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Abstract TRIM5 proteins are restriction factors that block retroviral infections by binding viral

capsids and preventing reverse transcription. Capsid recognition is mediated by C-terminal

domains on TRIM5a (SPRY) or TRIMCyp (cyclophilin A), which interact weakly with capsids. Efficient

capsid recognition also requires the conserved N-terminal tripartite motifs (TRIM), which mediate

oligomerization and create avidity effects. To characterize how TRIM5 proteins recognize viral

capsids, we developed methods for isolating native recombinant TRIM5 proteins and purifying

stable HIV-1 capsids. Biochemical and EM analyses revealed that TRIM5 proteins assembled into

hexagonal nets, both alone and on capsid surfaces. These nets comprised open hexameric rings,

with the SPRY domains centered on the edges and the B-box and RING domains at the vertices.

Thus, the principles of hexagonal TRIM5 assembly and capsid pattern recognition are conserved

across primates, allowing TRIM5 assemblies to maintain the conformational plasticity necessary to

recognize divergent and pleomorphic retroviral capsids.

DOI: 10.7554/eLife.16269.001

Introduction
Mammalian hosts have evolved a series of different innate immune strategies to combat retroviruses

(reviewed in [Altfeld and Gale, 2015; Bieniasz, 2003, 2004; Fitzgerald et al., 2014; Harris et al.,

2012; Neil and Bieniasz, 2009; Rustagi and Gale, 2014; Sparrer and Gack, 2015; van Montfoort

et al., 2014; Yoo et al., 2014]). TRIM5a and the related TRIMCyp protein (collectively TRIM5) are

restriction factors that recognize the capsid surfaces of incoming retroviral core particles, induce

their dissociation, and inhibit reverse transcription (Sayah et al., 2004; Stremlau et al., 2004;

2006). The mechanistic basis for core inactivation is not yet well established, but current models

invoke the involvement of proteasomes (Anderson et al., 2006; Campbell et al., 2008; Diaz-

Griffero et al., 2007; Kutluay et al., 2013; Lukic et al., 2011; Rold and Aiken, 2008; Wu et al.,

2006), autophagosomes (Mandell et al., 2014a; 2014b), and/or the establishment of a general anti-

viral state (Pertel et al., 2011).

Like other members of the tripartite motif (TRIM) family (Reymond et al., 2001), TRIM5 proteins

comprise a RING E3 ubiquitin (Ub) ligase domain (Meroni and Diez-Roux, 2005; Yamauchi et al.,

2008), an L1 linker, a B-box 2 self-assembly domain (Diaz-Griffero et al., 2009; Javanbakht et al.,
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2005; Li and Sodroski, 2008), an antiparallel dimeric coiled-coil, and an L2 linker that folds back on

the coiled-coil (Goldstone et al., 2014; Li et al., 2014; Sanchez et al., 2014; Weinert et al., 2015)

(Figure 1A). TRIM5 proteins also contain one of two different C-terminal viral core recognition

domains, a B30.2/SPRY domain in TRIM5a (hereafter termed SPRY) or a cyclophilin A (CypA) domain

in TRIMCyp (Brennan et al., 2008; Newman et al., 2008; Nisole et al., 2004; Sayah et al., 2004;

Stremlau et al., 2005; 2006; Virgen et al., 2008).

TRIM5 proteins act by binding the outer capsid shell of the viral core (Biris et al., 2013;

Black and Aiken, 2010; Diaz-Griffero et al., 2006b; Kar et al., 2008; Kovalskyy and Ivanov,

2014; Langelier et al., 2008; Sayah et al., 2004; Sebastian and Luban, 2005; Stremlau et al.,

2006; Zhao et al., 2011). The capsid protects and organizes the internal ribonucleocapsid, which

comprises the viral NC protein, the RNA genome, and associated replicative enzymes. Closed retro-

viral capsids are constructed from several hundred CA protein hexamers and exactly 12 CA pentam-

ers ([Ganser et al., 1999; Gres et al., 2015; Li et al., 2000; Obal et al., 2015; Pornillos et al.,

2011; Zhao et al., 2013] and reviewed in [Ganser-Pornillos et al., 2012; Zhang et al., 2015]).

Although all retroviral capsids are organized following these principles, individual capsids are

unique, asymmetric objects that can differ in hexamer numbers and pentamer distributions

(Benjamin et al., 2005; Briggs et al., 2006; Butan et al., 2008; Ganser-Pornillos et al., 2004;

Heymann et al., 2008). For example, HIV-1 capsids are typically conical, but their sizes and cone

angles can vary, and cylindrical and spherical capsids also form (Benjamin et al., 2005; Briggs et al.,

2006; Briggs et al., 2003; Ganser-Pornillos et al., 2004; Heymann et al., 2008; Welker et al.,

2000). Indeed, spherical and cylindrical capsids predominate in other retroviral genera, and capsid

surface properties can vary considerably because CA proteins from different genera share low

sequence identity (Berthet-Colominas et al., 1999; Campos-Olivas et al., 2000; Cornilescu et al.,

eLife digest After infecting a cell, a virus reproduces by forcing the cell to produce new

copies of the virus, which then spread to other cells. However, cells have evolved ways to fight back

against these infections. For example, many mammalian cells contain proteins called restriction

factors that prevent the virus from multiplying. The TRIM5 proteins form one common set of

restriction factors that act against a class of viruses called retroviruses.

HIV-1 and related retroviruses have a protein shell known as a capsid that surrounds the genetic

material of the virus. The capsid contains several hundred repeating units, each of which consists of

a hexagonal ring of six CA proteins. Although this basic pattern is maintained across different

retroviruses, the overall shape of the capsids can vary considerably. For instance, HIV-1 capsids are

shaped like a cone, but other retroviruses can form cylinders or spheres.

Soon after the retrovirus enters a mammalian cell, TRIM5 proteins bind to the capsid. This causes

the capsid to be destroyed, which prevents viral replication. Previous research has shown that

several TRIM5 proteins must link up with each other via a region of their structure called the B-box 2

domain in order to efficiently recognize capsids. How this assembly process occurs, and why it

enables the TRIM5 proteins to recognize different capsids was not fully understood. Now, Li,

Chandrasekaran et al. (and independently Wagner et al.) have investigated these questions.

Using biochemical analyses and electron microscopy, Li, Chandrasekaran et al. found that TRIM5

proteins can bind directly to the surface of HIV-1 capsids. Several TRIM5 proteins link together to

form large hexagonal nets, in which the B-box domains of the proteins are found at the points

where three TRIM5 proteins meet. This arrangement mimics the pattern present in the HIV-1 capsid,

and just a few TRIM5 rings can cover most of the capsid.

Li, Chandrasekaran et al. then analysed TRIM5 proteins from several primates, including rhesus

macaques, African green monkeys and chimpanzees. In all cases analyzed, the TRIM5 proteins

assembled into hexagonal nets, although the individual units within the net did not have strictly

regular shapes. These results suggest that TRIM5 proteins assemble a scaffold that can deform to

match the pattern of the proteins in the capsid. Further work is now needed to understand how

capsid recognition is linked to the processes that disable the virus.

DOI: 10.7554/eLife.16269.002

Li et al. eLife 2016;5:e16269. DOI: 10.7554/eLife.16269 2 of 33

Research article Immunology Microbiology and infectious disease

http://dx.doi.org/10.7554/eLife.16269.002
http://dx.doi.org/10.7554/eLife.16269


Figure 1. ECT analysis of TRIM5-21R 2D crystals. (A) Schematic of the TRIM5 dimer. The two RING (yellow) and B-box 2 (red) domains are separated by

a ~17 nm, antiparallel dimeric coiled-coil (blue). The two L2 linkers (green) fold back towards the 2-fold axis of the coiled-coil to orient two capsid-

Figure 1 continued on next page
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2001; Ganser et al., 1999; Jin et al., 1999; Khorasanizadeh et al., 1999; Kingston et al., 2000;

Momany et al., 1996; Mortuza et al., 2008; Mortuza et al., 2004; von Schwedler et al., 1998;

Zlotnick et al., 1998).

To function effectively, individual TRIM5 proteins must overcome these variations in retroviral

capsid shape and sequence (Hatziioannou et al., 2003; Wilson et al., 2008). We, and others, have

proposed that TRIM5 proteins recognize pleomorphic capsids by recognizing repeating patterns on

the capsid surface (Biris et al., 2012; Ganser-Pornillos et al., 2011; Goldstone et al., 2014;

Yang et al., 2012). This model supposes that flexible loops on the SPRY and CypA domains can

adopt multiple different conformations and can bind weakly to conserved elements on the capsid

surfaces (Biris et al., 2012; Caines et al., 2012; Kovalskyy and Ivanov, 2014; Price et al., 2009;

Song et al., 2005a; Stremlau et al., 2005; Ylinen et al., 2010). These weak interactions are then

amplified by TRIM5 assembly into a higher-order hexagonal lattice, which positions arrays of SPRY/

CypA domains to interact with repeating epitopes on the capsid surfaces (Ganser-Pornillos et al.,

2011; Li and Sodroski, 2008).

This ’pattern recognition’ model has been supported by biochemical and structural analyses of a

TRIM5 protein construct called TRIM5-21R, which is an artificial chimera in which the RING domain

from human TRIM21 replaces the RING domain of rhesus TRIM5a (Diaz-Griffero et al., 2006a;

Kar et al., 2008; Langelier et al., 2008). The TRIM5-21R construct retains HIV-1 restriction activity,

and has been used in several studies owing to its unusually favorable stability, solubility and assem-

bly properties. Consistent with the pattern recognition model, TRIM5-21R was shown to assemble

into open hexagonal lattices, both alone and on the surface of 2D CA crystals that mimic the surface

of the HIV-1 capsid (Ganser-Pornillos et al., 2011). TRIM5-21R assemblies could be microns in size

but lacked strict long-range order, and 2D projections could therefore only be reconstructed to a

resolution of ~7.5 nm. Domain positions therefore had to be inferred, and were interpreted in the

absence of high-resolution information on the structure of the TRIM5 protein core.

Technical challenges in purifying authentic HIV-1 cores have also been a significant experimental

limitation, and all published biochemical and structural studies of TRIM5a-capsid interactions have

therefore either employed crude viral core preparations or artificial mimics of the capsid surface

(Black and Aiken, 2010; Ganser-Pornillos et al., 2011; Langelier et al., 2008; Sebastian and

Luban, 2005; Stremlau et al., 2006; Zhao et al., 2011). Thus, the interactions between authentic

viral capsids and TRIM5 proteins have yet to be investigated biochemically or structurally. To

address these different shortcomings, we have developed methods for preparing authentic recombi-

nant TRIM5 proteins, co-assemblies of TRIM5 and CA proteins, and stable HIV-1 cores. These

reagents were then used to demonstrate that TRIM5 proteins form hexagonal arrays on HIV-1

capsids.

Results

Structure-based models for TRIM5-21R assembly
A composite model for the domain organization within the TRIM5a dimer is shown in Figure 1A.

We (Sanchez et al., 2014), and others (Goldstone et al., 2014; Weinert et al., 2015), have sug-

gested that these dimers form the edges of the hexameric rings observed within the hexagonal

TRIM5-21R lattice (modeled in Figure 1B). This model is attractive because the edges of each

Figure 1 continued

binding SPRY domains (orange). (B) Schematic of the TRIM5 hexagonal lattice model. (C and D) Tomographic slice (top) of (C) full-length TRIM5-21R,

and (D) TRIM5-21R
DSPRY lattices. Scale bars are 100 nm. In both cases, the computed Fourier transform (bottom, left) and subtomogram average without

imposed rotational symmetry (bottom, middle) exhibit six-fold symmetry. Iso-surface representations of the densities are also shown (bottom, right). (E)

A density difference map of the subtomogram averages of full-length TRIM5-21R and TRIM5-21R
DSPRY lattices reveals positive density (red) at the center

of each hexagon edge, corresponding to the SPRY domain position, supporting the TRIM5a dimer and hexamer models shown in (A and B). (F) Heat

maps (bottom) of lattice arm lengths and angles measured from refined lattice points (top) selected from the TRIM5-21R tomogram in (C). (G)

Histograms showing the distributions of measured arm lengths (n = 155) and angles (n = 111). The most abundant arm length (18.5–19 nm) and arm

angle (120˚) are consistent with the structure models in (A and B) and the p6 plane group symmetry of TRIM5-21R 2D crystals (Ganser-Pornillos et al.,

2011). Note that this analysis probably underestimates the extent of hexamer variability owing to the initial selection of well-ordered lattice points.

DOI: 10.7554/eLife.16269.003
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hexagon are ~19 nm long, which would accommodate the antiparallel TRIM5a coiled-coil (~17 nm),

and the RING and B-box 2 domains would associate at the three-fold vertices, which is consistent

with the trimeric B-box 2 domain structure presented in the accompanying paper (Wagner et al.,

2016). Finally, the L2 linkers fold back and form a four-helix bundle at the center of the coiled-coil,

and this platform could, in principle, buttress and orient the TRIM5a SPRY domains. None of the

domain positions have been determined experimentally, however, and we therefore began our stud-

ies by defining the location of the SPRY domains within the hexagonal TRIM5-21R lattice.

To visualize TRIM5-21R assemblies in three dimensions and define the SPRY domain positions, we

generated electron cryotomograms (ECT) from tilt series of vitrified 2D crystals of both full length

TRIM5-21R (Figure 1C) and a construct that lacked the SPRY domain (TRIM5-21R
DSPRY, residues 1–

300, Figure 1D). The 3D reconstructions were refined and improved by subtomogram averaging of

densities centered at equivalent lattice vertices. As expected, TRIM5-21R and TRIM5-21R
DSPRY both

assembled into similar planar lattices of hexagonal rings, with inter-ring spacings and protein densi-

ties matching those of the previous 2D projection structures (Ganser-Pornillos et al., 2011). Differ-

ence density maps clearly revealed that the SPRY domains are located at the center of each

hexagon edge (Figure 1E), thereby supporting the model shown in Figure 1B.

The TRIM5-21R lattice is a hexagonal net with variable arm lengths and
angles
Although the paracrystalline arrays of TRIM5-21R exhibited long-range order, they diffracted poorly,

suggesting variability within the lattice. To quantify this variability, we performed a nearest neighbor

analysis of the refined positions of the lattice vertices used for subtomogram averaging. The relative

positions of 153 vertices in the TRIM5-21R 2D crystals were used to define individual hexamer edge

lengths and angles (see Figure 1F). The length distribution of hexamer edges was centered about a

mean of 19 nm, but individual lengths varied by up to ±5 nm (Figure 1G, upper panel). Similarly, the

distribution of hexamer vertex angles was centered about 120˚, but varied by up to ±20˚ (Figure 1G,

lower panel). Thus, individual rings within the TRIM5 lattice exhibited considerable conformational

variability, explaining the poor crystalline order and modest diffraction resolution.

Expression and purification of authentic primate TRIM5a and TRIMCyp
proteins
Recombinant owl monkey TRIMCyp has been purified (Pertel et al., 2011), but TRIM5a proteins are

more challenging to purify because these proteins tend to self-assemble, both in cells and in vitro.

Hence, previous biochemical and structural studies of TRIM5a proteins have been performed with

impure proteins, protein fragments, or non-native chimeric constructs (Biris et al., 2012;

Goldstone et al., 2014; Kar et al., 2008; Langelier et al., 2008; Sanchez et al., 2014; Yang et al.,

2012; Ganser-Pornillos et al., 2011). To overcome this limitation, we tested a variety of different

expression and purification conditions, with the goal of developing a general method for preparing

milligram quantities of authentic, full-length primate TRIM5a and TRIMCyp proteins.

The strategy that was ultimately successful entailed expressing TRIM5 proteins in insect cells

using a baculoviral expression system. As described in greater detail in the Materials and methods,

expressed TRIM5 proteins formed cytoplasmic bodies that could be solubilized by lysing the cells in

a low ionic strength, alkali buffer that contained the non-ionic detergent Triton X-100, as well as a

non-detergent small molecule, sulfobetaine-256 (NDSB-256) that has previously been shown to

inhibit protein aggregation (Sainsbury et al., 2008; Vuillard et al., 1995). Once solubilized, primate

TRIM5 proteins typically remained dimeric and soluble under low salt, alkaline conditions in the

absence of Triton X-100 and NDSB-256, even at concentrations greater than 1 mg/ml. The proteins

could therefore be purified, provided they were maintained at high pH, low salt and/or low protein

concentrations.

Our stepwise protein purification protocol is illustrated for rhesus TRIM5a in Figure 2A. Briefly,

various N-terminal OneSTrEP-FLAG- (OSF-) or C-terminal FLAG-OneSTrEP- (FOS-) tagged TRIM5

proteins were initially purified using Strep-Tactin affinity chromatography, the affinity tag was

removed by HRV14-3C protease treatment, and the proteins were then purified to homogeneity by

anion exchange and gel filtration chromatography. Analogous approaches were used to express and

purify wild type and mutant TRIM5a proteins from rhesus macaques (Macaca mulatta, here
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Figure 2. Purification and characterization of recombinant TRIM5 proteins. (A) Coomassie-stained SDS-PAGE showing the stepwise purification of

rhesus TRIM5a (TRIM5arh). Samples correspond to: soluble lysate from control SF9 cells (Uninfected, lane 1); soluble lysate from SF9 cells expressing

Figure 2 continued on next page
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abbreviated TRIM5arh), African green monkeys (Chlorocebus pygerythrus, TRIM5aAGMpyg), chimpan-

zees (Pan troglodytes, TRIM5acpz), humans (Homo sapiens, TRIM5ahu), and the TRIMCyp protein

from owl monkeys (Aotus trivirgatus, TRIMCyp). Yields ranged between 1.3 and 9.6 mg/L of insect

cell cultures, and all of the proteins eluted with similar retention times during the final gel filtration

chromatography step, indicating that they were all dimers of similar shape. All of the proteins could

be purified to >95% purity (Figure 2B) with the exception of TRIMCyp, where our preparations also

contained breakdown contaminants that mapped to proteolytic cleavage at residues Lys283 and

Gln287 (not shown). These breakdown contaminants were eliminated by creating a mutant construct

that expressed TRIMCypK283D,Q287D (Figure 2B, lane 4). These mutations are not expected to affect

functionally relevant properties of the protein because TRIMCypK283D,Q287D retains potent HIV-1

restriction activity (Figure 2—figure supplement 1).

Conservation of hexagonal TRIM5 protein assembly
To determine whether the ability to assemble into hexagonal nets is a conserved property of authen-

tic TRIM5 proteins, we screened for conditions that promoted assembly of different primate TRIM5

proteins, using negative stain EM imaging to assay assembly states. These screens identified condi-

tions under which two of the TRIM5 proteins, TRIM5aAGMpyg (Figure 2C) and TRIMCyp (Figure 2D)

spontaneously formed 2D hexagonal assemblies that were similar in appearance to those formed by

TRIM5-21R (Ganser-Pornillos et al., 2011). Assembly efficiencies varied, however, as TRIM5aAGMpyg

assembled very efficiently under the same conditions as TRIM5-21R, whereas TRIMCyp assembled

inefficiently and required additional precipitants (see Materials and methods). Negatively stained 2D

crystals of TRIM5aAGMpyg and TRIMCyp were imaged and processed to generate Fourier-filtered 2D

projection reconstructions (Figure 2C,D; bottom). Both TRIM5 proteins formed lattices comprising

open hexameric rings that were similar in appearance and size to the TRIM5-21R rings, demonstrat-

ing that diverse TRIM5 proteins from different primates that share 73% pairwise identity across their

TRIM domains share the ability to assemble into analogous hexagonal nets.

Templated hexagonal TRIM5 protein assembly on HIV-1 CA surfaces
The pattern recognition model for TRIM5 restriction predicts that binding to the surface of the viral

capsid promotes hexagonal TRIM5 assembly. We therefore tested whether hexagonal 2D crystals of

HIV-1 CA, which mimic the capsid surface, could promote the assembly of three different restricting

TRIM5 proteins; TRIM5arh, TRIMCypK283D,Q287D, and TRIM5ahu,R332P, and two different non-restrict-

ing TRIM5 proteins; wild type TRIM5ahu and TRIM5acpz (Hatziioannou et al., 2004; Nisole et al.,

2004; Sayah et al., 2004; Song et al., 2005b; Stremlau et al., 2004; 2005; Yap et al., 2005). To

test for templated assembly of TRIM5 proteins, soluble dimeric proteins were incubated together

with preassembled 2D CA crystals under solution conditions that were sufficiently stringent to pre-

vent untemplated assembly. TRIM5aAGMpyg was not used in these studies because it assembled very

robustly even in the absence of a template.

Figure 2 continued

OSF-TRIM5arh (Infected, lane 2); Strep-Tactin affinity-purified OSF-TRIM5arh (Affinity, lane 3); TRIM5arh after removal of the OSF tag by HRV14-3C

protease treatment (Tag Cleavage, lane 4); dimeric TRIM5arh purified by Q anion exchange chromatography (Anion Exchange, lane 5); dimeric

TRIM5arh purified by Superdex 200 gel filtration chromatography (Gel Filtration, lane 6). (B) Coomassie-stained SDS-PAGE showing 1.5 mg of purified

rhesus, African green monkey pygerythrus (AGMpyg), chimpanzee TRIM5a, proteolysis-resistant owl monkey TRIMCypK283D,Q287D, human TRIM5a, and

HIV-1-restricting human TRIM5aR332P. (C,D) TRIM5 hexagonal assembly is a conserved property of primate TRIM5 proteins. Negatively stained EM

image of hexagonal arrays formed by (C) TRIM5aAGMpyg and (D) TRIMCyp. Computed Fourier transforms (top right insets) show clear hexagonal order

and filtered projection density maps of 2-dimensional crystals (bottom left insets) also reveal hexagonal rings and density distributions reminiscent of

TRIM5-21R lattices (Ganser-Pornillos et al., 2011). The unit cell parameters are a = 345 Å, b = 345 Å, g = 120˚ (TRIM5aAGMpyg); and a = 345 Å, b = 344

Å, g = 119˚ (TRIMCyp). Note that the TRIMCyp samples contained a mixture of full-length TRIMCyp and fragments that were proteolyzed to the

C-terminus of residues K283 or Q287 (see Results and Materials and methods for details). The relatively thinner two fold density in the TRIMCyp

projection map could either reflect low crystal occupancy of the CypA domain (due to proteolysis) or inherently flexible CypA domains in TRIMCyp as

has been proposed by (Goldstone et al., 2014).

DOI: 10.7554/eLife.16269.004

The following figure supplement is available for figure 2:

Figure supplement 1. HIV-1 CA restriction activity of different TRIM5 alleles.

DOI: 10.7554/eLife.16269.005
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As shown in Figure 3, the three restricting TRIM5 proteins assembled into visible hexagonal nets

on the surfaces of preformed HIV-1 CA crystals, whereas templated assembly was not observed for

either one of the non-restricting TRIM5 proteins (Figure 3C and data not shown). Templated

Figure 3. Assembly of restricting TRIM5 proteins on 2D crystals of HIV-1 CA. Negative stain EM images of CA 2D crystals decorated with (A) TRIM5arh,

(B) TRIMCypK283D,Q287D, (C) TRIM5ahu (non-restricting allele), (D) TRIM5ahu,R332P (restricting mutant). Scale bars are 100 nm. Computed Fourier

transforms (insets) and indexing (second insets) show the first and second order reflections of two CA lattices and their unit cell parameters (red and

blue) as well as diffraction spots (A, B) or rings (D) corresponding to the first order reflections of the TRIM5 lattices (green).

DOI: 10.7554/eLife.16269.006
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assembly therefore correlated well with restriction activity, emphasizing the coupling of CA binding

and TRIM5 lattice assembly. Computed Fourier transforms of the images of decorated crystals (Fig-

ure 3, insets) revealed well-defined first- and second-order reflections from the smaller underlying

CA lattice (red and blue), as well as more diffuse peaks (TRIM5arh and TRIMCypK283D,Q287D, green)

or a powder diffraction ring (TRIM5ahu,R332P) corresponding to the first-order reflections from the

hexagonal TRIM5 lattices. Thus, all three restricting TRIM5 proteins bound the CA surfaces and

assembled into hexagonal nets that were clearly visible, but lacked extensive crystalline order.

TRIM5 binding to helical HIV-1 CA tubes
The helical tubes formed by pure recombinant HIV-1 CA provide another regularized model for the

curved, symmetric arrays of CA hexagons on conical viral capsid surfaces (Campbell and Vogt,

1995; Li et al., 2000). We employed a sucrose co-sedimentation assay to test whether the restrict-

ing TRIM5aAGMpyg and TRIMCypK283D,Q287D proteins bound disulfide-crosslinked helical tubes

formed by a mutant HIV-1 CA protein that assembled into discrete helical tubes stabilized by intra-

hexamer disulfide crosslinks (CAA14C,E45C,A92E) (Byeon et al., 2009; Ganser-Pornillos et al., 2011;

Langelier et al., 2008; Li et al., 2000; Pornillos et al., 2009; 2010; Zhao et al., 2011). Both

TRIM5aAGMpyg and TRIMCypK283D,Q287D bound the CA tubes, as judged by their co-sedimentation

through the sucrose cushion when the CA tubes were present, but not when they were absent (com-

pare the ’pellet’ fractions in lanes 1 vs. 2 and lanes 5 vs. 6 in Figure 4—figure supplement 1A).

Binding was specific because TRIM5aAGMpyg did not co-sediment with CA tubes when the SPRY

domain was removed (compare lanes 2 vs. 4) and because TRIMCypK283D,Q287D did not co-sediment

with CA tubes in the presence of cyclosporine A, which competitively inhibits the CypA-CA interac-

tion (compare lanes 6 vs. 7). Thus, pure recombinant TRIM5 proteins bind the hexagonal lattices of

both helical CA tubes and 2D CA crystals.

Negative stain and deep-etch electron microscopy were used to image the TRIM5-decorated

HIV-1 CA tubes. Four restricting TRIM5 proteins, TRIM5aAGMpyg, TRIMCypK283D,Q287D, TRIM5arh,

and TRIM5ahu,R332P, formed thin ring-like decorations on the surfaces of CA tubes (Figure 4—figure

supplement 1B). The TRIM5 decorations typically appeared as light, string-like nets against the

darker underlying CA tubes when the assemblies were stained with either uranyl acetate (UA) or

phosphotungstate (PTA). Equivalent decorations were not observed for control CA tubes alone or

for CA tubes plus TRIM5ahu, which does not restrict HIV-1. TRIM5 decoration of CA tubes therefore

correlated with restriction activity.

Deep-etch EM images often exhibit even greater contrast than negative stain transmission EM

images, and this effect was evident in deep-etch images of undecorated HIV-1 CA tubes, where

rows of individual CA hexamers were readily visible (Figure 4A, upper panel). Strings and rings of

TRIM5aAGMpyg were often readily visible on the decorated CA tube surfaces, and networks of rings

were sometimes observable (Figure 4A, lower panel). Hence, TRIM5 proteins can form hexagonal

nets on the surfaces of helical HIV-1 CA tubes.

The efficiency of TRIM5 assembly on disulfide-crosslinked CA tubes was relatively low, which may

explain why the decorations were not noted in previous studies. We therefore screened additional

assembly conditions to determine the source of this variability. These experiments revealed that co-

incubation of native CA protein with TRIM5a under low ionic strength conditions produced CA tubes

that were extensively decorated with TRIM5a. Co-assembly was reproducible, and both tagged and

untagged TRIM5-21R, TRIM5AGMpyg, and TRIM5rh proteins formed ring-like decorations on CA tube

surfaces at a variety of different CA/TRIM5 molar ratios (Figure 4B, data not shown, and

Wagner et al., 2016). The TRIM5aAGMpyg inter-ring spacing distribution on the tubes centered at

30–35 nm, as was also the case for TRIM5aAGMpyg assemblies on pre-formed disulfide-crosslinked

CA tubes (Figure 4C). In all cases, the rings were irregular and their spacings varied between 15 and

55 nm. Electron cryotomography (ECT) analyses similarly revealed extensive networks of hexagonal

nets coating individual cylinders (Figure 4D and Video 1). As seen for TRIM5-21R 2D crystals, the

hexamer edge lengths measured from three-fold vertices selected from the tomogram were pre-

dominantly ~19 nm, but varied between 15 to 23 nm. Similarly, the hexamer vertex angles averaged

~120˚, but ranged from 80˚ to 160˚ (Figure 4E). The flexibility of the TRIM5 assembly may reflect

flexing of the coiled-coil domains and/or the hinge between B-box 2 and coiled-coil domains

(Wagner et al., 2016). In summary, TRIM5 proteins consistently formed hexagonal arrays on curved

HIV-1 CA lattices, and the TRIM5 lattice was more extensive when the two proteins co-assembled
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Figure 4. Assembly of TRIM5a proteins on HIV-1 CA tubes. (A) Deep-etch electron micrographs of control hyperstable CA tubes (top) and TRIM5a

decorated CA tubes (bottom) with blow-up views of boxed regions to the right. Scale bar is 50 nm. (B) Negative stain electron micrographs of co-

Figure 4 continued on next page
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together, presumably because the two lattices could template one another and thereby optimize

their interactions.

Generation of hyperstable, disulfide-crosslinked HIV-1 core particles
A central goal of our studies was to analyze TRIM5 binding to authentic viral capsids, both biochemi-

cally and by direct imaging. This goal is technically challenging owing to the inherent instability of

viral core particles. We reasoned that this challenge might be overcome by disulfide-crosslinking the

capsid shell to increase its stability. This strategy was particularly attractive because previous studies

showed that Cys residues substituted at CA positions Ala14 and Glu45 crosslinked efficiently when

CA hexamers were assembled in vitro (Pornillos et al., 2009; 2010). We therefore tested the effect

of introducing these substitutions into authentic HIV-1 capsids.

Normal levels of viral particles were produced from 293T cells that expressed an HIV-1NL4-3DR8.2

proviral expression vector that encoded the mutant CAA14C,E45C protein (not shown). Wild type and

mutant viral cores were isolated by centrifugation of virions through a detergent layer to remove the

outer viral membrane and then directly into a 30–70% sucrose gradient, where viral cores concen-

trated at a density of 1.22–1.27 g/ml (fractions 10–12, highlighted in pink in Figure 5A). As reported

previously (Forshey et al., 2002; Kotov et al., 1999), wild type cores could also be isolated using

this procedure (see Figure 5B). However, recovered core yields were consistently modest in our

hands (0.2 ± 0.1% based upon total virion CA), apparently because most of the CA molecules disso-

ciated from the core and migrated to the top of the gradient during purification (Figure 5A, left

panel). In contrast, nearly all of the CAA14C,E45C protein migrated toward the bottom of the gradient

when cores were isolated from mutant virions (Figure 5A, right panel). Much of this CA protein was

present within small incomplete, broken, or spherical assemblies that concentrated at densities of

1.18–1.21 g/ml (gradient fractions 6–9,

Figure 5A, right panel and see Figure 5—figure

supplement 1). These non-native assemblies

probably arose from spurious crosslinking of CA

hexamers in the free intraviral pool of CA mole-

cules that are excluded from the mature HIV-1

capsid (Benjamin et al., 2005; Briggs et al.,

2004; Lanman et al., 2004; Monroe et al.,

2010). Nevertheless, a substantial fraction of the

CA protein also concentrated at the density

expected for native core particles (fractions 10–

12, highlighted in pink in Figure 5A, right

panel). These ’hyperstable’ cores were reproduc-

ibly recovered in higher yields (0.8 ± 1%) than

wild type cores (0.2 ± 0.1%), and their morpholo-

gies were similar to wild type cores (Figure 5B,

right panel). Consistent with the design, nearly

Figure 4 continued

assembled TRIM5aAGMpyg-coated CA tubes (top). Scale bar is 100 nm. Expanded views of negatively stained CA assembly in the absence (bottom left)

or presence of TRIM5aAGMpyg proteins (bottom right). TRIM5a formed ring-like decorations (yellow arrows) on the tube surface and displayed

protrusions along the edge of the tube (red arrows). Similar decorations were not observed in the control case. The protrusions were regularly spaced

and we speculate that they are either well-ordered coiled-coil arms from adjacent hexagons wrapping around the CA tubes or possibly ordered RING

domains projecting outward from the lattice. Scale bars are 50 nm. (C) Histograms showing the distributions of measured inter-ring spacings in the

TRIM5aAGMpyg–decorated tubes (blue bars, n = 170) and in co-assemblies (red bars, n = 164), and of inter-protrusion spacings in co-assemblies (green

bars, n = 166). The most abundant inter-ring spacing (30–35 nm) is consistent with the spacing of TRIM5-21R 2D crystals, indicating similar structures.

(D) Electron cryotomography (ECT) reveals that TRIM5a forms hexagonal nets on the surface of CA tube. Hexagon-like rings are marked by magenta

arrows. Scale bar is 80 nm. (E) Histograms showing the distributions of arm lengths (n = 35) and angles (n = 42) measured from three-fold vertices in

ECT.

DOI: 10.7554/eLife.16269.007

The following figure supplement is available for figure 4:

Figure supplement 1. TRIM5 protein binding to hyperstable HIV-1 CA tubes.

DOI: 10.7554/eLife.16269.008

Video 1. HIV-1 CA tube co-assembled with TRIM5a

and crosslinked. ECT of HIV-1 CA tube (yellow)

decorated with TRIM5a (blue). Video corresponds to

Figure 4D.

DOI: 10.7554/eLife.16269.009
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Figure 5. Purification of wild type and hyperstable HIV-1 cores. (A) Sucrose-gradient purification profiles of wild type (left) and hyperstable A14C/E45C

(right) HIV-1 cores (Kotov et al., 1999). (top) a-CA western blots of sucrose gradient fractions, (bottom) graph showing quantified CA levels

Figure 5 continued on next page
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all of the CA molecules within these fractions were crosslinked within stable hexamers, as analyzed

by non-reducing SDS-PAGE and western blotting (Figure 5C). These experiments indicate that disul-

fide crosslinking occurs spontaneously in otherwise native and untreated HIV-1 capsids, and that the

crosslinks stabilize the capsids without introducing any major morphological defects.

Isolation of HIV-1 core particles for cryoEM imaging
Hyperstable HIV-1 cores purified on sucrose gradients were not optimal for imaging studies because

they aggregated and co-sedimented with vesicles and other impurities. To produce purer cores, we

designed an alternative core affinity purification method that exploited the interaction between

cyclophilin A (CypA) and HIV-1 CA (outlined in Figure 5—figure supplement 1D) (Franke et al.,

1994; Gamble et al., 1996; Luban et al., 1993; Thali et al., 1994). Viral membranes were stripped

by a brief Triton X-100 treatment and the liberated cores were then captured on magnetic Strep-

Tactin beads derivatized with OSF-CypA. The immobilized cores were washed rigorously and then

eluted with the small molecule cyclosporine A (CsA), which competitively inhibits the CypA-CA inter-

action and binds CypA ~700-fold more tightly than does CA (Figure 5D and Figure 5—figure sup-

plement 1E) (Braaten et al., 1996; Franke and Luban, 1996; Gamble et al., 1996; Wear et al.,

2005; Yoo et al., 1997). This method increased core yields by an additional four fold (3 ± 2% core

recovery) and increased their purity (compare Figure 5D to Figure 5B, right panel). The method

also reduced the fraction of broken cores, possibly because they were less stable and therefore

removed during the extensive wash steps and/or because they bound less avidly to the matrix. To

reduce core clustering, we introduced the CA A92E substitution within the exposed loop of HIV-1

CA. This mutation does not affect TRIM5a restriction (Li et al., 2006), and was previously shown to

reduce the clustering of helical CA tubes, presumably by reducing overall surface hydrophobicity

(Ganser-Pornillos et al., 2004; Li et al., 2000; Zhao et al., 2011). As shown in Figure 5E, the substi-

tution also reduced the clustering of viral cores (compare Figures 5D and E), and did so without

altering core morphology or reducing core yields (3 ± 1% core recovery).

In summary, dispersed hyperstable CAA14C,E45C,A92E cores could be purified by affinity chroma-

tography in high yields. The purified cores contained the expected viral proteins as analyzed by

SDS-PAGE with silver staining (Figure 5—figure supplement 1F), were hyperstable and fully disul-

fide crosslinked (Figure 5C), exhibited normal capsid morphologies (compare Figure 5E to

Figure 5B), and spread diffusely on EM grids (Figure 5E).

TRIM5 binding to HIV-1 cores
The susceptibility of different retroviruses to restriction by different TRIM5 variants can vary dramati-

cally and appears to be determined largely at the level of capsid recognition (Li et al., 2006;

Ohkura et al., 2006; Perez-Caballero et al., 2005; Sebastian and Luban, 2005; Song et al.,

2005a; Stremlau et al., 2004; 2005; 2006). Consistent with previous reports (Sayah et al., 2004;

Song et al., 2005b; Stremlau et al., 2004), we found that TRIM5 proteins restricted the transduc-

tion of HeLa cells with an HIV-1 reporter vector, and the strength of restriction followed the order:

TRIMCyp and TRIMCypK283D,Q287D>TRIM5arh>TRIM5aAGMpyg, with no restriction observed for

Figure 5 continued

(histogram) and solution density (blue line; g/ml) in each gradient fraction. The higher stability of crosslinked HIV-1 cores can be seen by comparing the

amounts of wild type and CAA14C/E45C in fractions 10–12 (pink regions). Core-containing fractions were pooled, washed, and concentrated for the

analyses in B and C. The experiment was repeated at least three times with similar results. (B) Negative stain electron micrographs of wild type (left)

and CAA14C/E45C (right) cores. Pie charts (inset) of observed morphologies of wild type (left; n = 143 cores) and CAA14C/E45C cores (right; n = 353 cores)

reveal that the introduced Cys crosslinks do not alter HIV-1 core morphologies significantly. (C) Non-reducing a-CA western blots showing that CAA14C/

E45C cores are crosslinked (compare % hexamer as a function of [b-ME]). Asterisks indicate unprocessed Gag fragments (p55 and p41) that co-purifed

with mature cores during purification. (D, E) Negative stain electron micrographs showing the relative abundance and purity of cores purified by the

affinity method. (D) CAA14C/E45C crosslinked cores and (E) CAA14C/E45C/A92E crosslinked cores. Note that the additional A92E mutation reduced core

clustering. Scale bar is 100 nm.

DOI: 10.7554/eLife.16269.010

The following figure supplement is available for figure 5:

Figure supplement 1. Hyperstable core particle characterization and purification.

DOI: 10.7554/eLife.16269.011
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TRIM5acpz or TRIM5ahu (Figure 2—figure supplement 1). A sucrose cushion co-sedimentation assay

was again used to test whether pure recombinant TRIM5a proteins bound directly to hyperstable

HIV-1 cores, and whether core binding correlated with restriction activity. These experiments were

performed with two proteins that restrict HIV-1, TRIM5aAGMpyg and TRIM5arh, and one that does

not, TRIM5acpz.

As shown in Figure 6A, the two restricting TRIM5aAGMpyg and TRIM5arh proteins both co-pel-

leted with hyperstable HIV-1 cores and did not pellet in the absence of cores (compare lanes 1 vs. 2

and lanes 3 vs. 4). In contrast, the non-restricting TRIM5acpz protein did not bind cores under the

same conditions (compare lanes 5 vs. 6). These core binding experiments were performed in the

presence of excess TRIM5a proteins, and the approximate stoichiometry of the pelleted core-

TRIM5aAGMpyg complexes was estimated by comparing the levels of CA and TRIM5aAGMpyg to stan-

dard curves of known protein concentrations. The measured TRIM5aAGMpyg:CA ratio in these experi-

ments was 1:7 ± 2 (n = 4). Based upon their relative sizes, we estimate that each TRIM5 ring will

cover ~14 CA hexamers (Ganser-Pornillos et al., 2011). On the basis of an idealized binding model

and the known stoichiometries of each ring (CA = 6, TRIM5a = 12), we estimate that a fully saturated

capsid would have a TRIM5:CA ratio of ~1:14. Hence, two different restricting TRIM5a proteins can

bind directly to hyperstable HIV-1 cores at near saturating levels in vitro, whereas the non-restricting

TRIM5acpz protein does not bind cores. Consistent with the solution binding experiments, negative

stain electron microscopic images again revealed thin ring-like assemblies of TRIM5arh proteins on

the capsid surfaces of hyperstable viral cores (Figure 6B, compare the cores in the second and third

rows with the undecorated cores in the first row).

TRIM5 decorated HIV-1 cores
Free and TRIM5aAGMpyg-decorated cores were also visualized in three dimensions by ECT (Figure 7

and Figure 7—figure supplement 1). Free hyperstable cores could be spherical, cylindrical, or coni-

cal, and general size distributions and lattice features were similar to native HIV-1 cores (Figure 7—

figure supplement 1). Holes in the tips of some conical cores were also observed, supporting previ-

ous results suggesting that cores are frequently unclosed (Yu et al., 2013).

Samples in which cores were incubated with TRIM5aAGMpyg typically exhibited networks of densi-

ties at the air/water interface. These networks exhibited three-fold vertices in the plane of the inter-

face that were similar to 2D hexagonal TRIM5a lattices but did not exhibit diffraction or crystalline

order (Video 2). Approximately 12% of cores imaged were also decorated on their outer capsid sur-

faces with TRIM5aAGMpyg densities. Multiple extended density ’arms’ approximately 19 nm in length

were seen arranged in a roughly hexagonal pattern (Figure 7A, and Video 2).

The prevalence of TRIM5aAGMpyg at the air/water interface and relative paucity of TRIM5a-deco-

rated cores suggested that previously core-bound TRIM5a was being lost to the air/water interface

during plunge-freezing (Video 3). To reduce this problem, we crosslinked the core-TRIM5a com-

plexes with ethylene glycol bis(sulfosuccinimidylsuccinate) (Sulfo-EGS) prior to plunge freezing. Even

after crosslinking, a substantial amount of TRIM5a was still seen at the air/water interface, but now

the majority of cores were decorated with TRIM5aAGMpyg. Analysis of the volume surrounding these

cores revealed broken, but extensive TRIM5a hexagonal nets, which in some cases enveloped the

entire capsid (Figure 7B, Figure 7—figure supplement 2, and Videos 4). TRIM5a nets on bona fide

cores were irregular, but exhibited a similar distribution of hexamer edge lengths (20 ± 2 nm,

n = 51) and vertex angles (120 ± 2˚, n = 68) as CA/TRIM5 ’co-assemblies’ (Figure 7—figure supple-

ment 3). In some cases, TRIM5a densities with a length of ~38 nm were observed on the capsid sur-

face (data not shown). These longer densities might occur through the association of two sets of

TRIM5a dimers via dimeric rather than trimeric B-box 2 domain interactions (Wagner et al., 2016).

Despite these irregularities, we were able to perform coarse, rigid body fitting of the crystal struc-

tures of B-box 2 trimers and coiled-coil dimers into 3D density maps. As shown in Figure 7C, each

edge was occupied with a TRIM5a coiled-coil dimer and the three-fold densities were occupied by

three B-box 2 domains. The fitting revealed that TRIM5 hexagonal lattices are in good agreement

with the crystal structures in dimensions and angles. Overall, our results indicate that TRIM5 proteins

form flexible hexagonal nets on the capsid surface with their domain positions schematically shown

in Figure 7D.
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Figure 6. TRIM5a proteins bind directly to HIV-1 cores. (A) Sucrose cushion co-sedimentation binding assay for TRIM5a-HIV-1 core interactions.

TRIM5a proteins were incubated in the absence of cores (lanes 1, 3, 5) or in the presence of hyperstable HIV-1 cores (lanes 2, 4, 6), and the mixtures

Figure 6 continued on next page
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Discussion
Our studies further support the prevailing models that TRIM5 restriction factors bind directly to the

surfaces of incoming retroviral capsids and that restriction susceptibility is dictated at the level of

capsid recognition (Li et al., 2006; Ohkura et al., 2006; Perez-Caballero et al., 2005;

Sebastian and Luban, 2005; Song et al., 2005a; Stremlau et al., 2004; 2005; 2006). In addition,

we find that the ability to assemble into hexagonal nets comprising open, six-sided rings is a con-

served feature of multiple different primate TRIM5 proteins. Our EM analyses, together with recent

crystal structures of fragments of non-assembling TRIM5 proteins that span the core coiled-coil and

L2 linker regions (Goldstone et al., 2014; Sanchez et al., 2014), indicate that each ring edge is

formed by a TRIM5 dimer that displays two SPRY (or CypA) recognition domains at its center. Most

importantly, we find that capsid binding and TRIM5 assembly are coupled processes that cooperate

to promote the recognition of pleomorphic retroviral cores with high affinity and specificity.

Reagent development
Through the course of our studies we developed and characterized two new sets of reagents for

studying retroviral replication and restriction: hyperstable, disulfide-crosslinked HIV-1 capsids and

pure recombinant primate TRIM5 proteins. The generation of hyperstable capsids was enabled by

previous studies showing that Cys residues at CA positions 14 and 45 form disulfide bonds efficiently

in vitro when these residues are closely juxtaposed within the CA hexamer (Pornillos et al., 2009;

2010). Our experiments demonstrate that these disulfides also form efficiently in the context of the

intact HIV-1 capsid. A similar disulfide crosslinking strategy was also used to link CA trimers at cyste-

ine positions 207 and 216 across the local three-fold axes of the HIV-1 capsid (Byeon et al., 2009;

Zhao et al., 2011). We have compared these two different systems, as well as an alternative strategy

in which CA hexamers were crosslinked by disulfide bonds between Cys residues at CA positions 42

and 54 (Pornillos et al., 2010). Disulfide bonds form readily within viral capsids in all three cases

(Byeon et al., 2009; Pornillos et al., 2009; 2010; Zhao et al., 2011) (and data not shown), and we

anticipate that the different crosslinking strategies could have distinct advantages depending upon

the application. For example, we have confirmed the report that HIV-1 cores with trimerized CA pro-

teins retain modest infectivity (Byeon et al., 2009), whereas infectivity is almost completely abol-

ished when cores are crosslinked at either site in the CA hexamer. We also find, however, that viral

core yields and stabilities are greater for the two hexamer crosslinking systems, and are highest for

the Cys14/Cys45 system described here. Thus, these hyperstable capsids should be optimal for ana-

lyzing the binding of a series of proteins and drugs that have recently been described, including the

proteins CPSF6 (Bhattacharya et al., 2014; Lee et al., 2010; Price et al., 2014), Nup153

(Bhattacharya et al., 2014; Di Nunzio et al., 2013; Matreyek et al., 2013; Price et al., 2014), and

Nup358 (Bichel et al., 2013; Meehan et al., 2014; Schaller et al., 2011), and the inhibitors PF-74

(Bhattacharya et al., 2014; Blair et al., 2010; Fricke et al., 2013; Price et al., 2014) and BI-1 and

BI-2 (Fricke et al., 2014; Lamorte et al., 2013; Price et al., 2014). Hyperstable capsids may also

represent a useful starting point for the development of in vitro viral replication assays, particularly if

the capsid disulfides can be reduced without inactivating the internal reverse transcriptase and inte-

grase enzymes.

The development of systems for producing milligram quantities of pure recombinant primate

TRIM5 proteins should similarly facilitate studies of restriction by advancing methods for protein

detection and enabling new mechanistic and structural analyses. For example, our recombinant

TRIM5arh proteins have already been used successfully as antigens to generate monoclonal antibod-

ies that can detect endogenous TRIM5a proteins (NIH AIDS Reagent Program and (Imam et al.,

2016). Moreover, although structural studies of TRIM5 protein domains and fragments have made

Figure 6 continued

were subjected to centrifugation through the sucrose cushion. Pelletable cores and bound TRIM5a (Pellet, 30% of total) and unbound TRIM5a

(Supernatant, 2% of total) were analyzed by western blotting for TRIM5a and CA proteins. The input levels of both proteins are also shown for reference

(Input, 2% of total). Representative results from one of three independent experiments are shown. (B) Representative electron micrographs of control

HIV-1 cores (first row), and cores decorated with TRIM5arh (second row) and negatively stained with uranyl acetate. TRIM5a decorations were

highlighted in yellow (third row). Scale bars are 50 nm.

DOI: 10.7554/eLife.16269.012
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valuable contributions to our understanding of

TRIM5 structure and enzymology, there are a

number of indications that the different

domains work together as an integrated

machine (Ganser-Pornillos et al., 2011;

Goldstone et al., 2014; Li et al., 2013; Li and

Sodroski, 2008; Reymond et al., 2001;

Sanchez et al., 2014). It will therefore also be

important to study intact TRIM5 proteins, par-

ticularly to determine how capsid recognition

is coupled to ubiquitin signaling

(Fletcher et al., 2015; Pertel et al., 2011;

Yudina et al., 2015).

TRIM5 recognition of retroviral
capsids and its implications for
restriction
Antiviral innate immune factors that function

by recognizing retroviral capsids must over-

come considerable sequence and structural

variability. Primate TRIM5 proteins accomplish

this task by coupling weak recognition of con-

served capsid epitopes with hexagonal net

assembly, thereby amplifying intrinsically weak

binding affinities through avidity effects

(Ganser-Pornillos et al., 2011; Price et al.,

2009). Our studies confirm that hexagonal net

assembly is a conserved property, but also

reveal that the TRIM5 hexagonal nets are not

highly regular. The lack of strict regularity in

the TRIM5 net may be required to adapt to the

lack of regularity in the opposing retroviral

capsids, where every CA hexagon occupies a

slightly different local environment and where

pentagons and other kinds of lattice ’defects’

are also prevalent (Byeon et al., 2009;

Ganser-Pornillos et al., 2011; Gres et al.,

2015; Hatziioannou et al., 2004; Obal et al.,

2015; Pornillos et al., 2011; Yu et al., 2013;

Zhao et al., 2013).

Consistent with a lattice assembly model,

imaging studies have provided direct evidence

that multiple TRIM5 molecules can bind contin-

uously to incoming capsids (Campbell et al.,

2008; Danielson et al., 2012; Lukic et al.,

2011). The stoichiometry of TRIM5-capsid

interactions within cells is not yet known, but

we find that TRIM5 molecules can cover most

of the capsid surface in vitro. A patch of just 4–

6 TRIM5 rings covers about half of the capsid

surface (see Figure 7), however, and would

present ~40 recognition domains for avid cap-

sid binding. Thus, the entire capsid probably

does not need to be completely enveloped

within a surrounding TRIM5 lattice for restric-

tion to occur. Indeed, CA mixing studies have

Figure 7. ECT reveals that TRIM5a forms flexible

hexagonal nets on hyperstable HIV-1 cores. (A)

Figure 7 continued on next page
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shown that efficient TRIM5 restriction can

occur even when only 25% of the capsid subu-

nits are competent for TRIM5 binding

(Shi et al., 2013).

TRIM5-mediated restriction appears to pro-

ceed via a multi-step pathway in which capsid

recognition is followed by steps that lead to

capsid dissociation and inhibition of reverse

transcription (Pertel et al., 2011;

Stremlau et al., 2006). In cells, the later pro-

cesses can be decoupled from the initial bind-

ing event by treatment with proteasome

inhibitors or by mutations in the RING domain

(Anderson et al., 2006; Fletcher et al., 2015;

Kutluay et al., 2013; Roa et al., 2012;

Wu et al., 2006). These treatments do not

block TRIM5 binding, but presumably do inter-

fere with ubiquitin-mediated signaling events.

Thus, although TRIM5 binding can destabilize

helical CA tubes in vitro (Black and Aiken,

2010; Zhao et al., 2011), capsid dissociation

and inhibition of reverse transcription appear

to require ubiquitin-dependent signaling in

cells (Campbell et al., 2015; Fletcher et al., 2015). Capsid binding can activate TRIM5 ubiquitin E3

ligase activity in vitro (Pertel et al., 2011), and the structure of the hexagonal TRIM5 lattice suggests

how this could occur. Recent structural studies of the RING domains from TRIM37 (PDB ID: 3LRQ)

and TRIM5a (PDB ID: 4TKP) (Yudina et al., 2015) have demonstrated that the RING domains function

as dimers. However, the antiparallel structure of the TRIM5 coiled-coil precludes close contact of the

two RING domains within a single TRIM5 dimer (Goldstone et al., 2014; Sanchez et al., 2014). Thus,

RING domains from multiple different TRIM5 dimers apparently must come together to transfer ubiq-

uitin. Our lattice structures reveal such associations of three TRIM5 RING domains at local three-fold

axes in the hexagonal net (Figure 7D). This suggests that two of the RING domains may join to form

an active dimer and that the third ’orphan’ RING domain could then be used as a substrate for autou-

biquitylation. This idea is supported by 1) recent studies that demonstrate that autoubiquitylation

occurs in vitro and in cells and that Lys45 and Lys50 within the RING domain of rhesus TRIM5a are

preferentially ubiquitylated (Fletcher et al., 2015), and 2) the accompanying structural studies

(Wagner et al., 2016) of a truncated rhesus TRIM5a protein comprising a B-box 2 and the truncated

coiled-coil and L2 linker domains (termed ’mini-TRIM’), which reveal that the B-box 2 domains can

Figure 7 continued

Segmented HIV-1 core (yellow) decorated with TRIM5a

(blue). (B) Segmented HIV-1 core decorated with

TRIM5a and subjected to mild sulfo-EGS crosslinking

prior to vitrification. (C) TRIM5a structural model

docked into the cryoEM volume of the tomogram

shown in (B). (D) Idealized schematic model of an HIV-1

fullerene cone bound by a TRIM5a hexagonal net.

Domains and linkers of TRIM5a are colored as

described in Figure 1A. Scale bars are 35 nm.

DOI: 10.7554/eLife.16269.013

The following figure supplements are available for

figure 7:

Figure supplement 1. ECT of hyperstable HIV-1 cores.

DOI: 10.7554/eLife.16269.014

Figure supplement 2. ECT of a HIV-1 hyperstable core

in complex with TRIM5a.

DOI: 10.7554/eLife.16269.015

Figure supplement 3. Characterization of TRIM5

hexagonal nets on HIV-1 cores.

DOI: 10.7554/eLife.16269.016

Video 2. HIV-1 core decorated with TRIM5a (without

crosslinking). ECT of HIV-1 core (yellow) decorated with

TRIM5a (blue). Video corresponds to Figure 7A.

DOI: 10.7554/eLife.16269.017

Video 3. TRIM5a-HIV-1 cores associated with the air/

water interface. Representative ECT showing the

interaction of TRIM5a-HIV-1 cores with the air/water

interface. Video corresponds to Figure 7.

DOI: 10.7554/eLife.16269.018
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mediate trimerization. Hence, in addition to

enhancing binding avidity, formation of hexago-

nal TRIM5 lattices may also activate the ubiquitin

signaling cascade that ultimately results in capsid

dissociation and inhibition of reverse

transcription.

Materials and methods

Plasmids, cells and antibodies
HEK 293T and HeLa cells were grown at 37˚C
with 5% CO2 in DMEM media (Gibco) supple-

mented with 10% heat-inactivated fetal calf

serum and 2 mM L-glutamine. Plasmid con-

structs for virus production and for expressing

TRIM5, CA, and OSF-CypA in mammalian, insect

and bacterial cells were created by standard

cloning and mutagenesis methods (details avail-

able upon request). The plasmids used in this study are summarized in Supplementary file 1A. All

plasmids have been submitted to the Addgene (https://www.addgene.org/) and DNASU (https://

dnasu.org/DNASU/) public repository.

TRIM5-21R electron cryo-tomography (ECT)
TRIM5-21R and TRIM5-21R

DSPRY proteins were expressed, purified and assembled into 2D crystals as

previously described (Ganser-Pornillos et al., 2011), except that the TRIM5-21R1-300 assembly was

promoted by addition of an equal volume of 0.1 M sodium chloride, 0.1 M bicine, pH 9.0, 20% poly-

ethylene glycol monomethyl ether 5000 to the concentrated protein solution.

To prepare samples for ECT, 3 ml of polymerized lattice was mixed with 10 nm Au fiducials and

applied to a 2/2 holey carbon-coated Cu EM grid (Quantifoil) and transferred with forceps to the envi-

ronment chamber of a Vitrobot Mark III (FEI) maintained at 25˚C and 80% relative humidity. Excess

liquid was manually blotted from the grids on one side before plunging into liquid ethane. Cryo-pre-

served grids were imaged in a 300 kV FEI G2 Polara equipped with a field emission gun and energy

filter (slit width set at 20 eV), and fitted with a K2 Summit direct detector. Tilt-series were collected

over a series of angles ranging from �60˚ to +60˚ using a step size of 1˚; 22,500x magnification (effec-

tive pixel size of raw data is 5 Å), a total dose of 150 e/Å2, and a defocus of -6 mm. UCSF Tomo

(Zheng et al., 2007) was used to collect the tilt series, and 3D reconstructions were carried out using

a weighted back-projection algorithm tracking 10 nm fiducials in IMOD (Kremer et al., 1996). The

pixel size in the final reconstruction was 20 Å.

Subtomogram averages of the TRIM5-21R and TRIM5-21R
DSPRY lattices were generated using

PEET in IMOD (Nicastro et al., 2006). 153 and 75 vertices were selected in the TRIM5-21R and

TRIM5-21R
DSPRY 2D lattices, respectively, and a volume of 60 nm x 60 nm x 20 nm (x,y,z) centered

on the refined positions of the selected vertices was used to generate the averaged volume. To

localize the SPRY domain in the full-length TRIM5-21R lattice, the density values of the averaged lat-

tice volumes were rescaled to reflect a mean value of zero and standard deviation of 10. The vol-

umes were then aligned in Chimera (Pettersen et al., 2004), and the TRIM5-21R
DSPRY density values

were subtracted from the TRIM5-21R volume. The resulting density difference map was contoured

and displayed at 3 sigma above the mean.

An important difference between the TRIM5-21R and TRIM5-21R
DSPRY assemblies is that in the

absence of the SPRY domains, multiple hexagonal lattices stacked on ’top’ of one another close

together, laterally offset by a quarter, half, or three-quarters the distance across a hexagon. Thus in

projections through 3D subtomogram averages, like those shown in the bottom middle panels of

Figure 1C and D, all of these other offset lattices appear, but less prominently than the main lattice.

Due to the special pattern of the offsets (one quarter, half, and three-quarters across) and the hexag-

onal geometry, their projections all intersect at the center of the arms of the main lattice, causing

that position to appear especially dark and large. Furthermore, the four-helix bundle of both TRIM5-

Video 4. HIV-1 core decorated with TRIM5a and

crosslinked. HIV-1 core (yellow) decorated with TRIM5a

(blue) were subjected to crosslinking and imaged by

ECT. Video corresponds to Figure 7B and C.

DOI: 10.7554/eLife.16269.019
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21R and TRIM5-21R
DSPRY also contributed to the observed densities in the center of the hexagon

edges. Figure 1E shows, however, a thin slice through the 3D difference map containing only the

main hexagonal lattice, revealing the position of the SPRY domain without interference from the lat-

tices above and below.

To quantify the variability in the TRIM5-21R hexagonal lattice, the refined positions of each vertex

were used to calculate: 1) the distance between neighboring vertices, and 2) the average angle of

hexamer edges extending from the three-fold vertices. These values were entered into the imodset-

values program in IMOD and a pseudo-colored model was generated to reflect length (colored lines)

and average angles (colored spheres) (Figure 1F).

TRIM5 restriction assays
HEK 293T cells were used to generate lentiviral vectors for transduction of HeLa cells for expression

of TRIM5 proteins with a C-terminal Flag One-STrEP tag. pCMV-DR8.2 (structural

genes) (Naldini et al., 1996), pCMV-VSVG (envelope) (Sandrin et al., 2002; Yee et al., 1994), and

CSII-IDR2 (contains a packaging signal and genes for TRIM5 and DsRed) were co-transfected in 293T

cells. After 3 days, virion-containing media was removed from the cells, passed through a 0.45 mm fil-

ter (Nalgene SFCA syringe filters), layered on top of a 20% sucrose cushion in HS buffer (10 mM

HEPES pH 7.2 and 140 mM NaCl) and spun in an Optima L-90K Ultracentrifuge at 96,281 g (Beckman

SW32 Ti rotor) for 2 hr at 4˚C. Virion-containing pellets were resuspended in HS buffer, aliquoted,

and frozen at -80˚C. Thawed aliquots were titrated on HeLa cells to determine viral titers by monitor-

ing the number of DsRed positive cells using fluorescence-activated cell sorting (FACS).

HeLa cells (1 x 105 cells per well of 6-well plate) were transduced with lentiviral vectors expressing

different TRIM5 proteins at an multiplicity of infection (MOI) of 1. Three days after transduction, cells

were split and reseeded at 5 x 104 cells per well of a 24-well plate and infected with increasing

amounts of HIV-GFP per well. The remaining cells were used for western blot analysis to determine

TRIM5 expression levels. Three days after infection with HIV-GFP, cells were trypsinized, and GFP

and DsRed positive cells were counted using FACS. Only DsRed positive cells (which also expressed

TRIM5) were used for statistical analysis of HIV-GFP restriction.

Expression and purification of native TRIM5 proteins
Recombinant baculoviruses expressing TRIM5 proteins with either N-terminal One-STrEP-FLAG

(OSF) or C-terminal FLAG-One-STrEP (FOS) HRV14-3C protease-cleavable tags were generated

using the Bac-to-Bac baculovirus expression system (Thermo Fisher Scientific). Suspension SF9 insect

cells (2 L at 2 x 106 cells/ml) grown in ESF-921 medium (Expression Systems) were infected with

recombinant baculoviruses at an MOI of 10, and harvested by centrifugation 48 hr later. All purifica-

tion steps were performed at 4˚C. Cell pellets were resuspended in 5 times the pellet volume of lysis

buffer (70 mM N-Cyclohexyl-2-aminoethanesulfonic acid (CHES), 100 mM NDSB-256, 1.5% Triton

X-100, 100 nM ZnCl2, 1 mM Tris(2-carboxyethyl)phosphine (TCEP), 0.7% protease inhibitor cocktail

(v/v, Sigma), 100 U avidin, pH 10.0) and lysed by freeze-thaw and sonication (3 x 30 s on ice; Branson

sonifier 450, 50% duty cycle, 50% output). Cell lysates were clarified by ultracentrifugation at

184,000 g (Beckman Ti 50.2 rotor) for 1 hr. The supernatants were filtered (0.45 mm) and loaded

onto a 5 ml StrepTrap HP column (GE Healthcare) pre-equilibrated in binding buffer (20 mM CHES,

100 nM ZnCl2, 1 mM TCEP, pH 10.0). The column was washed with 20 column volumes (CV) of bind-

ing buffer supplemented with 1 M NaCl and 100 U avidin (VWR), followed by 5 CV of binding buffer.

The protein was eluted in 6 CV binding buffer supplemented with 2.5 mM D-desthiobiotin (Sigma).

The eluate was diluted to 0.3 mg/ml protein in binding buffer to minimize protein loss due to self-

assembly, and dialyzed overnight against 1 L cleavage buffer (25 mM Tris, 1 mM TCEP, pH 8.0) sup-

plemented with ~ 1:100 (by mass, enzyme:substrate) His6-HRV14-3C and His6-Usp2 enzymes to

remove the OSF tag and any linked ubiquitin added during insect cell expression. TRIM5ahu and

TRIMCyp formed soluble/insoluble aggregates at pH 8.0 and were therefore dialyzed against

20 mM CHES, 1 mM TCEP, pH 9.0. Most TRIM5 proteins were sensitive to non-specific internal pro-

teolysis by HRV14-3C protease. We therefore used the minimal amount (which differed between

constructs) required to completely cleave the OSF tag overnight. When cleavage was complete, the

pH of the protein solution was adjusted to 10 by direct addition of 1 M CHES, pH 10.0, to a final

concentration of 100 mM. The sample was applied onto two tandem 5 ml HiTrap Q HP columns (GE
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Healthcare) pre-equilibrated with binding buffer, and eluted with a 12 CV linear NaCl gradient (0–

1 M) in binding buffer. Fractions containing TRIM5 proteins were pooled, dialyzed against 1 L bind-

ing buffer for at least 4 hr, loaded onto a HiLoad 16/600 Superdex 200 gel filtration column (GE

Healthcare) pre-equilibrated with binding buffer, and eluted in 1 CV of binding buffer. Fractions cor-

responding to TRIM5 dimers were pooled and concentrated to 1 mg/ml using a Vivaspin 20 concen-

trator (10,000 MWCO PES for TRIM5aAGMpygDSPRY and 30,000 MWCO PES for full-length TRIM5a

and TRIMCyp, Sartorius Stedim). Average yields were 4 mg (1.3–9.6 mg) per liter insect cell culture

and protein identities were confirmed by electrospray ionization mass spectrometry (ESI-MS) (see

Supplementary file 1B).

TRIM5 2D crystallization
Freshly purified TRIM5aAGMpyg protein was concentrated to 1–3 mg/ml and assembled by incubating

at 23˚C for 1 hr and then at 4˚C for 1–2 days. For EM analyses, 5 ml sample aliquots were incubated

on carbon-coated EM grids for 5 min. The grids were washed by placing each grid on a single 40 mL

drop of 0.1 M KCl for 3 min, briefly blotted, and then stained on a single 20 mL drop of 2% uranyl

acetate for an additional 3 min.

Unlike TRIM5aAGMpyg, TRIMCyp did not spontaneously assemble into hexagonal lattices following

concentration. However, crystals were occasionally observed when an equal volume of 0.01 M cobalt

chloride hexahydrate, 0.1 M MES monohydrate pH 6.5, and 1.8 M ammonium sulfate was added to

freshly concentrated protein at ~1 mg/ml.

Templated assembly of TRIM5 on hexagonal arrays of HIV-1 CA-NC
As previously described (Ganser-Pornillos et al., 2011), 2-dimensional crystals composed of cross-

linked, hexagonal HIV-1 CA were prepared by incubating 232 mM CA-NCA14C/E45C/W184A with a small

25-TG oligo (143 mM). TRIM5 proteins were then added in 1- to 10- fold molar excess, and the pH

was immediately adjusted to 9.0 by direct addition of Tris buffer to a final concentration of 100 mM.

Samples were incubated for 1–96 hr, applied to carbon-coated EM grids for 60 s, washed and

stained as described above, and visualized by EM. Ten fold lower amounts were sufficient for TRIM-

CypK283D,Q287D templated assembly.

Bacterial protein expression and purification
HIV-1 CAA14C/E45C/A92E

2L of E.coli Rosetta (lDE3) pLysS cells (Stratagene) carrying the HIV-1 CA A14C/E45C/A92E expres-

sion construct were grown to an OD600 nm of 0.6 in LB medium at 37˚C, cooled to 19˚C and protein

expression was induced with 1 mM isopropyl-b-D-thiogalactopyranoside (IPTG) followed by over-

night incubation with shaking. HIV-1 CA proteins were purified and assembled into tubes as previ-

ously described (Pornillos et al., 2010), except that a higher concentration of dithiothreitol

(DTT, 100 mM) was used during protein purification to improve solubility and increase yields. All

purification steps were performed at 4˚C. Cells were lysed as described above, and proteins were

purified from clarified lysates by ammonium sulfate precipitation, dialyzed against 25 mM MOPS,

100 mM DTT, pH 6.5, and loaded onto a 5 ml HiTrap Q HP column (GE Healthcare) pre-equilibrated

with the same buffer. The flow-through was applied onto a 5 ml Hi-Load SP Sepharose High Perfor-

mance column (GE Lifesciences) and eluted with a linear NaCl gradient (0–500 mM) in the same

buffer. Fractions containing CA proteins were pooled and dialyzed overnight against storage buffer

(20 mM Tris, 40 mM NaCl and 100 mM DTT, pH 8.0). The CA proteins were then concentrated to a

stock of 3 mg/ml using a Vivaspin 20 concentrator (10,000 MWCO PES, Sartorius Stedim) and stored

at -80˚C. Yields were ~20 mg per liter of culture, and the protein identity was confirmed by ESI-MS

(MWexp=25,667 Da, MWcalc=25,667 Da).

OSF-cyclophilin A (OSF-CypA)
OSF-CypA was expressed in 2L of E. coli Rosetta (lDE3) pLysS cells (Stratagene) grown in ZYP-5052

media using an autoinduction system (Studier, 2005). Cells were lysed on ice by sonication in lysis

buffer (50 mM Tris, pH 8.0, 50 mM NaCl, 10 mM b-mercaptoethanol (b-ME), 0.2% (w/v) deoxycho-

late, 2.5 nmol avidin, 20 mg/ml DNase 1) supplemented with protease inhibitors (20 mg/ml PMSF,

0.4 mg/ml pepstatin, 0.8 mg/ml leupeptin and 1.6 mg/ml aprotinin). All purification steps were
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performed at 4˚C. Cell lysates were clarified by centrifugation at 17,649 g (Beckman JA-20 rotor) for

45 min, filtered (0.45 mm) and loaded onto two 5 ml tandem StrepTrap HP columns (GE Healthcare)

pre-equilibrated in binding buffer (100 mM Tris, 150 mM NaCl, 10 mM b-ME, pH 8.0). The column

was washed with 10 CV of binding buffer, and OSF-CypA was eluted in 3 CV of the same buffer sup-

plemented with 2.5 mM D-desthiobiotin. The protein was dialyzed against Q buffer (50 mM Tris,

50 mM NaCl, 10 mM b-ME, pH 8.0) and loaded onto two tandem 5 ml HiTrap HP Q-Sepharose

anion exchange columns (GE Healthcare) pre-equilbrated in the same buffer. The OSF-CypA-con-

taining flowthrough was collected and concentrated using Amicon Stirred Ultrafiltration Cells (Milli-

pore). OSF-CypA (>99% pure) was obtained in high yields (~100 mg per liter bacterial culture), and

its identity was confirmed by ESI-MS (MWexp =23,806 Da, MWcalc, -Met1=23,807 Da).

Assembly of hyperstable CAA14C/E45C/A92E tubes
CAA14C/E45C/A92E tubes were assembled at 1 mg/ml by dialysis against dialysis buffer (20 mM Tris,

pH 8.0, 1 M NaCl, and 100 mM DTT) at 4˚C overnight, followed by dialysis against the same buffer

lacking DTT overnight to allow the formation of disulfide crosslinks within the CA hexamers. Disul-

fide-crosslinked CA tubes were then dialyzed against 20 mM Tris, 40 mM NaCl, pH 8.0 and stored

at 4˚C.

TRIM5-CA tube binding experiments
TRIM5-CA tube binding experiments were performed as previously described, with minor modifica-

tions (Ganser-Pornillos et al., 2011; Langelier et al., 2008; Stremlau et al., 2006). Recombinant

TRIM5a and TRIMCyp proteins (0.25 mM) were incubated alone or with CAA14C/E45C/A92E tubes

(2 mM) in binding buffer (20 mM HEPES, 25 mM NaCl, 1 mM TCEP, pH 7.2) in a final volume of

225 ml at 4˚C for 1 hr. Aliquots (10 ml) of the incubation mixtures were mixed with 2X SDS-PAGE

sample loading buffer for assessment of protein amounts in the inputs. Aliquots (200 ml) of the mix-

tures were layered onto a 60% (w/v) sucrose/PBS cushion (4 ml, prepared in binding buffer lacking

TCEP) and subjected to centrifugation at 108,109 g (Beckman SW50.1 rotor) for 30 min at 4˚C to

separate free TRIM5a or TRIMCyp and unassembled CA proteins from CA tube-bound TRIM5 pro-

teins and pelletable CA tubes. Following centrifugation, aliquots (45 ml) of supernatant (500 ml in

total) were mixed with 4X SDS-PAGE sample loading buffer, and the pellets were resuspended in

25 ml 1X SDS-PAGE sample loading buffer. The TRIM5 and CA proteins in the input (3%), superna-

tant (3%) and pellet (30%) were separated by 12% SDS-PAGE, electrophoretically transferred onto

nitrocelluose membranes (Bio-Rad) and analyzed by western blotting with mouse anti-TRIM5a mono-

clonal (clone 5D5-1-1), NIH AIDS Research and Reference Reagent Program, 1:000 dilution) and rab-

bit anti-HIV-1 CA polyclonal (made in-house UT 416, 1:3000 dilution) antibodies. Secondary

IRDye800cw-conjugated donkey anti-mouse IgG (1:10,000, Rockland) or IRDye700DX-conjugated

donkey anti-rabbit IgG (1:10,000, Rockland) antibodies were visualized using an Odyssey infrared

imaging system (LI-COR Bioscience).

Negative stain transmission electron microscopy
3.5 ml sample solutions of undecorated or TRIM5-decorated CA tubes were spread onto the carbon

side of freshly glow-discharged, Formvar/Carbon-coated, 200-mesh copper grids (Electron Micros-

copy Sciences). The samples were incubated for 4 min, rinsed briefly by flotation on a drop of

100 mM KCl, blotted dry, stained for 2 min in filtered, saturated uranyl acetate (or 1 min in 1% phos-

photungstate), blotted dry, and allowed to air dry. Samples were viewed on a JEOL JEM-1400 Plus

transmission electron microscope operated at 120 kV accelerating voltage, and images were

acquired as Gatan Digital Micrograph 3 (DM3) files with a Gatan Ultrascan CCD camera or on a Hita-

chi 7100 TEM at 75 kV accelerating voltage with a Gatan ORIUS CCD camera, and converted into

JPEG images using ImageJ software (NIH Bethesda, MD, USA).

Screening for TRIM5 decoration of CA tubes
TRIM5-CA tube complexes were prepared by incubating TRIM5a or TRIMCypK283D,Q287D proteins

with hyperstable CA tubes in 50 mM Tris, 8 mM NaCl buffer at 4˚C. Decoration conditions were sur-

veyed at a constant CA concentration (7.5 mM) over a range of TRIM5 concentrations (0.5–22.5 mM,

corresponding to molar ratios of TRIM5 to CA of 1:16, 1:8, 1:6, 1:3, 1:1 and 3:1), pH values (8.0 and
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9.0) and incubation times (4–92 hr). Conditions that produced the best TRIM5 decoration and mini-

mal CA-free TRIM5 self-assemblies were determined by negative stain TEM imaging on a JEOL

JEM-1400 Plus transmission electron microscope as described above. Image contrast was uniformly

adjusted to enhance the decoration patterns of TRIM5 proteins on CA tubes using Adobe Photo-

shop CS5. The spacings of hexagonal TRIM5 rings were measured using ImageJ. Human TRIM5a

and TRIM5aR332P tended to aggregate in all incubation conditions tested. These aggregates some-

times associated with CA tubes, but could be readily distinguished from ring-like decorated tubes.

For scoring, images were judged blind by two independent colleagues.

Deep-etch electron microscopy
TRIM5a-CA tube complexes were prepared by incubating 1 mM TRIM5aAGMpyg proteins with 8 mM

hyperstable CA tubes in 50 mM Tris, pH 8.0, and 8.2 mM NaCl buffer at 4˚C for 32 hr. Quick-freeze

deep-etch EM was performed according to published protocols (Heuser, 1980). Briefly, a 3 ml drop-

let of TRIM5aAGMpyg decorated tubes was placed onto an acid cleaned, air dried 3x3 mm coverglass

and covered by a 0.05 mm thick, 3 mm diameter wafer of sapphire on top. The sample was then

mounted onto the freezing stage of a Heuser designed ’Slam Freezer’ and frozen by forceful impact

against a pure copper block, cooled to 4˚K with liquid helium. Frozen samples were transferred to a

liquid-nitrogen-cooled Balzers 400 vacuum evaporator. Freeze fracture occurred by popping off the

sapphire top at -104˚C under vacuum. Samples were etched for 210 s at �104˚C and rotary repli-

cated with ~3 nm platinum deposited from a 15˚ angle above the horizontal, followed by an immedi-

ate ~10 nm stabilization film of pure carbon deposited from an 85˚ angle. Replicas were floated onto

a dish of concentrated hydrofluoric acid and transferred through 3 rinses of distilled H2O containing

a loopful of Photo-flo. Replicas were picked up on formvar coated copper grids, and imaged on a

JEOL 1400 microscope with attached AMT digital camera.

Co-assembly of TRIM5a and HIV-1 CA
Coassembly experiments were performed by incubating HIV-1 CA (650 mM) alone or with

TRIM5aAGMpyg (1–15 mM) in assembly buffer (20 mM Tris, pH 8.0, 50 mM NaCl) at 37˚C for 2–3 hr,

followed by a 2 hr incubation at room temperature. Following incubation, a 3.5 mL aliquot of the

assembly reaction was incubated on carbon-coated EM grids (Electron Microscopy Sciences) for 1–2

min. Grids were then placed directly onto a 20 mL drop of 0.1 M KCl for 2 min, blotted and moved

to a 20 mL drop of 2% uranyl acetate for 2 min, blotted, and air dried. Samples were imaged on

either a Tecnai T12 or a Tecnai F20 microsope operating at 120 kV.

Preparation of HIV-1 virions
HEK 293T cells (29 x 10 cm plates) were co-transfected (polyethylenimine, PEI, Polysciences) at 70–

80% confluency with pLOX-GFP (5 mg DNA/plate) (Salmon et al., 2000) and pCMV-DR8.2 vectors

(5 mg DNA/plate) (Naldini et al., 1996) that expressed HIV structural proteins encoding wild type or

mutant CA sequences (A14C/E45C or A14C/E45C/A92E). 40 hr later, virion-containing media was

pooled, filtered (0.45 mm) and pelleted by ultracentrifugation through a 4 ml, 20% sucrose/PBS cush-

ion in 25 x 89 mm polyallomer centrifuge tubes (Beckman Coulter) at 96,281 g (Beckman SW32 Ti

rotor) for 2 hr at 4˚C. Subsequent core purification steps were performed at 4˚C.

Sucrose gradient purification of HIV-1 cores
Wild type and hyperstable HIV-1 A14C/E45C cores were isolated from virions using an adaptation of

a sucrose-gradient, spin-through method (Kotov et al., 1999; Langelier et al., 2008). Virion pellets

were resuspended with 2.4 ml ST buffer (20 mM Tris, 75 mM NaCl, pH 7.4). 6 x 11.5 ml 30–70% (w/

v) continuous sucrose gradients in ST buffer were made in 14 x 89 mm polyallomer centrifuge tubes

(Beckman Coulter) using a gradient maker (Biocomp). The gradients were overlaid with a 300 ml 15%

(w/v) sucrose cushion in ST buffer containing 0.5% Triton X-100 (to delipidate the virions as they

migrated through the cushion) and then with a 300 ml non-detergent barrier layer (7.5% sucrose in

ST buffer), which protected virions from premature detergent exposure. Concentrated virions were

applied to the top of the gradient and subjected to centrifugation at 151,263 g (Beckman SW41 Ti

rotor) for 16 hr. Twelve 1 ml fractions were collected from the bottom of each tube, and the density

of each fraction was determined from the refractive index using a digital refractometer (Leica). The
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CA content in each fraction was analyzed by western blotting using rabbit anti-HIV-1 CA polyclonal

antibodies (made in-house, UT 416, 1:3000 dilution). Fractions 10–12 (density = 1.22–1.27 g/ml),

which contained intact HIV-1 cores, were pooled, diluted with ST buffer, and subjected to ultracen-

trifugation at 151,263 g (Beckman SW41 Ti rotor) for 2 hr. The pelleted cores were resuspended in

240 ml ST buffer, and recovered yields were quantified as described below.

Affinity purification of HIV-1 cores
2.4 ml of concentrated virions in PBS were mixed gently with an equal volume of lysis buffer (1% Tri-

ton X-100, 100 mM Tris, 2M NaCl, pH 8.0) in the presence of 35 mM OSF-CypA and incubated for 3

min at 23˚C. Subsequent core purification steps were performed at 4˚C. 8 mg of MagStrep’type2HC’

beads (IBA GmbH) were added to the lysed virions and mixed gently by inversion for 7 min to allow

OSF-CypA to bind the membrane-stripped cores. The sample was then placed on a PolyATtract sys-

tem 1000 magnet separation stand (Promega) for 3 min, and the supernatant (‘Flow-through’ in Fig-

ure 5—figure supplement 1E) was removed. Captured cores were washed 10 times with high salt

buffer (50 mM Tris, 1 M NaCl, pH 8.0) to remove unbound CA proteins and contaminating vesicles,

and the final wash sample was saved for western blot analysis (‘Wash’ in Figure 5—figure supple-

ment 1E). Cores were eluted in 150 ml elution buffer (50 mM Tris, 75 mM NaCl, pH 8.0) supple-

mented with 40 mM Cyclosporine A (Sigma-Aldrich) and incubated with inversion for 40 min. The

sample was subjected to brief centrifugation in a tabletop ultracentrifuge at 1000 g for 5 s and

placed on a Magnesphere Technology Magnetic Separation Stand (Promega) for 5 min. The super-

natant containing the purified cores (‘Eluate’ in Figure 5—figure supplement 1E) was collected and

used in the experiments shown in Figures 5, 6, 7, Figure 5—figure supplement 1, and Figure 7—

figure supplement 1, 2 and 3. Beads before and after CsA elution were also saved for western blot

analyses (Figure 5—figure supplement 1E).

Characterization of purified hyperstable cores
Core yields
Virion inputs and core yields were quantified by western blot densitometry against a standard curve

of recombinant CA proteins for reference. The recovery of cores from virions was calculated by nor-

malizing core yields of CA to corresponding virion CA inputs, which were set to 100%. As illustrated

in Figure 5, disulfide crosslinks apparently stabilized the HIV-1 cores, resulting in a ~4 fold increase

in the core recovery (0.8 ± 1%; core yields: 0.6 ± 0.5 mg CA; virus input: 100 ± 80 mg CA, n = 10)

compared to wild type cores (0.2 ± 0.1%; core yields: 0.08 ± 0.05 mg CA; virus input: 40 ± 30 mg CA,

n = 7). The affinity purification method consistently raised the yield of hyperstable HIV-1 A14C/E45C

cores by an additional ~4 fold (3 ± 2%; core yields: 1 ± 0.6 mg CA; virus input: 40 ± 8 mg CA, n = 3)

vs. the sucrose-gradient, spin-through method. Core recovery was not affected by the A92E muta-

tion (3 ± 1%; core yields: 3 ± 1 mg CA; virus input: 100 ± 60 mg CA, n = 7).

Analyses of HIV-1 core morphologies
Discrete particles were imaged by negative stain EM and scored as ’tubular’ if their edges appeared

parallel, as ’spherical’ if they were spherical or elliptical, and as ’conical’ if they lacked the above

properties. The final class included conical, triangular, bullet-shaped, and coffin-shaped cores.

Disulfide crosslinks
To examine disulfide crosslinking within purified cores, sucrose gradient fractions 7–9 and 10–12

were pooled separately, mixed with SDS-PAGE sample loading buffer lacking b-ME (or containing

the concentrations designated in Figure 5C), treated with 31.25 mM methyl methanethiosulfonate

(Pierce Biotechnology), heated at 95˚C for 10 min, and electrophoresis was performed on 4–15%

gradient SDS polyacrylamide gels (Bio-Rad) and analyzed by western blotting.

Analyses of HIV-1 core protein components
Purified cores were denatured in SDS-PAGE sample loading buffer, resolved on 4–15% gradient SDS

polyacrylamide gels (Bio-Rad) and stained using SilverQuest silver staining kit (Thermo Fisher

Scientific).
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TRIM5-core binding experiments
Recombinant TRIM5aAGMpyg and TRIM5acpz proteins (0.5 mM) were incubated at 4˚C for 1 hr alone

or with hyperstable HIV-1 cores (0.5–1 mM) in binding buffer (40 mM HEPES, 50 mM NaCl, 1 mM

TCEP, pH 7.2) in a final volume of 75 ml. TRIM5arh (0.25 mM) was incubated alone or with hypersta-

ble cores under slightly more alkaline conditions (40 mM Tris, 50 mM NaCl, 1 mM TCEP, pH 8.0) to

minimize untemplated assembly of TRIM5a during sedimentation. Human TRIM5a proteins were not

used in these assays because they tended to aggregate and pellet, even in the absence of HIV-1

cores. TRIMCyp was also not used owing to low levels of residual cyclosporine A in the core prepara-

tions. Aliquots (5 ml) of the mixtures were mixed with 2X SDS-PAGE sample loading buffer (‘Input’ in

Figure 6). The mixtures were layered onto a 30% (w/v) sucrose cushion (4 ml, prepared in binding

buffer lacking TCEP) and subjected to centrifugation at 149,632 g (Beckman SW50.1 rotor) for 2.5 hr

to separate free TRIM5a and unassembled CA proteins from capsid-bound TRIM5 proteins and pel-

letable cores. Following centrifugation, aliquots (45 ml) of supernatant (500 ml in total) were mixed

with 4X SDS-PAGE sample loading buffer, and the pellets were resuspended in 25 ml 1X SDS-PAGE

sample loading buffer. The TRIM5 and CA proteins in the input (2%), supernatant (2%) and pellet

(30%) were separated by 12% SDS-PAGE. The integrated intensities of protein bands on the western

blots were measured using the Odyssey software (LI-COR Bioscience). The molar ratios of

TRIM5aAGMpyg to CA in the pellets were estimated from standard curves constructed from known

amounts of TRIM5aAGMpyg and CA loaded on the same gel.

Screening for TRIM5 decoration of HIV-1 cores
TRIM5a-core complexes were prepared by incubating TRIM5arh with affinity-purified hyperstable

HIV-1 cores in 50 mM HEPES (pH 8.0) or CHES (pH 9.0), 0.1 mM TCEP buffer at 4˚C. Decoration
conditions were surveyed over a range of TRIM5arh concentrations (0.25–2 mM), NaCl concentrations

(50 or 200 mM), and incubation times (2–92 hr). Conditions that gave the best TRIM5a decoration

on HIV-1 cores with minimal TRIM5a self-assemblies were determined by negative stain TEM imag-

ing on a JEOL JEM-1400 Plus transmission electron microscope as described above. Clear decora-

tion was difficult to discern in the majority of the TRIM5a-incubated cores, likely because TRIM5a

decorations were obscured by uranyl acetate staining of the underlying viral ribonucleoprotein com-

plexes, and cores with clear external TRIM5a decoration patterns were observed on only ~5% of 907

core particles examined. Cores incubated in the absence of TRIM5a proteins and stained under the

same conditions never showed equivalent decorations.

ECT of TRIM5a-decorated HIV-1 cores and tubes
Cryo-grid preparation
TRIM5a-decorated CA tubes were prepared by incubating 1.5 mM TRIM5aAGMpyg with 695 mM wild

type CA in 90 ml of assembly buffer (20 mM HEPES, 50 mM NaCl, pH 8.0) at 37˚C for 2 hr, followed

by a 2 hr incubation at room temperature. TRIM5a-decorated HIV-1 cores were prepared by incu-

bating 0.5 mM TRIM5aAGMpyg with 0.6 mM CA equivalents of hyperstable HIV-1 cores in 75 ml of

binding buffer (40 mM HEPES, 50 mM NaCl, 1 mM TCEP, pH 7.2) at 4˚C for 1 hr, a condition that

produced saturation binding in the co-sedimentation assay (data not shown). TRIM5a-tube com-

plexes, cores, or TRIM5a-core complexes were mixed with BSA-coated colloidal gold particles (10

nm, SPI Supplies), which served as fiducials required for aligning the tilt stacked images. For cross-

linked complexes, the pH of the samples was adjusted to 8.0 by adding 1/20th the sample volume of

1 M HEPES, pH 8.0, and the samples were incubated with 1 mM Sulfo-EGS (Pierce Biotechnology)

at 23˚C for 10 min in 88 ml total reaction volume. The cross-linking reaction was quenched by direct

addition of 1 M Tris, pH 7.4, to a final concentration of 50 mM, followed by a 15 min incubation at

23˚C. This treatment crosslinked ~87% and ~76% of the TRIM5aAGMpyg and CA subunits of TRIM5-

core complexes, respectively, as analyzed by SDS-PAGE and western blotting (data not shown).

Samples (3.5 ml) were placed on the carbon side of freshly glow-discharged Quantifoil R2/2, 300

mesh holey carbon grids (SPI Supplies) for 1 min, thinned by automatic blotting using a Vitrobot

Mark I (FEI) (-1.5 mm offset, 6–8 s, with filter papers from both sides at 80–85% relative humidity)

and vitrified by plunge-freezing into liquid ethane. The cryo-grid was transferred to the microscope

using a cryo-transfer holder.
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ECT
Images were collected using a 300 kV FEI G2 Polara transmission electron microscope equipped

with an energy filter (slit width 20 eV; Gatan) and a 4k x 4k K2 Summit using the direct electron

counting mode (Gatan). Pixels on the detector represented 0.26 nm (41,000x) at the specimen level.

The tilt series were recorded from -60˚ to +60˚ with an increment of 1˚ and 4 mm underfocus. The

cumulative dose of a tilt-series was 80–100 e-/Å2. UCSF Tomo (Zheng et al., 2007) was used for

automatic acquisition of the tilt series and 2D projection images. The tilt series was aligned and

binned by 4 into 1k x 1k using the IMOD software package (Kremer et al., 1996), and 3D recon-

structions were calculated using the simultaneous reconstruction technique (SIRT) implemented in

the TOMO3D software package (Agulleiro and Fernandez, 2011), or weighted back projection

using IMOD. Noise reduction was performed using the non-linear anisotropic diffusion (NAD)

method in IMOD (Kremer et al., 1996), typically using a K value of 0.03–0.04 with 10 iterations.

Segmentation and isosurface generation
Segmentation and isosurface rendering were performed in Amira (FEI). The outer boundary of the

HIV-1 tube or core was first manually identified, and a material mask was generated inside the

boundary. A second region of interest surrounding the tube or core that typically extended 9 nm

from the exterior surface was generated (densities inside this region correspond to TRIM5a protein).

The area inside the second region was segmented and an isosurface generated for the densities

inside. Islands containing six voxels or fewer in 3D were deleted for the segmented cores, and four

voxels or fewer were deleted for the co-assembled tube. The exterior layer of the CA protein within

the HIV-1 tube or core of the first material was also segmented using a similar threshold value, and

an isosurface was generated. Movie image sequences were generated in JPEG format in Amira (FEI)

and converted into movies using QuickTime Player 7. Photoshop CS6 (Adobe) was then used to pro-

duce the final versions of the movies.

Fitting the TRIM5 structural model to the cryoEM map
Crystal structures of the B-box 2 trimer (PDB 5EIA)(Wagner et al., 2016) and B-box 2/coiled-coil

dimer (PDB 4TN3)(Goldstone et al., 2014) were fitted manually as separate units into the map using

UCSF chimera (Pettersen et al., 2004). The trimer structures were initially placed at putative three-

fold densities, and then iterative superpositions and manual adjustments were performed to opti-

mize the overlap between the B-box 2 portions of the two source PDB files. No geometric optimiza-

tion was performed, and the fitting should be treated as a simple proof of principle that the

dimensions of the hexagon densities observed in the cryotomograms are compatible with dimen-

sions and interactions observed in the crystal structures.
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