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1. Introduction  

Passive source localization is a key issue in sensor array signal processing such as sonar, 

radar, wireless communication, microphone array speech processing, seismology, electronic 

surveillance and medical imaging, and thus receives significant attention. Although a 

variety of advanced algorithms, for example MUltiple SIgnal Classification (MUSIC), 

Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT), and 

Propagator Method (PM), have been developed, there are still some problems: (i)For two-

dimensional (2D) directions-of-arrival (DOA) estimation, the failure in pairing causes severe 

performance degradation; (ii) In some practical applications, the signals received by a sensor 

array may come from multiple near-field sources or multiple far-field sources or their 

mixture. Due to different signal models for near-field and far-field sources, the existing 

algorithms cannot deal with them simultaneously well; and (iii) For joint azimuth and 

elevation direction finding, the existing estimators often encounter an estimation failure 

problem especially when elevation angles are between 70 and 90 degrees. In this chapter, 

several high-resolution methods are presented to overcome these difficulties. 

In Section 1.2, a novel 2D DOA estimation algorithm without match procedure in the L-
shaped array geometry is proposed. It is well known that two matched electric angles 
(functions of elevation and azimuth angles) must be obtained before elevation and azimuth 
angles are estimated. However, the failure in pairing would cause severe performance 
degradation. By introducing a novel electric angle, the L-shaped array configuration without 
any rotational invariance property between two orthogonal uniform linear sub-arrays 
evolves into some particular rotational invariance geometry. Thus, the steering vector is 
separated into two parts. One can be estimated by the rank-reduction ESPRIT algorithm and 
the other is obtained from the eigenvalue decomposition of one particular matrix. Finally, 
the elevation and azimuth angles can be easily obtained from the recovered steering vector 
to avoid pairing. Although it is developed for the L-shaped array configuration, the 
proposed algorithm can be easily extended to other array geometries such as two parallel 
linear sub-arrays, the rectangular array, and the symmetric circular array. In addition, the 
method can be used to form the rank-reduction propagator method. electric angle 

In Section 1.3, a common signal model for “any-field” sources (i.e., near-field sources or far-

field sources or their mixture) is given and a two-stage MUSIC algorithm is developed to 

localize “any-field” sources. In the first stage, one special cumulant matrix is derived and 

the related virtual “steering vector” is the function of the common electric angle in both 
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near-field and far-field signal models so that DOA of near-field or far-field can be obtained 

from this electric angle using the conventional high-resolution MUSIC algorithm. In the 

second stage, another particular cumulant matrix is derived, in which the virtual “steering 

matrix” has full column rank no matter whether the received signals are multiple near-field 

sources or multiple far-field ones or their mixture. More importantly, the virtual “steering 

vector” can be separated into two parts, in which the first one is the function of the common 

electric angle in both signal models, whereas the second part is the function of the electric 

angle that exists only in the near-field signal model. Furthermore, by substituting the 

common electric angle, which is estimated in the first stage into one special Hermitian 

matrix formed from another MUSIC spectral function, the range of near-field sources can be 

obtained from the eigenvector of the Hermitian matrix. Although it is developed for 

azimuth angle (and range) estimation only, it can be developed further for the joint azimuth 

and elevation angles (as well as range) estimation.  

In Section 1.4, a novel high-accuracy estimator for elevation angle is developed to avoid the 

estimation failure problem encountered in the conventional elevation estimators. Firstly, 

three cumulant matrices are constructed using fourth-order cumulants of some properly 

chosen array outputs of a specially designed volume array to increase the array aperture. 

Secondly, a parallel factor (PARAFAC) model of cumulant matrices in the cumulant domain 

is formed to avoid pairing parameters. Finally, a flexible and high-resolution elevation angle 

estimator is derived from multiple electric angles, which are solved from the above steps.  

2. 2D DOA estimation without match procedure 

Estimation of 2-D DOA is a key issue in sensor array signal processing such as radar, sonar, 

radio astronomy, and mobile communication systems [1-4]. Similar to other array 

geometries such as  the parallel uniform linear array, the rectangular array and the circular 

array, there is an un-avoidable parameter association problem in the L-shaped array 

configuration because the failure in pairing would cause severe performance degradation. 

This section will give a novel 2-D DOA estimation algorithm, which does not require match 

procedure. 

2.1 Description of the proposed algorithm 

Let’s consider an L-shaped sensor array with 2 1M +  omni-directional sensors, as shown in 

Fig. 1. The element placed at the origin is set for the referencing point. The array in the x z−  

plane consists of two uniform linear sub-arrays with element spacing d , each being 

composed of M  elements. Assume that L  far-field, no-coherent, narrowband sources 

impinging on this antenna array. Let lα  and lβ  be the elevation and azimuth angles of the 

l -th source, and thus the wave vector lκ containing DOA information can be defined as 

[ ]sin cos ,sin sin ,cosl l l l l lα β α β α=κ , 1, ,l L=  . After being sampled, the signals received 

by the sensor array can be expressed as 

 ( ) ( ) ( )k k k= +r As n , 0, , 1k K= − ,  (1) 

where ,0 1,0 1,0 0,0 0, 0, 1 0,1( ) ( )  ( )  ( ) ( ) ( ) ( )   ( )
T

M M M Mk r k r k r k r k r k r k r k− − =  r    
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[ ]1 1( , ) ( , ) ( , )l l L Lγ φ γ φ γ φ=A a a a   

[ ]1( ) ( ), , ( ), , ( )
T

l Lk s k s k s k=s   , ( 1) ( 1)( , )     1   l l l l l l
TjM j M j jM j M j

l l e e e e e eγ γ γ φ φ φγ φ − − =  a    

2 sin cos /l l ldγ π α β λ= −  

2 cos /l ldφ π α λ= −  

,0 1,0 1,0 0,0 0, 0, 1 0,1( ) ( )  ( )  ( ) ( ) ( )  ( )   ( )
T

M M M Mk n k n k n k n k n k n k n k− − =  n   . 

•

•

•

•



•
•

•

( )0,0,d

x

y

z

o

( )0,0, ( 1)M d−

( )0,0,Md

( ),0,0d

( )( 1) ,0,0M d−

( ), 0,0Md

lα

lβ

( )ls k


 

Fig. 1. L-shaped sensor array configuration 

The auto-correlation matrix of ( )kr  can be expressed as [ ( ) ( )]HE k k=R r r , 
2

2 1
H

s n Mσ += +AR A I , where   [ ( ) ( )]H
s E k k=R s s , and its eigen-value decomposition (EVD) 

yields  

 1 2 1 1 2 1 1 2 1[ , , ]diag[ , , ][ , , ]H H H H
s s s n n n M M Mv v+ + += = + =R UVU U V U U V U u u u u   , (2) 

where V is the diagonal matrix with the eigen-values arranged as 

1 1 2 1L L Mv v v v+ +≥ ≥ > ≥ ≥  , the diagonal matrix (2 1 ) (2 1 )M L M L
n R + − × + −∈V  is composed of 

eigen-values 1 2 2 1, , ,L L Mv v v+ + + ; (2 1) (2 1 )M M L
n C + × + −∈U  consists of the eigenvectors related 

to 1 2 2 1, , ,L L Mv v v+ + + , spanning the noise subspace of R .  

Let’s define ( )l l lj je eθ φ γ−= , and thus the steering vector be written in another form as: 

 ( 1) ( 1) ( 1)( , )     1       l l l l l l l l l
TjM j M j jM jM j M j M j j

l l e e e e e e e e eγ γ γ θ γ θ γ θ γγ φ − − − = × × × a     (3) 

Furthermore, ( , )γ φa  can be separated into two parts, i.e. ( ) ( )1 2( , ) j je eθ γγ φ =a a a ,  

where ( 1)M + -dimensional vector ( ) ( 1)
2    1

Tj jM j M je e e eγ γ γ γ− =  a   and (2 1) ( 1)M M+ × +  

- dimensional matrix 
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{ }

( 1) ( 1)

1
1

( )
diag , ,  

M M
j

jM j
M

e
e e

θ
θ θ

+ × +

×

  =   
I

a
0

 (4) 

Based on the theory that the noise subspace nU  is orthogonal to the range space of A , 

( , )H
n l lγ φ =U a 0 , 1, ,l L=  , the electric angle pair { , }l lγ φ , 1, ,l L=   can be found from the L  

deepest minima of the following MUSIC spectral function: 

  
( ) ( ) ( ) ( )

( ) ( ) ( )
1 2 1 1 2

2 2

( , ) ( , ) ( , )

0

l l l l

l l l

j j j jH H H H H
l l n n l l n n

j j jH

f e e e e

e e e

γ θ θ γ

γ θ γ

γ φ γ φ γ φ= =

= =

a U U a a a U U a a

a C a
 (5) 

where   

 ( ) ( )1 1( )j j jH H
n ne e eθ θ θ=C a U U a   (6) 

is an ( 1) ( 1)M M+ × + -dimensional Hermitian matrix.  

Note that ( )1
lje θ ≠a 0  and ( ) ( )2 2( ) 0l l lj j jH e e eγ θ γ =a C a , 1,2, ,l L=  . From Eq. (5)-(6), it can 

be seen that if and only if lj je e θθ = , the matrix ( )je θ
C drops rank, or equivalently, when the 

polynomial of jx e θ= , ( ) ( ){ }2 det 0f x x= =C . Obviously, x̂ , lying inside the unit circle and 

being closest to the unit circle, is actually the signal root.  

Eq. (5) implies that by substituting the estimated 
ˆ
lje θ  into ( )je θ

C  in Eq. (5), ˆ
lγ  can be found 

from the minima of the following function:  

 ( ) ( )ˆ

2 2
ˆ min  ( )lj j jH
l e e eγ θ γ

γ
γ =  a C a   (7) 

the minima of which indicates estimation.  

When 2p p q q hφ γ φ γ π− ≠ − + , { 1,0,1}h ∈ − , , {1, , }p q L∈  , i.e., p qθ θ≠ , Eq. (7) implies that 

( )ˆ

2
pj

e
γ

a  is just the unique eigenvector corresponding to the smallest eigen-value of 
ˆ

( )pj
e

θ
C . 

However, when 2p p q q hφ γ φ γ π− = − + , ( )ˆ

2
pj

e
γ

a  is no longer the unique eigenvector 

corresponding to the smallest eigen-value  of  
ˆ

( )pj
e

θ
C . The eigen-value decomposition 

(EVD) of 
ˆ

( )pj
e

θ
C yields 

ˆ
1

1 1 1 1 1 1( ) [ , , ]diag[ , , ][ , , ]pj
M M Me v v

θ −
+ + +=C u u u u       , where the 

eigen-values are arranged as  1 2 1M Mv v v v +≥ ≥ > = . It is obvious that under the case 

2p p q q hφ γ φ γ π− = − +  ( )ˆ

2
pj

e
γ

a  and ( )ˆ

2
qj

e
γ

a  are the linear combinations of two eigenvectors 

{ }1,M M+u u  , which are orthogonal to { }s 1 2 1, , , M−=U u u u    . Obviously, both 
ˆpj

e
γ

and
ˆqj

e
γ

 

are the roots of ( ) ( )3 2 s 2( ) 0H H
sf x x x= =a U U a  . 

From the estimates { }ˆˆ
,l lj je eγ θ , the elevation and azimuth angle estimates can be given as 

( ) ( )( )ˆ ˆˆ arccos / 2l lj j
l e e dθ γα λ π= −∠ ×  and ( ) ( )( )ˆˆ ˆarccos / 2 sinlj

l le dγβ λ π α= − ∠ , respectively. 

Since ( )ˆ
2

lje γ
a  is related to 

ˆ
( )lje θ

C  (i.e., corresponding to ( )ˆ

1
lje θ

a ), the proposed algorithm 

can avoid pairing parameters. In addition, it avoids the spectral search because both 
ˆlje γ  

and 
ˆ
lje θ  are estimated by solving polynomial roots. 
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2.2 Simulation results 

To verify the effectiveness of the proposed algorithm, let’s consider an L-shaped array with 

13 elements as shown in Fig.1. These sensor locations are in unit of / 2d λ= . Two 

uncorrelated equivalent-power sources ( 0.2j ke π  and 0.25j ke π ), respectively with DOAs of 
o o

1 1( 60 , 35 )α β= =  and o o
2 2( 40 , 55 )α β= = , impinge on this array. The root mean square 

error (RMSE) is used as the performance measure. All results provided are based on 500 

independent runs. The RMSE for DOA estimation is defined as 

 ( )
25001

,500 1
ˆRMSE(the th signal) i l li

l α α
=

= −   (8) 

in which ,
ˆ

i lα  (in unit of degree) stands for the estimation of the l -th elevation lα  in the i -

th trial. For comparison, the propagator method [6, 9] and the ESPRIT method [8, 11] with 

correct pairing are simultaneously executed.  

In the first experiment, the effect of signal-to-noise (SNR) on the performance of the 
proposed algorithm is investigated. The number of snapshots is set to 400 and the SNR 
varies from 0 to 30 dB. The averaged performances (RMSE of elevation and azimuth angle 
estimations versus SNR for two sources) over 500 Monte Carlo runs are shown in Figs. 2 and 
3. As expected, when the SNR increases, the RMSE of the estimated parameters decrease. In 
addition, it is observed that the proposed algorithm improves the performance slightly 
compared to the conventional ESPRIT algorithm, which must have a precise association 
procedure. 

In the second experiment, the influence of snapshot number on the performance of the 
proposed algorithm is explored. The same parameters as that of the second experiment are 
used, except that the SNR is fixed at 10 dB and the number of snapshots varies from 200 to 
2000. The averaged performances (RMSE of elevation and azimuth angle estimations versus 
snapshot number for two sources) over 500 Monte Carlo runs are shown in Figs. 4 and 5. 
From these figures, it can be seen that RMSE of the elevation and azimuth estimations 
decrease as snapshot number increases. In addition, the proposed algorithm has higher 
estimation accuracy than the ESPRIT method. 

 

Fig. 2. RMSE of elevation angle estimations versus SNR  
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Fig. 3. RMSE of azimuth angle estimations versus SNR  

 

Fig. 4. RMSE of elevation angle estimations versus snapshot number  

 

Fig. 5. RMSE of azimuth angle estimations versus snapshot number  
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From the above experiments, it can be seen that (i) since ( )ˆ
2

lje γ
a  is related to 

ˆ
( )lje θ

C  (i.e. 

corresponding to ( )ˆ

1
lje θ

a ), the proposed algorithm can avoid pairing parameters; and (ii) 

the proposed algorithm avoids the spectral search due to that both 
ˆlje γ and 

ˆ
lje θ are 

estimated by solving polynomial roots. 

3. Passive localization of mixed near-field and far-field sources 

In some practical applications, the signals received by an array are often the mixture of near-

field and far-field sources, such as speaker localization using microphone arrays and 

guidance (homing) systems [12-19]. For example, in the application of speaker localization 

using microphone arrays, each speaker may be in the near-field or far-field of the array [16]. 

In this case, either existing near-field source localization methods or far-field source those 

may fail in localizing mixed near-field and far-field sources. This section will give a new 

passive source localization algorithm, which can localize near-field sources or far-field 

sources or their mixture. 

3.1 Description of the proposed algorithm 

Consider that L (near-field1 or far-field) narrowband, independent radiating sources, 

impinge on the uniform linear array (ULA) with 2 1N +  elements as shown in Fig.6. Let the 

0 th sensor be the phase reference point. After sampled with a proper rate that satisfies the 

Nyquist rate, the signal received by the i th sensor can be expressed as [5-11]  

 
1

( ) ( ) ( )il

L
j

i l i
l

x k s k e n kτ

=

= +  , N i N− ≤ ≤ , 0, , 1k K= − ,  (9) 

• •• • • • • •
lθ

lr

N− 2− 1− 0 1 2 i N

the  th near-field sourcel
•

 

Fig. 6. Uniform linear array configuration 

                                                 
1 Note that Fresnel zone (i.e. near-field) lies in the radiating zone 21 1

2
[ , 2 ]D

π λ
λ , where λ  and D  are 

signal wavelength and array dimension, respectively (see [4] for details). Whereas far-field means the 

radiating zone beyond 21[0, 2 ]D
λ

. 
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Where K  is the snapshot number, ( )ls k is the l th narrowband source, ( )in k  is the additive 

Gaussian noise. In addition, ilτ  is the delay associated with the l th source propagation time 

between the 0 th and i th sensors. If the l th source is near-field one (the azimuth DOA lθ  

and the range lr ), 2
il l li iτ γ φ= + , where lγ  and lφ  are called electric and given by  

2 sin( )l l

d
γ π θ

λ
= − , and 

2
2cos ( )l l

l

d

r
φ π θ

λ
= .  

Otherwise, if the l th source is far-field one, il liτ γ=  [2, 3], where lφ  is approximated by zero 

due to father range of far-field source. Therefore, a far-field source can be considered as the 

special near-field one, where 0lφ = .  

In a matrix form, Eq. (1) can be written as 

 ( ) ( ) ( )k k k= +x As n   (10) 

where [ ]1 1( , ) ( , ) ( , )l l L Lγ φ γ φ γ φ=A a a a   

[ ]0 1( ) ( ), , ( ), ( ), , ( )
T

N Nk n k n k n k n k−=n   , 

[ ]1( ) ( ), , ( ), , ( )
T

l Lk s k s k s k=s    

[ ]0 1( ) ( ), , ( ), ( ), , ( )
T

N Nk x k x k x k x k−=x   .  

Note that the form of steering vector ( , )l lγ φa  depends on whether the l th source is far-field 

one or near-field one. If this source is near-field one,  

2 2 2[( ) ( ) ] [( 1) ( 1) ] [ ]( , )    l l l l l l

T
j N N j N N j N N

l l e e eγ φ γ φ γ φγ φ − + − − + + − + + =   a  .  

Otherwise, if this source lies in the far field,  

[( ) ] [( 1) ] [ ]( , )    l l l
Tj N j N j N

l l e e eγ γ γγ φ − − + =  a  .  

Let’s begin with the fourth-order cumulant of the sensor outputs, which can be expressed as 

{ }

2 2 2 2

2 2 2 2

* *

* *

( ) ( ) ( ) ( )

1 1 1 1

[( ) ( )] [( ) ( )] *

   cum{ ( ), ( ), ( ), ( )}

 cum{ ( ) , ( ) , ( ) , ( ) }

cum ( ), ( ),

l l l l l l l l

l l

m n p q

L L L L
j m m j n n j p p j q q

l l l l
l l l l

j m n p q m n p q

l l

x k x k x k x k

s k e s k e s k e s k e

e s t s t s

γ φ γ φ γ φ γ φ

γ φ

+ + + +

= = = =

− − − + − − −

   
=       
=

   
{ }

{ }2 2 2 2

*

1

[( ) ( )] [( ) ( )]

4,
1

( ), ( )

            l l

L

l l
l

L
j m n p q m n p q

sl
l

t s t

c e
γ φ

=

− − − + − − −

=

=




(11) 

                                                                                                    , , , [ , ]m n p q N N∈ −  
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where * *
4 cum{ ( ), ( ), ( ), ( )},sl l l l lc s t s t s t s t=  is the kurtosis of the l th signal, and the superscript * 

denotes the complex conjugate.  

To construct a matrix with full rank for arbitrary-field sources , let n m= −  and 0q = . Thus, 

Eq. (11) becomes 

 ( )2 *
2 ( )* *

4,
1

cum{ ( ), ( ), ( ), ( )} ,      , [ , ]l l l

L
j m j p p

m m p q sl
l

x k x k x k x k c e e m p N Nγ γ φ+
−

=

= ∈ −   (12) 

Let 1m m N= + +  and 1p p N= + + , and thus , [1,2 1]m p N∈ + . Based on the idea from (11)-

(12), a special (2 1) (2 1)N N+ × + -dimensional cumulant matrix C  can be defined, the 

( , )m p th element of which can be given by  

 

( )2

* *
1 1 1 0

*
2( 1) ( 1) ( 1)

4,
1

( , )=cum{ ( ), ( ), ( ), ( )}

                  , [1,2 1]l l l

m N m N p N

L
j m N j p N j p N

sl
l

m p x k x k x k x k

c e e m p Nγ γ φ

− − − + + − −

− − − − + − −

=

= ∈ +
C

 (13) 

Note that the (2 1) (2 1)N N+ × +  matrix C  can be represented in a compact matrix form  

as 4
H

s=C BC A , where the superscript H stands for the Hermitian transpose, 

4 4 1 4 4diag[ , , , , ]s ,s ,sl ,sLc c c=C   ,  virtual “steering matrix”  1[ ( ), , ( ), , ( )]l Lγ γ γ=B b b b  , and 

virtual “steering vector” 2 (2 2) 2( ) [ , , 1, , ]l l lj N j N j N T
l e e eγ γ γγ − − −=b   ， 1, ,l L=  . 

The singular value decomposition (SVD) of C  yields 

 [ ]4 1 2 1 1 2 1 1 2 1, , diag( , , )[ , , ]H H H
s N N Nσ σ+ + += = =C BC A WΣZ w w z z     (14) 

where Σ  is the diagonal matrix with the singular values arranged as 

1 1 2 1L L Nσ σ σ σ+ +≥ ≥ > ≥ ≥  . Let (2 1)N L
s C + ×∈W , which spans the signal subspace of 

B , consists of the left singular vectors 1 2, , , Lw w w . Similarly, (2 1) (2 1 )N N L
n C + × + −∈Z , 

which is orthogonal to A , consists of the right singular vectors 1 2 2 1, , ,L L N+ + +z z z .  

Based on the first 2N  lines 1sW  and last 2N  lines 2sW , lγ , 1, ,l L=   can be easily 

estimated from the eigen-values of the following matrix [3] :  

 ( )( , ) / 2l l lγ = ∠ Φ   (15) 

where 12 2 2diag[ , , , , ]l Lj j je e eγ γ γ=Φ   is the eigen-value matrix #
1 2s sW W , i.e. 

# 1
1 2s s

−=W W TΦT .  

By substituting the estimate ˆ
lγ  into ( , )γ φa , the minima of the following function can be found. 

2 1 1 2
ˆ ˆ ˆ ˆ ˆmin  ( , ) ( , ) min  ( ) ( ) ( ) ( ), 1, ,H H H H H
l l n n l l n n l l L

φ φ
φ γ φ γ φ φ γ γ φ= = =a Z Z a a a Z Z a a   

where   
{ }
{ }

- -

1
anti

N 1

diag , , ,1
( )

diag , ,  

jN j

j jN

e e

e e

γ γ

γ γ
γ

×

  =    
a

0




,   ( )

2 2( 1)
2    1

T
jN j N je e eφ φ φφ − =   a  .  
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Eq. (16) implies that ( )2
ˆ
lφa  is just the eigenvector corresponding to the smallest eigen-value 

of 1 1
ˆ ˆ( ) ( )H H
l n n lγ γa Z Z a , and ˆ

lφ  is easily solved from ( )2
ˆ
lφa . 

The DOA and range estimates of the l th source can be in turn expressed as: 

 
ˆˆ arcsin( )

2
l

l
d

γ λ
θ

π
= −   (17) 

and  

 
2

2 ˆˆ cos ( )
ˆl l
l

d
r

π
θ

λφ
= , 1, ,l L=  .  (18) 

In fact, if the l th source is far-field one, the estimate ˆ
lφ  would approach to zero. Thus, 

whether the l th source is near-field or far-field one can be determined. Since both B  and A  

are of full column rank no matter whether the received signals be pure far-field sources or 

pure near-field sources or mixed far-field and near-field sources, the proposed algorithm 

can deal with arbitrary-field sources well. 

3.2 Description of the proposed algorithm 

Some simulations are conducted in this section to assess the ability of the proposed 
algorithm to localize near-field, far-field, as well as mixed near-field and far-field sources. 

 Two near-field sources are located at 1 1{ 10 ,   0.5 }o rθ λ= =  (i.e.
1 1{ 0.2728, 0.3809}γ φ= − = ) 

and 2 2{ 20 ,   1.0 }o rθ λ= =  (i.e. 2 2{ 0.5372, 0.1734}γ φ= − = ), respectively. The snapshot number 

and SNR are fixed at 400 and 10 dB. The scatter plot of estimated ˆˆ( , )l lγ φ  pairs from 500 

independent trials using the proposed algorithm, the near-field source localization 

algorithm (i.e. ESPRIT), and the far-field source localization algorithm (i.e. MUSIC) are 

shown in Figs. 7-9, respectively. From these figures, it can be seen that the far-field source 

localization algorithm fails in localizing near-field sources.  

The near-field source is located at 1 1{ 10 ,   0.5 }o rθ λ= =  (i.e. 1 1{ 0.2728, 0.3809}γ φ= − = ); 

whereas the far-field source is localized at 2 2{ 20 , }o rθ = = +∞  (i.e. 2 2{ 0.5372, 0}γ φ= − = ). The 

snapshot number and SNR are fixed at 400 and 10 dB, respectively. The scatter plot of estimated 
ˆˆ( , )l lγ φ  pairs from 500 independent trials using the proposed algorithm, the near-field source 

localization algorithm (ESPRIT), and the far-field source localization algorithm (MUSIC) are 

shown in Figs. 10-12, respectively. These figures show that the far-field source localization 

algorithm (MUSIC) fails in estimating azimuth DOA of the near-field source. However, the 

proposed algorithm performs well in localizing both near-field and far-field sources. 

Two far-field sources are localized at 1 1{ 10 , }o rθ = = +∞  (i.e. 1 1{ 0.2728, 0}γ φ= − = ) and 

2 2{ 20 , }o rθ = = +∞  (i.e. 2 2{ 0.5372, 0}γ φ= − = ), respectively. When the snapshot number and 

SNR are fixed respectively at 400 and 10 dB, the scatter plot of estimated ˆˆ( , )l lγ φ  pairs from 

500 independent trials using the proposed algorithm, the near-field source localization 

algorithm (ESPRIT), and the far-field source localization algorithm (MUSIC) are shown in 

Figs. 13-15, respectively. From these figures, it can be seen that the near-field source 
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localization algorithm fails in localizing far-field sources, but the proposed algorithm 

performs well in estimating azimuth DOA of the two far-field source. 

 

Fig. 7. Scatter plot of estimated ( , )γ φ pairs for two near-field sources using the proposed 

algorithm  

 

Fig. 8. Scatter plot of estimated ( , )γ φ  pairs for two near-field sources using the near-field 

source localization algorithm (ESPRIT)  

 

Fig. 9. Scatter plot of estimated ( , )γ φ  pairs for two near-field sources using the far-field 

source localization algorithm (MUSIC) 
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Fig. 10. Scatter plot of estimated ( , )γ φ pairs for mixed near-field and far-field sources using 

the proposed algorithm 

 

Fig. 11. Scatter plot of estimated ( , )γ φ pairs for mixed near-field and far-field sources using 

the near-field source localization algorithm (ESPRIT)  

 

Fig. 12. Scatter plot of estimated ( , )γ φ  pairs for mixed near-field and far-field sources using 

the far-field source localization algorithm (MUSIC) 
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Fig. 13. Scatter plot of estimated ( , )γ φ pairs for two far-field sources using the proposed 

algorithm  

 

Fig. 14. Scatter plot of estimated ( , )γ φ  pairs for two far-field sources using the near-field 

source localization algorithm (ESPRIT)  

 

Fig. 15. Scatter plot of estimated ( , )γ φ  pairs for two far-field sources using the far-field 

source localization algorithm (MUSIC) 
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From these simulations, it can be seen that no matter whether the received signals are near-

field sources, far-field sources or their mixture, the proposed algorithm can perform better 

in localizing these sources.  

4. New estimator for elevation angle  

4.1 Proposed estimator 

When elevation angles are between 70 and 90 degrees, the estimator  

2 2ˆˆasin
2

l l
d

λ
γ φ

π

 
+     

may fail because imperfect estimations of ( )ˆˆ ,l lγ φ  result in 

 2 2ˆˆ
2

l l
d

λ
γ φ

π
+  

being greater than 1, causing the calculation of  

2 2ˆˆasin
2

l l
d

λ
γ φ

π

 
+     

to fail, where 2 sin cos /l l ldγ π α β λ= −  and 2 sin sin /l l ldφ π α β λ= − . On the other hand, 

some algorithms adopt another estimator  

ˆ-
acos

2
l

d

λϑ

π

     ,  

which is of low estimation accuracy when elevation angles are between 0 and 20 degrees 

( 2 cos /l ldϑ π α λ= − ). Note that o ocos(20 ) sin(70 ) 0.9= >  and thus it is impossible that both 

cos( )α and sin( )α  are greater than 0.9 simultaneously. Therefore, e 

 2 2ˆˆasin
2

l l
d

λ
γ φ

π

 
+    and 

ˆ-
acos

2
l

d

λϑ

π

       

can be combined to form a new elevation angle estimator, which can efficiently avoid 

estimation failure and is of high estimation accuracy. 

2 2 2 2

2 2

2 2

ˆ ˆ-1 ˆ ˆˆ ˆacos +asin if  0.9   and 0.9
2 2 2 2 2

ˆ ˆ- ˆˆacos if  0.9   and 0.9
2 2 2

ˆˆasin
2

l l
l l l l

l l
l l l

l l

d d d d

d d d

d

λϑ λϑλ λ
γ φ γ φ

π π π π

λϑ λϑ λ
α γ φ

π π π

λ
γ φ

π

        
+ < + <                 

    
= < + ≥            

+ 2 2
ˆ

ˆˆif  0.9   and 0.9
2 2

l
l l

d d

λϑ λ
γ φ

π π

     
≥ + <          

(19) 
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4.2 Simulation results 

To access the effectiveness of the proposed elevation estimator, we consider a two L-shape 

arrays with 16 elements as shown in Fig. 16. These sensor locations are in unit of / 2d λ= . 

We consider a single source case ( 0.2j ke π ): elevation angle α and azimuth angle β  vary from 
0 0(0 ,0 ) to 0 0(90 ,90 )  with 05  increment. The snapshot number and the SNR are set to 200 

and 10dB, respectively. The received signals are polluted by zero-mean additive white 

Gaussian noises. We use the root mean square error (RMSE) as the performance measure. 

All results provided are based on 500 independent runs. For each ( , )α β , we conduct 500 

trials, and count the estimation failure times as well as the averaged performance only from 

successful trials (RMSE of elevation angle estimations versus different azimuth-elevation 

pair for this single source). Fig. 17 and 18 give the averaged performance counted from 

successful trials and the corresponding Failure Rates (FR, the failure times divided by 500) 

of the estimator  

2 2ˆˆasin
2 d

l l

λ
γ φ

π

 
+   ,  

respectively.  

Since the estimator 

 
ˆ-

acos
2

l

d

λϑ

π

       

shows no failure for all pair angles, we only show its averaged performance (RMSE of 

elevation angle estimations versus different azimuth-elevation pair for this single source) in 

Fig. 19.  
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Fig. 16. Two L-shape array configuration 

From Figs. 17 and 18, it can be seen that the estimator  
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2 2ˆˆasin
2 d

l l

λ
γ φ

π

 
+     

may break downs especially when elevation angles are between 070  and 090 . In addition, it 

is obvious that the estimator  

2 2ˆˆasin
2 d

l l

λ
γ φ

π

 
+     

has lower estimation accuracy in region 0 0[70 ,90 ]  than other regions. As the elevation angle 

approximates to 090 , the failure rate increases, and the related RMSE (from the successful 

trails) increases [15]. Although the estimator  

ˆ-
acos

2
l

d

λϑ

π

       

shows no failure for all pair angles, we observe from Fig.19 that when the elevation angle 

lies in 0 0[0 ,20 ] , the related RMSE increases. In addition, the averaged performance of the 

proposed estimator (RMSE of azimuth angle estimations versus different azimuth-elevation 

pair for this single source) is given in Fig. 20, which shows that the proposed estimator 

improves the performance significantly compared to  

2 2ˆˆasin
2 d

l l

λ
γ φ

π

 
+    and 

ˆ-
acos

2
l

d

λϑ

π

       

especially in the regions 0 0[0 ,20 ]  and 0 0[70 ,90 ] . 

 

Fig. 17. Averaged performance (counted from successful trials) of elevation angle 

estimations versus different azimuth-elevation pair using the estimator 2 2ˆˆasin
2 d

l l

λ
γ φ

π

 
+    
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Fig. 18. Failure rates of elevation angle estimations versus different azimuth-elevation pair 

using the estimator 2 2ˆˆasin
2 d

l l

λ
γ φ

π

 
+    

 

Fig. 19. Averaged performance of elevation angle estimations versus different azimuth-

elevation pair using the estimator 
ˆ-

acos
2

l

d

λϑ

π
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Fig. 20. Averaged performance of elevation angle estimations versus different azimuth-
elevation pair using the proposed estim 

From these simulations, it can be seen that the proposed estimator combines  

2 2ˆˆasin
2 d

l l

λ
γ φ

π

 
+   and 

ˆ-
acos

2
l

d

λϑ

π

     ,  

and thus avoids both estimation failure and low resolution.  

5. Conclusion 

In this chapter, several novel high-resolution methods are introduced to overcome the 

difficulties encountered in the passive source localization of sensor array, i.e. pairing failure, 

mixed near-field and far-field source localization, and estimation failure problems. 

Although they have been developed for the uniform linear array and L-shaped array, these 

algorithms can be easily extended to other sensor array configurations. 
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