
RLLPLUS Stage
Programming 777

ChapterChapterChapter

In This Chapter...
Introduction to Stage Programming... 7-2

Learning to Draw State Transition Diagrams.. 7-3

Using the Stage Jump Instruction for State Transitions.. 7-7

Stage Program Example: Toggle On/Off Lamp Controller....................................... 7-8

Four Steps to Writing a Stage Program.. 7-9

Stage Program Example: A Garage Door Opener... 7-10

Stage Program Design Considerations.. 7-15

RLLPLUS (Stage) Instructions.. 7-19

Questions and Answers about Stage Programming... 7-22

DL105 User Manual, 3rd Ed. Rev. G7-2

Chapter 7: RLLPLUS Stage Programming

Introduction to Stage Programming
Stage Programming (available in all DL205 CPUs) provides a way to organize and program
complex applications with relative ease, when compared to purely relay ladder logic (RLL)
solutions. Stage programming does not replace or negate the use of traditional boolean ladder
programming. This is why Stage Programming is also called RLLPLUS. You will not have to
discard any training or experience you already have. Stage programming simply allows you to
divide and organize a RLL program into groups of ladder instructions called stages. This allows
quicker and more intuitive ladder program development than traditional RLL alone provides.

Overcoming “Stage Fright”
•	 Many PLC programmers in the industry have

become comfortable using RLL for every PLC
program they write... but often remain skeptical
or even fearful of learning new techniques such
as stage programming. While RLL is great
at solving boolean logic relationships, it has
disadvantages as well:

•	 Large programs can become almost
unmanageable, because of a lack of structure.

•	 In RLL, latches must be tediously created from
self-latching relays.

•	 When a process gets stuck, it is difficult to find
the rung where the error occurred.

•	 Programs become difficult to modify later,
because they do not intuitively resemble the
application problem they are solving.

It’s easy to see that these inefficiencies consume a lot of additional time, and time is money. Stage
programming overcomes these obstacles! We believe a few moments of studying the stage concept
is one of the greatest investments in programming speed and efficiency a PLC programmer can
make!

So, we encourage you to study stage programming and add it to your “toolbox” of programming
techniques. This chapter is designed as a self-paced tutorial on stage programming. For best
results:

•	 Start at the beginning and do not skip over any sections.

•	 Study each stage programing concept by working through each example. The examples
build progressively on each other.

•	 Read the Stage Questions and Answers at the end of the chapter for a quick review.

STAGE!

Y2X3

OUT

X0

RST
C0

X4

SET
Y0C1

DL105 User Manual, 3rd Ed. Rev. G 7-3

Chapter 7: RLLPLUS Stage Programming

Learning to Draw State Transition Diagrams
Introduction to Process States

Those familiar with ladder program execution know the
CPU must scan the ladder program repeatedly, over and
over. Its three basic steps are:

1.	 Read the inputs.

2.	 Execute the ladder program.

3.	 Write the outputs.

The benefit is that a change at the inputs can affect the
outputs in just a few milliseconds.

Most manufacturing processes consist of a series of
activities or conditions, each lasting for several seconds, minutes, or even hours. We might call
these “process states,” which are either active or inactive at any particular time. A challenge
for RLL programs is that a particular input event may last for a brief instant. We typically
create latching relays in RLL to preserve the input event in order to maintain a process state for
the required duration. We can organize and divide ladder logic into sections called “stages,”
representing process states. But before we describe stages in detail, we will reveal the secret to
understanding stage programming: state transition diagrams.

The Need for State Diagrams
Sometimes we need to forget about the scan nature of PLCs, and focus our thinking toward the
states of the process we need to identify. Clear thinking and concise analysis of an application
gives us the best chance at writing efficient, bug-free programs. State diagrams are tools to help us
draw a picture of our process! You will discover that if we can get the picture right, our program
will also be right!

A 2–State Process
Consider the simple process shown to the right, which
controls an industrial motor. We will use a green momentary
SPST pushbutton to turn the motor on, and a red one to
turn it off. The machine operator will press the appropriate
pushbutton for a second or so. The two states of our process
are ON and OFF.

The next step is to draw a state transition diagram, as shown
to the right. It shows the two states OFF and ON, with two
transition lines in-between. When the event X0 is true, we
transition from OFF to ON. When X1 is true, we transition
from ON to OFF.

If you’re following along, you are very close to grasping the concept and the problem-solving
power of state transition diagrams. The output of our controller is Y0, which is true any time
we are in the ON state. In a boolean sense, Y0=ON state.

Next, we will implement the state diagram first as RLL, then as a stage program. This will help
you see the relationship between the two methods in problem solving.

Ladder
Program

Inputs Outputs

1) Read Execute Write

Execute Write

(Etc.....)

2) Read

3) Read

PLC Scan

Ladder
Program

Inputs Outputs

OFF

MotorX0

X1

Y0

OFF ON

X0

X1

 Output equation: Y0 = On

State
 Transition condition

ON

DL105 User Manual, 3rd Ed. Rev. G7-4

Chapter 7: RLLPLUS Stage Programming

The state transition diagram to the right is a picture
of the solution we need to create. The beauty of it
is this: it expresses the problem independently of the
programming language we may use to realize it. In
other words, by drawing the diagram we have already
solved the control problem!

First, we’ll translate the state diagram to traditional
RLL. Then we’ll show how easy it is to translate the
diagram into a stage programming solution.

RLL Equivalent
The RLL solution is shown to the right. It consists
of a self-latching motor output coil, Y0. When the
On pushbutton (X0) is pressed, output coil Y0 turns
on and the Y0 contact on the second row latches
itself on. So, X0 sets the latch Y0 on, and it remains
on after the X0 contact opens.

When the Off pushbutton (X1) is pressed, it opens
the normally-closed X1 contact, which resets the
latch. Motor output Y0 turns off.

Stage Equivalent
The stage program solution is shown to the right.
The two inline stage boxes S0 and S1 correspond
to the two states OFF and ON. The ladder rung(s)
below each stage box belong to each respective
stage. This means that the PLC only has to scan those
rungs when the corresponding stage is active!

For now, let’s assume we begin in the OFF State,
so stage S0 is active. When the On pushbutton
(X0) is pressed, a stage transition occurs. The JMP
S1 instruction executes, which simply turns off the
Stage bit S0 and turns on Stage bit S1. So on the
next PLC scan, the CPU will not execute Stage S0,
but will execute stage S1!

In the On State (Stage S1), we want the motor
to always be on. The special relay contact SP1 is
defined as always on, so Y0 turns the motor on.

When the Off pushbutton (X1) is pressed, a
transition back to the Off State occurs. The JMP
S0 instruction executes, which simply turns off the Stage bit S1 and turns on Stage bit S0. On
the next PLC scan, the CPU will not execute Stage S1, so the motor output Y0 will turn off.
The Off state (Stage 0) will be ready for the next cycle.

OFF ON
X1

X0

Output equation Y0 = ON

X1X0

OUT
Y0

Set Reset Output

Latch

Y0

S1X0

JMP

SG
S0

S0X1

JMP

SG
S1

OUT
Y0

OFF State

ON State

Output

Transition

Transition

SP1 Always On

DL105 User Manual, 3rd Ed. Rev. G 7-5

Chapter 7: RLLPLUS Stage Programming

Let’s Compare
Right now, you may be thinking, “I don’t see the big advantage to Stage Programming...
in fact, the stage program is longer than the plain RLL program”. Well, now is the time to
exercise a bit of faith. As control problems grow in complexity, stage programming quickly
out-performs RLL in simplicity, program size, etc..

NOTE: If the ISG is within the retentive range for stages, the ISG will remain in the state it was in before
power down and will NOT turn itself on during the first scan.

S1X0
JMP

SG
S0

S0X1
JMP

SG
S1

OUT
Y0

OFF State

ON State

SP1

OFF ON

S1X0
JMP

ISG
S0

S0X1
JMP

SG
S1

OUT
Y0

Initial Stage

SP1

S1X0
JMP

SG
S0

S0X1
JMP

ISG
S1

OUT
Y0

Initial Stage

SP1

X1X0
OUT
Y0

First Scan

Powerup in OFF State

Powerup in ON State

Powerup in ON State

SP0

Y0

X0

X1

For example, consider the diagram below. Notice how
easy it is to correlate the OFF and ON states of the state
transition diagram below to the stage program at the right.
Now, we challenge anyone to
easily identify the same states
in the RLL program on the
previous page!

Assume that we want to always begin in the Off state
(motor off), which is how the RLL program works. The
Initial Stage (ISG) is defined to be active at power-up. In
the modified program to the right, we have changed stage
S0 to the ISG type. This ensures the PLC will scan contact
X0 after power-up, because Stage S0 is active. After
power-up, an Initial Stage (ISG) works just like any other
stage!
We can change both programs so that the motor is ON at
power-up. In the RLL below, we must add a first scan relay
SP0, latching Y0 on. In the stage example to the right, we
simply make Stage S1 an initial stage (ISG) instead of S0.

Initial Stages
At power-up and Program-
to-Run Mode transitions, the
PLC always begins with all
normal stages (SG) off. So, the stage programs shown so far
have actually had no way to get started (because rungs are
not scanned unless their stage is active).

DL105 User Manual, 3rd Ed. Rev. G7-6

Chapter 7: RLLPLUS Stage Programming

We can mark our desired power-up state as shown
to the right, which helps us remember to use the
appropriate Initial Stages when creating a stage
program. It is permissible to have as many initial
stages as the process requires.

What Stage Bits Do
You may recall that a stage is a section of ladder program which is either active or inactive at a
given moment. All stage bits (S0 to Sxxx) reside in the PLC’s image register as individual status
bits. Each stage bit is either a Boolean 0 or 1 at any time.

Program execution always reads ladder rungs from top to bottom, and from left to right.
The drawing below shows the effect of stage bit status. The ladder rungs below the stage
instruction continuing until the next stage instruction or the end of program belong to stage
0. Its equivalent operation is shown on the right. When S0 is true, the two rungs have power
flow.

•	 If Stage bit S0 = 0, its ladder rungs are not scanned (executed).

•	 If Stage bit S0 = 1, its ladder rungs are scanned (executed).

Stage Instruction Characteristics
The inline stage boxes on the left power rail divide the ladder program rungs into stages. Some
stage rules are:

•	 Execution – Only logic in active stages are executed on
any scan.

•	 Transitions – Stage transition instructions take effect on
the next occurrence of the stages involved.

•	 Octal numbering – Stages are numbered in octal, like I/O
points, etc. So “S8” is not valid.

•	 Total Stages – The maximum number of stages is CPU
dependent.

•	 No duplicates – Each stage number is unique and can be
used just once.

•	 Any order – You can skip numbers and sequence the stage
numbers in any order.

•	 Last Stage – The last stage in the ladder program includes
all rungs from its stage box until the end coil.

OFF ON
X1

Powerup
X0

SG
S0

Actual Program Appearance Functionally Equivalent Ladder

S0

(includes all rungs in stage)

SG
S0

SG
S1

SG
S2

END

DL105 User Manual, 3rd Ed. Rev. G 7-7

Chapter 7: RLLPLUS Stage Programming

Using the Stage Jump Instruction for State Transitions
Stage Jump, Set, and Reset Instructions

The Stage JMP instruction we have used deactivates the stage in which the instruction occurs,
while activating the stage in the JMP instruction. Refer to the state transition shown below.
When contact X0 energizes, the state transition from S0 to S1 occurs. The two stage examples
shown below are equivalent. So, the Stage Jump instruction is equal to a Stage Reset of the
current stage, plus a Stage Set instruction for the stage to which we want to transition.

Please Read Carefully – The jump instruction is easily misunderstood. The “jump” does not
occur immediately like a GOTO or GOSUB program control instruction when executed.
Here’s how it works:

•	 The jump instruction resets the stage bit of the stage in which it occurs.
All rungs in the stage still finish executing during the current scan, even
if there are other rungs in the stage below the jump instruction!

•	 The reset will be in effect on the following scan, so the stage that executed
the jump instruction previously will be inactive and bypassed.

•	 The stage bit of the stage named in the Jump instruction will be set
immediately, so the stage will be executed on its next occurrence. In the left
program shown below, stage S1 executes during the same scan as the JMP S1
occurs in S0. In the example on the right, Stage S1 executes on the next scan
after the JMP S1 executes, because stage S1 is located above stage S0.

NOTE: Assume we start with Stage 0 active and Stage 1 inactive for both examples.

S1X0
JMP

SG
S0

Equivalent S0X0
RST

SG
S0

S1
SET

S0 S1

X0

S1X0
JMP

SG
S0

Y0S1
OUT

SG
S1

S1X0
JMP

SG
S0

Y0S1
OUT

SG
S1

Executes on same
scan as Jmp

Executes on next
scan after Jmp

Note: Assume we start with Stage 0 active and stage 1 inactive for both examples.

DL105 User Manual, 3rd Ed. Rev. G7-8

Chapter 7: RLLPLUS Stage Programming

Stage Program Example: Toggle On/Off Lamp Controller
A 4–State Process

In the process shown to the right, we use an ordinary
momentary pushbutton to control a light bulb. The
ladder program will latch the switch input, so that we will
push and release to turn on the light, push and release
again to turn it off (sometimes called toggle function).
Sure, we could buy a mechanical switch with the alternate
on/off action built in... However, this example is
educational and also fun!

Next we draw the state transition diagram. A typical
first approach is to use X0 for both transitions (like the
example shown to the right). However, this is incorrect
(please keep reading).

Note that this example differs from the motor example, because now we have only one
pushbutton. When we press the pushbutton, both transition conditions are met. We would
transition around the state diagram at top speed. If implemented in Stage, this solution would
flash the light on or off each scan (obviously undesirable)!

The solution is to make the push and the release of the pushbutton separate events. Refer to
the new state transition diagram below. At power-up we enter the OFF state. When switch
X0 is pressed, we enter the Press-ON state. When it is released, we enter the ON state. Note
that X0 with the bar above it denotes X0 NOT.

When in the ON state,
another push and release cycle similarly takes us back to
the OFF state. Now we have two unique states (OFF and
ON) used when the pushbutton is released, which is what
was required to solve the control problem.

The equivalent stage program is shown to the right. The
desired power-up state is OFF, so we make S0 an initial
stage (ISG). In the ON state, we add special relay contact
SP1, which is always on.

Note that even as our programs grow more complex, it is
still easy to correlate the state transition diagram with the
stage program!

 Ladder
Program

Inputs Outputs

Toggle
X0 Y0

OFF ON

X0

X0

Output equation: Y0 = ON

Powerup

S1X0

JMP

ISG
S0

S2

JMP

SG
S1

OUT
Y0

OFF State

SP1

S3X0

JMP

SG
S2

SG
S3

X0

S0

JMP

X0

Push–On State

ON State

Push–Off State

Output

X0 Push–ON

ON

Push–OFF

OFF

Powerup X0

X0X0

Output equation: Y0 = ON

DL105 User Manual, 3rd Ed. Rev. G 7-9

Chapter 7: RLLPLUS Stage Programming

Four Steps to Writing a Stage Program
By now, you’ve probably noticed that we follow the same steps to solve each example problem.
The steps will probably come to you automatically if you work through all the examples in this
chapter. It’s helpful to have a checklist to guide us through the problem solving. The following
steps summarize the stage program design procedure:

1. Write a Word Description of the application.
Describe all functions of the process in your own words. Start by listing what happens first,
then next, etc. If you find there are too many things happening at once, try dividing the
problem into more than one process. Remember, you can still have the processes communicate
with each other to coordinate their overall activity.

2. Draw the Block Diagram.
Inputs represent all the information the process needs for decisions, and outputs connect to all
devices controlled by the process.

•	 Make lists of inputs and outputs for the process.

•	 Assign I/O point numbers (X and Y) to physical inputs and outputs.

3. Draw the State Transition Diagram.
The state transition diagram describes the central function of the block diagram, reading inputs
and generating outputs.

•	 Identify and name the states of the process.

•	 Identify the event(s) required for each transition between states.

•	 Ensure the process has a way to re-start itself, or is cyclical.

•	 Choose the power-up state for your process.

•	 Write the output equations.

4. Write the Stage Program.
Translate the state transition diagram into a stage program.

•	 Make each state a stage. Remember to number stages in octal. Up to 256 total stages are
available in the D2-230 CPU. Up to 512 total stages are available in the D2-240 CPU.
Up to 1024 total stages are available in the D2-250–1, D2-260 and D2-262 CPUs.

•	 Put transition logic inside the stage which originates each
transition (the stage each arrow points away from).

•	 Use an initial stage (ISG) for any states that must be active at power-up.

•	 Place the outputs or actions in the appropriate stages.

You will notice that Steps 1 through 3 prepare us to write the stage program in Step 4. However,
the program virtually writes itself because of the preparation beforehand. Soon you will be able
to start with a word description of an application and create a stage program in one easy session!

DL105 User Manual, 3rd Ed. Rev. G7-10

Chapter 7: RLLPLUS Stage Programming

Stage Program Example: A Garage Door Opener
Garage Door Opener Example

In this next stage programming example we will
create a garage door opener controller. Hopefully
most readers are familiar with this application, and
we can have fun besides!

The first step we must take is to describe how the
door opener works. We will start by achieving the
basic operation, waiting to add extra features later
(stage programs are very easy to modify).

Our garage door controller has a motor which raises
or lowers the door on command. The garage owner
pushes and releases a momentary pushbutton once
to raise the door. After the door is up, another push-
release cycle will lower the door.

In order to identify the inputs and outputs of the
system, it’s sometimes helpful to sketch its main
components, as shown in the door side view to the
right. The door has an up limit and a down limit
switch. Each limit switch closes only when the door
has reached the end of travel in the corresponding
direction. In the middle of travel, neither limit
switch is closed.

The motor has two command inputs: raise and
lower. When neither input is active, the motor is
stopped.

The door command is a simple pushbutton.
Whether wall-mounted as shown, or a radio-remote
control, all door control commands logically OR
together as one pair of switch contacts.

Draw the Block Diagram
The block diagram of the controller is shown to
the right. Input X0 is from the pushbutton door
control. Input X1 energizes when the door reaches
the full up position. Input X2 energizes when the
door reaches the full down position. When the door
is positioned between fully up or down, both limit
switches are open.

The controller has two outputs to drive the motor.
Y1 is the up (raise the door) command, and Y2 is
the down (lower the door) command.

Down limit switch

Raise
Lower

 Door
Command

Up limit switch

Motor

 Ladder
Program

Inputs Outputs

Toggle
X0

Y1

To motor:

Raise

Y2 Lower

Up limit
X1

Down limit
X2

DL105 User Manual, 3rd Ed. Rev. G 7-11

Chapter 7: RLLPLUS Stage Programming

Draw the State Diagram
Now we are ready to draw the state transition diagram. Like the previous light bulb controller
example, this application also has only one switch for the command input. Refer to the figure
below.

•	 When the door is down (DOWN state), nothing happens until X0 energizes. Its push and release
brings us to the RAISE state, where output Y1 turns on and causes the motor to raise the door.

•	 We transition to the UP state when the up limit switch (X1) energizes, and turns off the motor.

•	 Then nothing happens until another X0 press-release cycle occurs. That takes us to the
LOWER state, turning on output Y2 to command the
motor to lower the door. We transition back to the DOWN
state when the down limit switch (X2) energizes.

The equivalent stage program is shown to the right. For now,
we will assume the door is down at power-up, so the desired
power-up state is DOWN. We make S0 an initial stage (ISG).
Stage S0 remains active until the door control pushbutton
activates. Then we transition (JMP) to Push-UP stage, S1.

A push-release cycle of the pushbutton takes us through stage S1
to the RAISE stage, S2. We use the always-on contact SP1 to
energize the motor’s raise command, Y1. When the door reaches
the fully-raised position, the up limit switch X1 activates. This
takes us to the UP Stage S3, where we wait until another door
control command occurs.

In the UP Stage S3, a push-release cycle of the pushbutton
will take us to the LOWER Stage S5, where we activate Y2 to
command the motor to lower the door. This continues until
the door reaches the down limit switch, X2. When X2 closes,
we transition from Stage S5 to the DOWN stage S0, where we
began.

NOTE: The only thing special about an initial stage (ISG) is that it is automatically active at power-up.
Afterwards, it is just like any other.

X0 Push–UP

UP

Push–DOWN

DOWN

X0LOWER

RAISE
X0

X1

X0
X2

Output equations: Y1 = Raise Y2 = Lower

Powerup
S1X0

JMP

ISG
S0

S2
JMP

SG
S1

OUT
Y1

DOWN State

SP1

S3X1
JMP

SG
S2

SG
S3

X0

S4
JMP

X0

Push–UP State

RAISE State

UP State

S5
JMP

SG
S4

X0

Push–DOWN State

OUT
Y2SP1

S0X2
JMP

SG
S5 LOWER State

DL105 User Manual, 3rd Ed. Rev. G7-12

Chapter 7: RLLPLUS Stage Programming

Add Safety Light Feature
Next we will add a safety light feature to the door
opener system. It’s best to get the main function
working first as we have done, then adding the
secondary features.

The safety light is standard on many commercially-
available garage door openers. It is shown to the
right, mounted on the motor housing. The light
turns on upon any door activity, remaining on for
approximately 3 minutes afterwards.

This part of the exercise will demonstrate the use of
parallel states in our state diagram. Instead of using
the JMP instruction, we will use the set and reset
commands.

Modify the Block Diagram and State Diagram
To control the light bulb, we add an output to our
controller block diagram, shown to the right, Y3 is
the light control output.

In the diagram below, we add a state called “LIGHT”.
Whenever the garage owner presses the door control
switch and releases, the RAISE or LOWER state is
active and the LIGHT state is simultaneously active.
The line to the Light state is dashed, because it is not
the primary path.

We can think of the Light state as a parallel process
to the raise and lower state. The paths to the Light
state are not a transition (Stage JMP), but a State Set command. In the logic of the Light
stage, we will place a three-minute timer. When it expires, timer bit T0 turns on and resets the
Light stage. The path out of the Light stage goes nowhere, indicating the Light stage becomes
inactive, and the light goes out!

Safety light

Inputs Outputs

Toggle
X0 Y1 Raise

Y2 Lower
Up limit

X1

Down limit
X2 Y3 Light

X0 Push–UP

UP

Push–DOWN

DOWN

X0LOWER

RAISE
X0

X1

X0
X2

Output equations:
Y2 = LOWER
Y1 = RAISE

LIGHT

Y3 = LIGHT

X0

X0

T0

DL105 User Manual, 3rd Ed. Rev. G 7-13

Chapter 7: RLLPLUS Stage Programming

Using a Timer Inside a Stage
The finished modified program is shown to the right. The
shaded areas indicate the program additions.

In the Push-UP stage S1, we add the Set Stage Bit S6
instruction. When contact X0 opens, we transition from
S1 and go to two new active states: S2 and S6. In the Push-
DOWN state S4, we make the same additions. So, any
time someone presses the door control pushbutton, the light
turns on.

Most new stage programmers would be concerned about
where to place the Light Stage in the ladder, and how to
number it. The good news is that it doesn’t matter!

•	 Choose an unused Stage number, and use it for the
new stage and as the reference from other stages.

•	 Placement in the program is not
critical, so we place it at the end.

You might think that each stage has to be directly under the
stage that transitions to it. While it is good practice, it is not
required (that’s good, because our two locations for the Set
S6 instruction make that impossible). Stage numbers and
how they are used determines the transition paths.

In stage S6, we turn on the safety light by energizing Y3.
Special relay contact SP1 is always on. Timer T0 times at
0.1 second per count. To achieve 3 minutes time period,
we calculate:

The timer has power flow whenever stage S6 is active. The
corresponding timer bit T0 is set when the timer expires.
So three minutes later, T0=1 and the instruction Reset S6
causes the stage to be inactive.

While Stage S6 is active and the light is on, stage transitions
in the primary path continue normally and independently
of Stage 6. That is, the door can go up, down, or whatever,
but the light will be on for precisely 3 minutes.

S1X0
JMP

ISG
S0

S2
JMP

SG
S1

OUT
Y1

DOWN State

SP1

S3X1
JMP

SG
S2

SG
S3

X0

S4
JMP

X0

Push–UP State

RAISE State

UP State

S5
JMP

SG
S4

X0

Push–DOWN State

OUT
Y2SP1

S0X2
JMP

SG
S5 LOWER State

OUT
Y3SP1

S6T0
RST

SG
S6 LIGHT State

TMR
K1800

T0

S6
SET

S6
SET

3 min. x 60 sec/min

0.1 sec/count
K =

K = 1800 counts

DL105 User Manual, 3rd Ed. Rev. G7-14

Chapter 7: RLLPLUS Stage Programming

Add Emergency Stop Feature
Some garage door openers today will detect an object
under the door. This halts further lowering of the door.
Usually implemented with a photocell (“electric-eye”), a
door in the process of being lowered will halt and begin
raising. We will define our safety feature to work in this
way, adding the input from the photocell to the block
diagram as shown to the right. X3 will be on if an object
is in the path of the door.

Next, we make a simple addition to the state transition
diagram, shown in shaded areas in the figure below. Note
the new transition path at the top of the LOWER state. If
we are lowering the door and detect an obstruction (X3),
we then jump to the Push-UP State. We do this instead
of jumping directly to the RAISE state, to give the Lower
output Y2 one scan to turn off, before the Raise output
Y1 energizes.

Exclusive Transitions
It is theoretically possible the down limit (X2) and the obstruction input (X3) could energize
at the same moment. In that case, we would “jump” to the Push-UP and DOWN states
simultaneously, which does not make sense.

Instead, we give priority to the obstruction by
changing the transition condition to the DOWN
state to [X2 AND NOT X3]. This ensures
the obstruction event has the priority. The
modifications we must make to the LOWER
Stage (S5) logic are shown to the right. The first
rung remains unchanged. The second and third
rungs implement the transitions we need. Note
the opposite relay contact usage for X3, which
ensures the stage will execute only one of the JMP
instructions.

Ladder
Program

Inputs Outputs
Toggle

X0 Y1 Raise

Y2 Lower
 Up limit

X1

 Down limit
X2 Y3 Light

Obstruction
X3

X0 Push–UP

UP

Push–DOWN

DOWN

X0LOWER

RAISE
X0

X1

X0

X2

LIGHT

X0

X0

T0X3

X3

OUT
Y2SP1

S0X2
JMP

SG
S5 LOWER State

X3

S2X3
JMP

to Push-UP

to DOWN

DL105 User Manual, 3rd Ed. Rev. G 7-15

Chapter 7: RLLPLUS Stage Programming

Stage Program Design Considerations
Stage Program Organization

The examples so far in this chapter used one self-contained state diagram to represent the main
process. However, we can have multiple processes implemented in stages, all in the same ladder
program. New stage programmers sometimes try to turn a stage on and off each scan, based on
the false assumption that only one stage can be on at a time. For ladder rungs that you want to
execute each scan, put them in a stage that is always on.

The following figure shows a typical application. During operation, the primary manufacturing
activity Main Process, Power-up Initialization, E-Stop and Alarm Monitoring, and Operator
Interface are all running. At power-up, four initial stages shown begin operation.

In a typical application, the separate stage sequences above operate as follows:

•	 Power-up Initialization – This stage contains ladder rung tasks performed once at
power-up. Its last rung resets the stage, so this stage is only active for one scan (or only as
many scans that are required)

•	 Main Process – This stage sequence controls the heart of the process or machine. One
pass through the sequence represents one part cycle of the machine, or one batch in the
process.

•	 E-Stop and Alarm Monitoring – This stage is always active because it is watching for
errors that could indicate an alarm condition or require an emergency stop. It is common
for this stage to reset stages in the main process or elsewhere, in order to initialize them
after an error condition.

•	 Operator Interface – This is another task that
must always be active and ready to respond to
an operator. It allows an operator interface to
change modes, etc., independent of the current
main process step.

Although we have separate processes, there can
be coordination among them. For example, in
an error condition, the Status Stage may want to
automatically switch the operator interface to the status mode to show error information as
shown to the right. The monitor stage could set the stage bit for Status and Reset the stages
Control and Recipe.

Agitate

Monitor

Idle Fill Rinse Spin

E-Stop and Alarm Monitoring

Main Process

Operator Interface

Control Recipe

Status

XXX = ISG

Powerup

Powerup Initialization

Monitor

E-Stop and
Alarm Monitoring

Operator Interface

Control Recipe

Status

DL105 User Manual, 3rd Ed. Rev. G7-16

Chapter 7: RLLPLUS Stage Programming

How Instructions Work Inside Stages
We can think of states or stages as simply dividing our ladder program as depicted in the figure
below. Each stage contains only the ladder rungs which are needed for the corresponding
state of the process. The logic
for transitioning out of a stage is
contained within that stage. It’s
easy to choose which ladder rungs
are active at power-up by using an
“initial” stage type (ISG).

Most instructions work like they
do in standard RLL. You can
think of a stage like a miniature
RLL program that is either active
or inactive.

Output Coils – As expected, output coils in active stages will turn on or off outputs according
to power flow into the coil. However, note the following:

•	 Outputs work as usual, provided each output reference
(such as “Y3”) is used in only one stage.

•	 Output coils automatically turn off when leaving a stage. However, Set
and Reset instructions are not “undone” when leaving a stage.

•	 An output can be referenced from more than one stage, as
long as only one of the stages is active at a time.

•	 If an output coil is controlled by more than one stage simultaneously, the
active stage nearest the bottom of the program determines the final output
status during each scan. So, use the OROUT instruction instead when
you want multiple stages to have a logical OR control of an output.

One-Shot or PD coils – Use care if you must use a Positive Differential coil in a stage.
Remember the input to the coil must make a 0–1 transition. If the coil is already energized
on the first scan when the stage becomes active, the PD coil will not work. This is because the
0–1 transition did not occur.

PD coil alternative: If there is a task that you want to do only once (on 1 scan), it can be placed
in a stage that transitions to the next stage on the same scan.

Counter – When using a counter inside a stage, the stage must be active for one scan before
the input to the counter makes a 0–1 transition. Otherwise, there is no real transition and the
counter will not count. The ordinary Counter instruction does have a restriction inside stages:
it may not be reset from other stages using the RST instruction for the counter bit. However,
the special Stage Counter provides a solution (see next paragraph).

Stage Counter – The Stage Counter has the benefit that its count may be globally reset from
other stages by using the RST instruction. It has a count input, but no reset input. This is the
only difference from a standard counter instruction.

Drum – Realize the drum sequencer is its own process, and is a different programming method
than stage programming. If you need to use a drum and stages, be sure to place the drum
instruction in an ISG stage that is always active.

 Stage 0 Stage 1

Stage 2

DL105 User Manual, 3rd Ed. Rev. G 7-17

Chapter 7: RLLPLUS Stage Programming

Using a Stage as a Supervisory Process
You may recall the light bulb on-off controller
example from earlier in this chapter. For the purpose
of illustration, suppose we want to monitor the
“productivity” of the lamp process by counting the
number of on-off cycles that occur. This application
will require the addition of a simple counter, but the
key decision is in where to put the counter.

New stage programming students will typically try to place
the counter inside one of the stages of the process they
are trying to monitor. The problem with this approach
is that the stage is active only part of the time. In order
for the counter to count, the count input must transition
from off to on at least one scan after its stage activates.
Ensuring this requires extra logic that can be tricky. In
this case, we only need to add another supervisory stage as
shown above, to “watch” the main process. The counter
inside the supervisor stage uses the stage bit S1 of the main
process as its count input. Stage bits used as a contact let us
monitor a process!

NOTE: Both the Supervisor stage and the OFF stage are initial
stages. The supervisor stage remains active indefinitely.

Stage Counter
The counter in the above example is a special Stage Counter. Note that it does not have a reset
input. The count is reset by executing a Reset instruction, naming the counter bit (CT0 in
this case). The Stage Counter has the benefit that its count may be globally reset from other
stages. The standard Counter instruction does not have this global reset capability. You may
still use a regular Counter instruction inside a stage, however, the reset input to the counter is
the only way to reset it.

 Ladder
Program

Toggle
X0 Y0

S1X0
JMP

ISG
S0

S2
JMP

SG
S1

OUT
Y0

OFF State

SP1

S3X0
JMP

SG
S2

SG
S3

X0

S0
JMP

X0

Push–On State

ON State

Push–Off State

SGCNT
K5000

CT0

ISG
S4

S1

Supervisor State

X0 Push–ON

ON

Push–OFF

OFF

X0

X0X0

Supervisor

Main Process

Supervisor Process

Powerup

Powerup

DL105 User Manual, 3rd Ed. Rev. G7-18

Chapter 7: RLLPLUS Stage Programming

Power Flow Transition Technique
Our discussion of state transitions has shown how the Stage JMP instruction makes the current
stage inactive and the next stage (named in the JMP) active. As an alternative way to enter
this in DirectSOFT, you may use the power flow method for stage transitions. The main
requirement is the current stage be located directly above the next (jump-to) stage in the ladder
program. This arrangement is shown in the diagram below, by stages S0 and S1, respectively.

Recall the Stage JMP instruction may occur anywhere in the current stage, and the result is the
same. However, power flow transitions (shown above) must occur as the last rung in a stage.
All other rungs in the stage will precede it. The power flow transition method is also achievable
on the handheld programmer, by simply following the transition condition with the Stage
instruction for the next stage.

The power flow transition method does eliminate one Stage JMP instruction, its only advantage.
However, it is not as easy to make program changes as using the Stage JMP. Therefore, we
advise using Stage JMP transitions for most programs.

Stage View in DirectSOFT
The stage View option in DirectSOFT will let you view the ladder program as a flow chart. The
figure below shows the symbol convention used in the diagrams. You may find the stage view
useful as a tool to verify that your stage program has faithfully reproduced the logic of the state
transition diagram you intend to realize.

S1X0

JMP

SG
S0

Equivalent
X0

SG
S0

S0 S1X0

SG
S1

SG
S1

All other rungs in stage...

Power flow
transition

SG Stage Reference to
a stage

J Jump S Set Stage

R Reset Stage

Transition
Logic

ISG
S0

SG
S1

SG
S2

SG
S3

SG
S4

SG
S5

J J

J

S

J

The following diagram is a typical stage view of a ladder program containing stages. Note the
left-to-right direction of the flow chart.

DL105 User Manual, 3rd Ed. Rev. G 7-19

Chapter 7: RLLPLUS Stage Programming

RLLPLUS (Stage) Instructions
Stage (SG)

The Stage instructions are used to create structured RLLPLUS
programs. Stages are program segments that can be activated by
transitional logic, a Jump or a Set Stage that is executed from an
active stage. Stages are deactivated one scan after transitional logic, a
Jump, or a Reset Stage instruction is executed.

The following example is a simple RLLPLUS program. This program utilizes the Initial Stage,
as well as Stage and Jump instructions to create a structured program.

aaaaaaSS
SGSG

X0

ISG S0

Y10
OUT

X1 S2
SET

SG S1

X5

X2 Y11
OUT

SG S2

X6 Y12
OUT

X7 S0
JMP

S1
JMP

S1

DirectSOFT Handheld Programmer Keystrokes

ISG S(SG) 0

STR X(IN) 0

OUT Y(OUT) 1

STR X(IN) 1

SET S(SG) 2

0

STR X(IN) 5

JMP S(SG) 1

SG S(SG) 1

STR X(IN) 2

OUT Y(OUT) 1 1

SG S(SG) 2

STR X(IN) 6

OUT Y(OUT) 1 2

STR X(IN) 7

AND S(SG) 1

JMP S(SG) 0

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

Operand Data Type DL130 Range
 aaa

Stage S 0-377

DL105 User Manual, 3rd Ed. Rev. G7-20

Chapter 7: RLLPLUS Stage Programming

Initial Stage (ISG)
The Initial Stage instruction is normally used as the first
segment of an RLLPLUS program. Initial stages will be active
when the CPU enters the run mode allowing for a starting
point in the program. Initial Stages are also activated by
transitional logic, a jump or a set stage executed from an active
stage. Initial Stages are deactivated one scan after transitional
logic, a jump, or a reset stage instruction is executed. Multiple
Initial Stages are allowed in a program.

NOTE: If the ISG is within the retentive range for stages, the ISG will remain in the state it was in before power
down and will NOT turn itself on during the first scan.

Jump (JMP)
The Jump instruction allows the program to transition
from an active stage which contains the jump instruction to
another stage which is specified in the instruction. The jump
will occur when the input logic is true. The active stage that
contains the Jump will be deactivated one scan after the Jump
instruction is executed.

aaaS
ISG

aaaS
JMP

Operand Data Type DL130 Range
 aaa

Stage S 0-377

Operand Data Type DL130 Range
 aaa

Stage S 0-377

DL105 User Manual, 3rd Ed. Rev. G 7-21

Chapter 7: RLLPLUS Stage Programming

In the following example, when the CPU begins program execution, only ISG 0 will be active.
When X1 is on, the program execution will jump from Initial Stage 0 to Stage 1. In Stage 1, if
X2 is on, output Y5 will be turned on. If X7 is on, program execution will jump from Stage
1 to Stage 2. If X7 is off, program execution will jump from Stage 1 to Stage 3.

NOTE: The F1-130 CPU does not have the Not Jump instruction (as does other PLC families). You may still
achieve the same result by using the Jump instruction, while inverting the sense of contact logic that activates
that instruction.

R
LL P

LU
S

S
tage P

rogram
m

ing

DirectSOFT Handheld Programmer Keystrokes

ISG S0

X1 S1
JMP

SG S1

X2 Y5
OUT

X7 S2
JMP

S3
NJMP

ISG S(SG) 0

STR X(IN) 1

JMP S(SG) 1

SG S(SG) 1

STR X(IN) 2

OUT Y(OUT) 5

STR X(IN) 7

JMP S(SG) 2

JMP

S(SG) 3

NSHFT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

ENT

DL105 User Manual, 3rd Ed. Rev. G7-22

Chapter 7: RLLPLUS Stage Programming

Questions and Answers about Stage Programming
We include the following commonly-asked questions about Stage Programming as an aid to
new students. All question topics are covered in more detail in this chapter.

Q. What does stage programming do that I can’t do with regular RLL
programs?

A. �Stages allow you to identify all the states of your process before you begin programming.
This approach is more organized, because you divide a ladder program into sections. As
stages, these program sections are active only when they are actually needed by the process.
Most processes can be organized into a sequence of stages, connected by event-based
transitions.

Q. Isn’t a stage really like a software subroutine?
A. �No, it is very different. A subroutine is called by a main program when needed, and

executes only once before returning to the point from which it was called. A stage, however,
is part of the main program. It represents a state of the process, so an active stage executes
on every scan of the CPU until it becomes inactive.

Q. What are Stage Bits?
A. �A stage bit is a single bit in the CPU’s image register, representing the active/inactive status

of the stage in real time. For example, the bit for Stage 0 is referenced as “S0”. If S0 = 0,
then the ladder rungs in Stage 0 are bypassed (not executed) on each CPU scan. If S0 = 1,
then the ladder rungs in Stage 0 are executed on each CPU scan. Stage bits, when used as
contacts, allow one part of your program to monitor another part by detecting stage active/
inactive status.

Q. How does a stage become active?
A. There are three ways:

•	 If the Stage is an initial stage (ISG), it is automatically active at power-up.

•	 Another stage can execute a Stage JMP instruction naming this stage, which makes it active
upon its next occurrence in the program.

•	 A program rung can execute a Set Stage Bit instruction (such as SET S0).

Q. How does a stage become inactive?
A. There are three ways:

•	 Standard Stages (SG) are automatically inactive at power-up.

•	 A stage can execute a Stage JMP instruction, resetting its Stage Bit to 0.

•	 Any rung in the program can execute a Reset Stage Bit instruction (such as RST S0).

Q. What about the power flow technique of stage transitions?
A. �The power flow method of connecting adjacent stages (directly above or below in the

program) actually is the same as the Stage Jump instruction executed in the stage above,
naming the stage below. Power flow transitions are more difficult to edit in DirectSOFT;
we list them separately from two preceding questions.

DL105 User Manual, 3rd Ed. Rev. G 7-23

Chapter 7: RLLPLUS Stage Programming

Q. Can I have a stage that is active for only one scan?
A. �Yes, but this is not the intended use for a stage. Instead, make a ladder rung active for one

scan by including a stage Jump instruction at the bottom of the rung. Then the ladder will
execute on the last scan before its stage jumps to a new one.

Q. Isn’t a Stage JMP just like a regular GOTO instruction used in software?
A. �No, it is very different. A GOTO instruction sends the program execution immediately

to the code location named by the GOTO. A Stage JMP simply resets the Stage Bit of the
current stage, while setting the Stage Bit of the stage named in the JMP instruction. Stage
bits are 0 or 1, determining the inactive/active status of the corresponding stages. A stage
JMP has the following results:

•	 When the JMP is executed, the remainder of the current stage’s rungs are executed, even
if they reside past (under) the JMP instruction. On the following scan, that stage is not
executed, because it is inactive.

•	 The Stage named in the Stage JMP instruction will be executed upon its next occurrence.
If located past (under) the current stage, it will be executed on the same scan. If located
before (above) the current stage, it will be executed on the following scan.

Q. �How can I know when to use stage JMP, versus a Set Stage Bit or Reset Stage
Bit?
A. These instructions are used according to the state diagram topology you have derived:

•	 Use a Stage JMP instruction for a state transition... moving from one state to another.

•	 Use a Set Stage Bit instruction when the current state is spawning a new parallel state or
stage sequence, or when a supervisory state is starting a state sequence under its command.

•	 Use a Reset Bit instruction when the current state is the last state in a sequence and its task
is complete, or when a supervisory state is ending a state sequence under its command.

Q. What is an initial stage, and when do I use it?
A. �An initial stage (ISG) is automatically active at power-up. Afterwards, it works just like any

other stage. You can have multiple initial stages, if required. Use an initial stage for a ladder
that must always be active, or as a starting point.

Q. �Can I have place program ladder rungs outside of the stages, so they are
always on?
A. �It is possible, but it’s not good software design practice. Place a ladder that must always be

active in an initial stage, and do not reset that stage or use a Stage JMP instruction inside it.
It can start other stage sequences at the proper time by setting the appropriate Stage Bit(s).

Q. Can I have more than one active stage at a time?
A. �Yes, and this is a normal occurrence for many programs. However, it is important to

organize your application into separate processes, each made up of stages. And a good
process design will be mostly sequential, with only one stage on at a time. However, all the
processes in the program may be active simultaneously.

	Chapter 7 - RLLPlus Stage Programming
	Introduction to Stage Programming
	Learning to Draw State Transition Diagrams
	Using the Stage Jump Instruction for State Transitions
	Stage Program Example: Toggle On/Off Lamp Controller
	Four Steps to Writing a Stage Program
	Stage Program Example: A Garage Door Opener
	Stage Program Design Considerations
	RLLPLUS (Stage) Instructions
	Questions and Answers about Stage Programming

