of
vision-and-language models (Bugliarello et al. 2020), the test
bed of these architectures is still scattered across different
benchmarks. These datasets cover both basic tasks, where
models need to find and tag objects with a predefined set
of labels (Plummer et al. 2015, Flickr30k), as well as more
complex generation tasks, such as producing a description of
a picture (Lin et al. 2014, MSCOCO), answering questions
regarding a given image (Goyal et al. 2017; Hudson and Man-
ning 2019, VQA2, GQA) or generating expressions referring
to a visual object (Yu et al. 2016, RefCOCO).

Over the years many other classification tasks have been
proposed, such as Visual Entailment (Xie et al. 2019, SNLI-
VE), that requires models to tag a sentence as either entailed,
neutral or contradictory with respect to the premise that is
presented as an image, and the Visual Reasoning benchmark
(Suhr et al. 2019, NLVR2) that asks models whether a natural
language statement is true given a pair of pictures as context.
Many of these tasks require architectures to have a high-level
“understanding” of the image, e.g., capturing the situation
that is depicted and generating a description (MSCOCO), or
having knowledge of the objects and their relations within

Figure 2: Example of a referring expression from RefCOCO
(Yu et al. 2016) compared to a definition from the DIONYSUS
dataset given the same visual object.

the picture in order to answer questions (VQA). However,
none of the proposed tasks aims at investigating the extent to
which vision-and-language models capture the semantics of
words and visual objects, that is, from these tasks, we cannot
infer if a model knows what a given image patch or word
represents.

Recently, Noraset et al. (2017) introduced the task of Defi-
nition Modeling (DM). This benchmark challenges a model
to generate a definition for a given word in context, and is thus
arguably suitable for measuring the level of “comprehension”
of word semantics. DM is useful for second language learn-
ers and has also been leveraged as an alternative and more
flexible method for performing Word Sense Disambiguation
(Bevilacqua, Maru, and Navigli 2020). We found the task of
Definition Modeling particularly suited for measuring the ca-
pability of systems to model semantics and thus, for the first
time, we transfer this paradigm to the multimodal context.
Differently from RefCOCO, our new DIONYSUS dataset re-
quires a definition of the framed object to be provided and not
for its actions within the specific image to be described (see
Figure 2). Another task related to ours is Visual Word Sense
Disambiguation (V-WSD), where an image has to be tagged
with a label representing its meaning in English (Saenko and
Darrell 2009; Gella, Lapata, and Keller 2016) and in different
languages (Gella, Elliott, and Keller 2019). While similar as
regards the objective of analyzing the semantics of a picture,
our tasks differ substantially differ from V-WSD. In fact,
we require models to generate a definition for a word or an
object given a visual context, rather than to output a class
drawn from a finite inventory given an image as input. This
allows us to dispose of the dependency on a predefined and
discrete inventory, hence enabling our task to be not only
more flexible, but also easily extendable.

Visual Definition Modeling
Visual Definition Modeling (VDM) is a new task that trans-
fers the Definition Modeling (Noraset et al. 2017) paradigm
from a textual to a visual context. We define VDM as the
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task of generating a definition for a word or an object patch,
given a visual context. Within this setting, we designed the
two VDM datasets of DEMETER and DIONYSUS, that re-
quire models to generate an English definition for a concept
represented by either a word or an object in a visual context,
respectively.

DEMETER

We now introduce the first of the two Visual Definition Mod-
eling benchmarks, DEMETER. First, we define the goal and
organization of the dataset. Then, we describe its creation
and provide relevant statistics of its training, development
and test sets.

Dataset Definition The goal of the DEMETER dataset is,
given a multimodal pair made up of i) an image and ii) a
word or multi-word that describes it, to provide a textual
definition of the concept brought about by the input (see Fig-
ure 1a). Note that the instances of our DEMETER dataset are
not only associated with concepts that refer to concrete and
physical things, e.g., dog, airplane, but also to non-concrete
and abstract entities, e.g., sadness, smell.

This benchmark helps to evaluate the capabilities of a
system to create meaningful connections between words and
images, and hence to test their “understanding” of concepts in
a more general and interpretable manner. In fact, generating a
textual definition allows us, first, to remove any dependency
on a discrete list of labels, and second, to have an output that
is more informative and of clearer interpretation than a single
category.

Dataset Creation In order to ensure a good coverage of
both abstract and concrete concepts, we built DEMETER from
the BabelPic2 (Calabrese, Bevilacqua, and Navigli 2020) and
ImageNet3 (Russakovsky et al. 2015) repositories. BabelPic
provides an image-meaning association for a subset of the
concepts in BabelNet (Navigli and Ponzetto 2012; Navigli
et al. 2021), i.e., a large multilingual semantic network provid-
ing lexicalizations of concepts in different languages. Each
concept in BabelPic has been either manually or automati-
cally linked to multiple images that are representative of it.
Similarly to BabelPic, ImageNet provides different images
for a subset of the concepts in WordNet (Miller et al. 1990),
i.e., the most used English lexical knowledge base for Natural
Language Processing applications. While BabelPic provides
images for both abstract and concrete concepts, ImageNet
focuses on physical and tangible objects.

For each concept in these two repositories, we retrieved
their corresponding lemmas and definitions in WordNet4. In
fact, each concept in WordNet comes with a human-made def-
inition and a set of synonyms that express the target concept.
Thus, each instance in the DEMETER dataset comprises: i)

2https://sapienzanlp.github.io/babelpic/
3https://image-net.org/download. We exploited the ImageNet

data available for the ILSVRC challenge as, at the time of perform-
ing the experiments, the full ImageNet repository was not available
for download.

4All the concepts in BabelPic can be linked to a corresponding
concept in WordNet thanks to BabelNet.

Train Val Test

instances 72,704 9,088 9,088
words 65,734 8,951 8,931
images 184,981 9,088 9,088
avg. words per concept 1.7 1.0 1.0
avg. images per concept 4.0 1.0 1.0

Table 1: Statistics on the training validation and test splits of
the DEMETER dataset.

either 5 (for training) or 1 (for validation and test) randomly-
sampled images representing the target concept, ii) a lemma
that describes the target concept, iii) a definition for the target
concept. We reserve all instances with 5 images for training,
so as to test the capability of models to generalize and avoid
overfitting on a single image per concept. As for the vali-
dation and test instances, instead, we retain only one image
in order to make the evaluation straightforward. The entries
in the test dataset are gold, as we derived them from the
manually-annotated parts of BabelPic and ImageNet.

As a result of this process, the total number of instances
in the DEMETER dataset is 90,880. We adopted a 80%, 10%,
10% train, validation and test split, resulting in 72,704, 9,088
and 9,088 instances, respectively. These figures along with
number of distinct words, images and other in-depth statistics
are reported in Table 1.

DIONYSUS
We now describe the second Visual Definition Modeling
benchmark, namely, DIONYSUS. First, we describe its orga-
nization and define the benchmark itself. Then, we present
how the dataset was created along with reporting relevant
statistics of its data. Finally, we outline the process of anno-
tation undertaken for building the dataset.

Dataset Definition The goal of DIONYSUS is to produce a
definition given an image and a visual object representing a
concept therein. The visual input consists of: i) an image and
ii) a subregion of this image highlighting a specific object.
The target annotation of the instance, instead, is a textual
definition of the object in the visual context, as depicted in
Figure 1b. Differently from DEMETER, DIONYSUS’s input
is entirely visual, because the focus of this benchmark is
to test the ability of models to understand the semantics
behind visual objects in an image, without leaving any
room for ambiguity as can be the case in Image Captioning.
For example, the image in Figure 3 is associated with the
ambiguous caption “an image of a keyboard with a mouse
next to it” where the word mouse in the given textual context
can refer to either the electronic device or the animal. In
our dataset, the visual region depicting the mouse object is,
instead, associated with the definition “a hand-operated
electronic device that controls the coordinates [...]”, which
clearly describes the correct meaning of the word mouse.

Both DIONYSUS and DEMETER contain a number of im-
ages and instances that are in line with other datasets in the
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Figure 3: Example of an equivocal caption compared to a
non-ambiguous definition in the DIONYSUS dataset.

literature, e.g., Visual Commonsense Reasoning (Zellers et al.
2019) (290K instances / 110K images) and Visual Semantic
Role Labeling (Gupta and Malik 2015) (16K instances / 10K
images).

Dataset Creation In order to create the DIONYSUS dataset
we leveraged the information within MSCOCO training data
(Lin et al. 2014)5. MSCOCO is a large-scale object classifica-
tion, segmentation and image captioning dataset, and images
therein are associated with multiple captions and a list of
bounding boxes. Each bounding box delimits a subregion of
the input image that is annotated with a coarse-grained label
giving a rough description of the object therein6.

Our goal was to associate each object subregion of
MSCOCO images with its corresponding definition. To this
end, we manually annotated the 80 MSCOCO object cate-
gories with a WordNet concept and definition7. We note that
each object category in MSCOCO is implicitly unambigu-
ous, that is, a category is always referred to the same object
from a semantic point of view. For example, the category
named mouse is always associated with a region portraying
the mouse as an electronic device and never as an animal.

Once every object category had been associated with a
definition, we needed to identify the subregions within each
image where an object appeared. While MSCOCO already
provides object bounding boxes, most vision-and-language
models rely on object features extracted by the Faster R-
CNN model (Ren et al. 2015)8, which automatically detects
36 boxes and computes their representations. Thus, to facili-
tate other vision-and-language models to perform this task,
we needed to match MSCOCO object boxes with those ex-
tracted by the Faster R-CNN. To this end, we processed all
MSCOCO training images with Faster R-CNN and discarded
all the bounding boxes that did not match those extracted by
the Faster R-CNN within a window of 50 pixels.

At the end of this process, every image in the MSCOCO
training dataset had been associated with a list of subregions
overlapping with those extracted through Faster R-CNN, each

5https://cocodataset.org/
6Labels are from the 2017 Object Detection challenge.
7We recall that each concept in WordNet has a definition.
8We used the Faster R-CNN model trained on Visual Genome

provided by Anderson et al. (2018).

Train Val Test

instances 111,119 6,619 4,824
objects 74 74 74
images 55,689 3,353 1,893
avg. subregions per concept 1,501 89 65
avg. images per concept 1,079 65 48

Table 2: Statistics on the training, validation and test splits of
the DIONYSUS dataset.

of which was annotated with a coarse-grained label thanks to
MSCOCO, and to a definition, thanks to our annotation pro-
cess. The final training, validation and test splits of DIONY-
SUS were created by using the extensively used Karpathy
split (Karpathy and Fei-Fei 2017). All the subregions we ex-
tracted for an image of the Karpathy’s training split are part
of the training set of the DIONYSUS dataset9. The same line
of reasoning applied also for the validation and test data. We
decided to randomly select a maximum number of instances
per object category for each dataset, that we set to 5,000 so
as to balance the distribution of object labels and not skew
it towards only a small subset of categories, such as person.
Finally, the instances of the test data were manually validated
by annotators since the bounding boxes were automatically
extracted, and all those that were considered wrong were
removed from the test data. The final DIONYSUS dataset con-
sists of 111,119 instances for training, 6,619 for validation
and 4,824 for test10. These figures, along with other relevant
statistics, are reported in Table 2.

Dataset Annotation We employed two annotators to per-
form the tasks needed for the creation of the DIONYSUS
dataset: associating each MSCOCO category label with a
WordNet concept and validating the image-definition in-
stances of the test set. The annotators were required to be
proficient in English and have a prior knowledge of Word-
Net’s structure.

The first task of annotation consisted in associating a defi-
nition with one of the MSCOCO object labels. To this end,
one of the two annotators was presented with 10 images ran-
domly selected from the ones associated with a target object
label and a list of definitions linked to the meanings in Word-
Net11 of the word representing the MSCOCO category (the
subregion representing the target object was outlined in ev-
ery image). The annotator was asked to select one definition
among those provided. There was no case in which the anno-
tator was undecided between two different definitions, thus
all categories were associated with one definition only. Once
the process of annotation had been completed, the second
annotator was asked to validate the associations created in
the previous step. In case of conflict, the two annotators were
asked to discuss until they reached an agreement. For this

9Each subregion of an image corresponds to a different instance
in the DIONYSUS dataset.

102,035 instances were removed from the original test set after
the validation process.

11Each meaning is associated with one unique definition.
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Figure 4: Input/output example of veBART on the DEMETER
dataset.

task the annotators worked for a total of 4 hours (1.5 hours
per annotator plus 1 hour of discussion).

For the second task, both the annotators were asked to
validate the instances of the DIONYSUS test set. For each
instance, they were given an image in which a subregion
representing the automatically-extracted bounding box was
outlined, along with the corresponding MSCOCO object
category and the definition retrieved thanks to the mapping
between object categories and WordNet definitions. The an-
notators were requested to give a binary answer as to whether
the association between the subregion and the definition was
correct or not12. Each annotator was presented with 62.5%
of the dataset, hence granting a 25% share of annotations to
be validated by both annotators. At the end of the annotation
process, we hired an external validator who had the same
qualifications as the two annotators. The validator was given
the same task and was asked to annotate the set of instances
shared by both original annotators. We computed the inter-
annotator agreement on this portion of the dataset validated
by both the annotators and the validator, resulting in an aver-
age pairwise Cohen’s κ = 0.79. Depending on the magnitude
guidelines one follows, this agreement should be considered
either substantial (Landis and Koch 1977) or excellent (Fleiss
and Cohen 1973). While the annotators worked for an aver-
age of 48 hours to perform this task (24 hours per annotator),
the validator worked for 6 hours. Both the annotators and the
validator were paid in accordance with the standard wages of
their country of residence.

Annotators’ Guidelines
We provided the annotators with a user-friendly interface
built in Python 3.8. Annotators were instructed to validate
entries according to their intuition. For each entry, the an-

12See next Section for Annotators’ guidelines.

(a) A small ring-shaped
friedcake.

(b) A board with wheels that
is ridden in a standing or
crouching position and pro-
pelled by foot.

(c) A seat for one person,
with a support for the back.

Figure 5: Exceptional cases provided along with annotators’
guidelines.

notators were presented with a context image in which the
target object was highlighted by means of a red box, along
with the automatically-generated definition for the target and
the label identifying the class of the object in MSCOCO. An-
notators were simply required to validate the appropriateness
of the definition used to describe the target by typing in the
interface either T or F to validate or discard the given entry,
respectively. We provided each of them with the following
list of exceptional cases:

1. If the subregion depicts two objects of the same category
and the definition is appropriate for the representative
object, then the instance must be labeled as T (see Figure
5a).

2. If the definition associated with the object is correct but
the visual object is not clearly the focus of the highlighted
subregion, then the instance must be tagged as F (see
Figure 5b).

3. If the object highlighted in the subregion is not clearly
framed, the instance must be labeled F (see Figure 5c).

Experimental Setup
In this Section we describe the evaluation we performed on
our newly-created Visual Definition Modeling datasets.

Datasets
We use DEMETER and DIONYSUS created and split as previ-
ously described, i.e., each dataset is split into three subsets,
i.e., training, validation and test.
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Figure 6: Input/output example of veBART on the DIONYSUS
dataset.

Baselines
We devised two distinct baselines, one representative of each
class, i.e., single and dual stream. For the single-stream model
we used VL-BERT (Su et al. 2019) and LXMERT (Tan and
Bansal 2019) as a dual-stream architecture. Both models
take as input a list of words and image subregions features
and, while VL-BERT passes them all through the same trans-
former encoder, LXMERT first encodes them separately, sec-
ondly applies a cross-modality attention, and finally outputs
a vision and a language vectors. We concatenate the vision
and language outputs into a unique sequence and pass them
through 12 decoder transformer layers. For each architecture,
we created two versions, one initializing the decoder layers
randomly (VL-BERTR and LXMERTR) and one initializing
the decoder layers with BART weights (Lewis et al. 2020)
(VL-BERTB and LXMERTB, respectively)13. The weights of
VL-BERT and LXMERT encoders, instead, were initialized
with those of their pretrained models. Both models take as
visual inputs the 36 features extracted by the Faster R-CNN
model (Ren et al. 2015).

Visually-Enhanced BART (veBART) We also experi-
mented with BART pretrained model (Lewis et al. 2020).
BART is an encoder-decoder language model that has been
trained on text with the goal of reconstructing masked in-
put sequences of arbitrary length14. In order to make BART
capable of processing visual inputs, we added a linear trans-
formation layer that projects visual vectors into the BART
input space and named this model veBART (see Figure 4 and

13For these and the following baselines, BART pretrained weights
are the pretrained weights of the bart-base architecture in the
transformers library.

14We acknowledge the existence of KM-BART (Xing et al. 2021)
and VL-BART (Cho et al. 2021), however both these models are
mostly contemporaneous to this work and their developers have not
released either the code or the pretrained models.

Model BL R-L MT BS

VL-BERTR 15.5 11.9 5.0 6.0
LXMERTR 14.1 12.6 6.0 12.0

VL-BERTB 18.8 13.8 6.0 12.0
LXMERTB 18.2 14.1 6.5 13.2

veBARTLX 26.7 23.3 11.6 25.3
veBARTFR 25.5 21.8 10.6 23.1

Table 3: Results on the DEMETER test set. Columns: BLEU,
ROUGE-L, METEOR, BERTScore (BL, R-L, MT, BS).

6). As visual input for the veBART model, we experimented
with two different representations: i) the pretrained Faster
R-CNN model used for all the other baselines15 (veBARTFR);
and ii) the visual output of LXMERT (veBARTLX).

Training
All models were trained end-to-end with teacher forcing on
each benchmark in order to minimize the cross-entropy be-
tween the generated definition and the gold one. Across exper-
iments, we used a workstation with a x86_64 architecture and
a NVIDIA V100 and 16GBs of RAM. For both benchmarks,
we enclosed the object to be defined between the special tags
<define> and </define>, as depicted in Figures 4 and
6. In the case that the object to be defined was an image
patch, we surrounded its visual embedding with the word
embeddings of the two special tags. We trained all models
on the training split of each of our datasets for 40,000 steps
with batch size equal to 10 and 16 steps of gradient accumu-
lation. We adopted an early stopping strategy and stopped
the training when the validation loss ceased decreasing for
10 subsequent evaluation steps16. For each architecture, we
tested the set of weights attaining the lowest loss on the val-
idation set. The learning rate was set to 3e−5 and weight
decay to 0.01. As for veBARTLX, we kept LXMERT weights
frozen during training.

The number of parameters of VL-BERT-based mod-
els (VL-BERTR and VL-BERTB) and LXMERT-based
(LXMERTR and LXMERTB) models is 208M and 304M,
respectively. The number of parameters of veBARTFR and
veBARTLX is, instead, approximately 139M.

Metrics
In order to evaluate the system performance on our bench-
marks, we adopted some of the most commonly used metrics
employed for scoring generation systems.

As string-matching evaluation measures, we considered
BLEU (Papineni et al. 2002) and ROUGE-L (Lin 2004). How-
ever, as these metrics only take into consideration the overlap
between the generated strings and the gold ones, we also in-
cluded in our pool METEOR (Banerjee and Lavie 2005) and

15We used the 36-feature pretrained model available at https:
//github.com/peteanderson80/bottom-up-attention

16Evaluation every 5,000 steps.
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Model BL R-L MT BS

VL-BERTR 19.0 24.5 19.3 13.3
LXMERTR 18.6 24.1 18.4 14.7

VL-BERTB 23.9 24.1 12.6 26.0
LXMERTB 57.8 54.8 30.5 41.1

veBARTLX 48.1 45.6 26.9 43.8
veBARTFR 76.4 69.0 47.0 53.8

Table 4: Results on the DIONYSUS test set. Columns: BLEU,
ROUGE-L, METEOR, BERTScore (BL, R-L, MT, BS).

BERTScore (Zhang et al. 2020), which also take into account
the semantic aspect of a sentence. In fact, while METEOR ex-
ploits WordNet synonyms and stemming, BERTScore lever-
ages the similarity between BERT embeddings (Devlin et al.
2019) of the reference and the generated sentence.

Results
In what follows, we report the results of all the proposed
baselines on the test sets of DEMETER and DIONYSUS.

DEMETER

In Table 3, we provide the scores for all the baselines on
the DEMETER test set. As can be seen, when the vision-and-
language models do not leverage a pretrained encoder, i.e.,
VL-BERTR and LXMERTR, they achieve the lowest score
across the board. In fact, neither VL-BERT nor LXMERT
were exposed to a generation task during their pretraining,
hence they are penalized when it comes to generating a defini-
tion. When equipped with a pretrained decoder (VL-BERTB
and LXMERTB), their performance increases according to
all metrics. These results suggest that further studies – in line
with KM-BART (Xing et al. 2021) and VL-BART (Cho et al.
2021) – are needed to combine different pretraining objec-
tives for vision-and-language models, thus allowing them to
also generate text conditioned on different modalities effec-
tively. In fact, when leveraging a pretrained encoder-decoder,
i.e., veBART models, we observe a consistent increase in
performance. This result is interesting since the underlying
model, i.e., BART, was never exposed to visual inputs during
its pretraining, and the only weights dedicated to the visual
part are those of a linear layer that transforms the input im-
age features. Nonetheless, this seems sufficient for veBART
to handle images effectively and to define the input word
accordingly. Interestingly enough, LXMERT features seem
to bring slightly more benefits than the raw Faster R-CNN
vectors, since LXMERT had already been used to consider
both image and textual features.

DIONYSUS

In Table 4, we show the models’ performance on the DIONY-
SUS dataset. As can be seen, the scores are higher than the
DEMETER benchmark overall. This is partially due to the
nature of the task. Indeed, while a single word may assume

different meanings and thus be defined differently accord-
ing to the context, a visual object is usually less ambigu-
ous, as in most cases it already identifies a specific con-
crete object. At the same time, DIONYSUS test instances
refer to objects’ classes that have been seen during training,
hence making the task easier in general. Aside from this,
VL-BERTR and LXMERTR still perform poorly, confirming
that training a transformer decoder from scratch is not effec-
tive. Indeed, when using a pretrained decoder (VL-BERTB
and LXMERTB), both attain significantly better performance,
with LXMERTB reporting from roughly 12 to 39 points in-
crements depending on the measure.

Interestingly enough, veBARTLX performs worse than
LXMERTB on all measures but BERTScore. While this may
seem surprising, we note that the input of this task is only
visual, a setting which was not included in the LXMERT
pretraining. In fact, when using Faster R-CNN vectors,
which are tailored to represent visual objects, veBART
outperforms all the other models by a large margin.

All in all, both our benchmarks highlighted that adapting
a pretrained language model specialized on text to the
multimodal setting is more effective than pretraining
multimodal architectures from scratch. Indeed, veBART,
while being exposed to images at finetuning time only,
outperformed all its alternatives, showing a better ability to
encode word and visual object semantics.

Conclusion

In this paper, we introduced the new task of Visual Definition
Modeling, i.e., a multimodal task, where, given a context
represented by an image and an object (either a visual patch
of the image or a word that represents the concept shown
by the image), a model has to generate a textual definition.
The task aims at investigating whether modern multimodal
architectures have a deep comprehension of words and ob-
jects in a visual context. To this end we put forward two
challenging datasets: DEMETER, where a concept has to
be defined given a word and a visual context, and DIONY-
SUS, where the object to be defined is a visual patch of
the input image. By conducting experiments with six dif-
ferent baselines, four of which were specialized to deal with
multimodal inputs and two featuring a text-only pretrained
encoder-decoder architecture, we showed that pretraining
only on language inputs is a more effective way to learn word
semantics. To the contrary, multimodal baselines struggle to
attain competitive performance on both tasks, suggesting that
including a pure text-only pretraining objective could bring
much benefit to these architectures. All the data produced
and the code to run the experiments are available at https:
//github.com/SapienzaNLP/visual-definition-modeling.

As future work, we plan to further extend the Definition
Modeling paradigm to new modalities as we believe it to
be an essential probe to test real semantic comprehension.
Furthermore, we will use our tasks as additional pretrained
data for multimodal architectures and measure their impact
on other downstream tasks.

11273



Acknowledgments

The authors gratefully acknowledge the support of the ERC
Consolidator Grant MOUSSE No. 726487.

This work was supported in part by the MIUR under the
grant “Dipartimenti di eccellenza 2018-2022” of the Depart-
ment of Computer Science of Sapienza University and by the
Innovation Fund Denmark under the LEGALESE project.

References
Anderson, P.; He, X.; Buehler, C.; Teney, D.; Johnson, M.;
Gould, S.; and Zhang, L. 2018. Bottom-Up and Top-Down
Attention for Image Captioning and Visual Question Answer-
ing. In Proc. of CVPR.
Banerjee, S.; and Lavie, A. 2005. METEOR: An Automatic
Metric for MT Evaluation with Improved Correlation with
Human Judgments. In Proc. of ACL, 65–72.
Bender, E. M.; and Koller, A. 2020. Climbing towards NLU:
On Meaning, Form, and Understanding in the Age of Data.
In Proc. of ACL, 5185–5198.
Bevilacqua, M.; Maru, M.; and Navigli, R. 2020. Generation-
ary or “How We Went beyond Word Sense Inventories and
Learned to Gloss”. In Proc. of EMNLP, 7207–7221.
Bugliarello, E.; Cotterell, R.; Okazaki, N.; and Elliott, D.
2020. Multimodal Pretraining Unmasked: Unifying the Vi-
sion and Language BERTs. CoRR, abs/2011.15124.
Calabrese, A.; Bevilacqua, M.; and Navigli, R. 2020. Fatality
Killed the Cat or: BabelPic, a Multimodal Dataset for Non-
Concrete Concepts. In Proc. of ACL, 4680–4686.
Cho, J.; Lei, J.; Tan, H.; and Bansal, M. 2021. Unifying
Vision-and-Language Tasks via Text Generation. CoRR,
abs/2102.02779.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proc. of NAACL, 4171–4186.
Fleiss, J. L.; and Cohen, J. 1973. The equivalence of weighted
kappa and the intraclass correlation coefficient as measures
of reliability. Educational and psychological measurement,
33(3): 613–619.
Gella, S.; Elliott, D.; and Keller, F. 2019. Cross-lingual Visual
Verb Sense Disambiguation. In Proc. of NAACL, 1998–2004.
Gella, S.; Lapata, M.; and Keller, F. 2016. Unsupervised
Visual Sense Disambiguation for Verbs using Multimodal
Embeddings. In Proc. of NAACL, 182–192.
Goyal, Y.; Khot, T.; Summers-Stay, D.; Batra, D.; and Parikh,
D. 2017. Making the V in VQA Matter: Elevating the Role
of Image Understanding in Visual Question Answering. In
Proc. of CVPR.
Gupta, S.; and Malik, J. 2015. Visual semantic role labeling.
arXiv preprint arXiv:1505.04474.
Hudson, D. A.; and Manning, C. D. 2019. GQA: A New
Dataset for Real-World Visual Reasoning and Compositional
Question Answering. In Proc. of CVPR.

Karpathy, A.; and Fei-Fei, L. 2017. Deep Visual-Semantic
Alignments for Generating Image Descriptions. Transactions
on Pattern Analysis and Machine Intelligence, 39: 664–676.
Landis, J. R.; and Koch, G. G. 1977. The measurement of
observer agreement for categorical data. biometrics, 159–
174.
Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed,
A.; Levy, O.; Stoyanov, V.; and Zettlemoyer, L. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural
Language Generation, Translation, and Comprehension. In
Proc. of ACL, 7871–7880.
Lin, C.-Y. 2004. ROUGE: A Package for Automatic Evalu-
ation of Summaries. In Text Summarization Branches Out,
74–81. Barcelona, Spain.
Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.;
Ramanan, D.; Dollár, P.; and Zitnick, C. L. 2014. Microsoft
coco: Common objects in context. In ECCV, 740–755.
Lu, J.; Batra, D.; Parikh, D.; and Lee, S. 2019. ViLBERT:
Pretraining Task-Agnostic Visiolinguistic Representations
for Vision-and-Language Tasks. In NeurIPS.
Miller, G. A.; Beckwith, R.; Fellbaum, C. D.; Gross, D.; and
Miller, K. 1990. WordNet: an Online Lexical Database. In
IJL, 235–244.
Navigli, R.; Bevilacqua, M.; Conia, S.; Montagnini, D.; and
Cecconi, F. 2021. Ten years of BabelNet: A survey. In
Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence, IJCAI-21, 4559–4567.
Navigli, R.; and Ponzetto, S. P. 2012. BabelNet: The au-
tomatic construction, evaluation and application of a wide-
coverage multilingual semantic network. Artiff. Intell., 193:
217–250.
Noraset, T.; Liang, C.; Birnbaum, L.; and Downey, D. 2017.
Definition modeling: Learning to define word embeddings in
natural language. In Proc. of the AAAI, volume 31.
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002.
Bleu: a Method for Automatic Evaluation of Machine Trans-
lation. In Proc. of ACL, 311–318.
Plummer, B. A.; Wang, L.; Cervantes, C. M.; Caicedo, J. C.;
Hockenmaier, J.; and Lazebnik, S. 2015. Flickr30k Entities:
Collecting Region-to-Phrase Correspondences for Richer
Image-to-Sentence Models. In ICCV, 2641–2649.
Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster R-
CNN: Towards Real-Time Object Detection with Region
Proposal Networks. In Cortes, C.; Lawrence, N.; Lee, D.;
Sugiyama, M.; and Garnett, R., eds., NeurIPS, volume 28.
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.;
Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.;
Berg, A. C.; and Fei-Fei, L. 2015. ImageNet Large Scale
Visual Recognition Challenge. IJCV, 115(3): 211–252.
Saenko, K.; and Darrell, T. 2009. Unsupervised Learning of
Visual Sense Models for Polysemous Words. In NeurIPS.
Su, H.; Shen, X.; Zhang, R.; Sun, F.; Hu, P.; Niu, C.; and
Zhou, J. 2019. Improving Multi-turn Dialogue Modelling
with Utterance ReWriter. In Proc. of ACL, 22–31.

11274



Suhr, A.; Zhou, S.; Zhang, A.; Zhang, I.; Bai, H.; and Artzi,
Y. 2019. A Corpus for Reasoning about Natural Language
Grounded in Photographs. In Proc. of ACL, 6418–6428.
Tan, H.; and Bansal, M. 2019. LXMERT: Learning Cross-
Modality Encoder Representations from Transformers. In
Proc. of EMNLP, 5100–5111.
Xie, N.; Lai, F.; Doran, D.; and Kadav, A. 2019. Visual en-
tailment: A novel task for fine-grained image understanding.
arXiv preprint arXiv:1901.06706.
Xing, Y.; Shi, Z.; Meng, Z.; Ma, Y.; and Wattenhofer, R. 2021.
KM-BART: Knowledge Enhanced Multimodal BART for
Visual Commonsense Generation. CoRR, abs/2101.00419.
Yatskar, M.; Zettlemoyer, L.; and Farhadi, A. 2016. Situa-
tion Recognition: Visual Semantic Role Labeling for Image
Understanding. In CVPR, 5534–5542.
Yu, L.; Poirson, P.; Yang, S.; Berg, A. C.; and Berg, T. L.
2016. Modeling context in referring expressions. In Proc. of
ECCV, 69–85. Springer.
Zellers, R.; Bisk, Y.; Farhadi, A.; and Choi, Y. 2019. From
Recognition to Cognition: Visual Commonsense Reasoning.
In CVPR.
Zhang, T.; Kishore, V.; Wu, F.; Weinberger, K. Q.; and Artzi,
Y. 2020. BERTScore: Evaluating Text Generation with BERT.
In ICLR.
Zhang, X.; Yang, Y.-H.; Han, Z.; Wang, H.; and Gao, C. 2013.
Object Class Detection: A Survey. In ACM Comput. Surv.

11275


