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1. Introduction     
 

In the unmanned ground vehicle (UGV) case, the estimation of a future position with a 
present one is one of the most important techniques (Madhavan & Schlenoff, 2004). 
Generally, the famous global positioning system (GPS) has been widely used for position 
tracking because of its good performance (Torrieri, 1984; Kim et al., 2006). However, there 
exist some defects. For example, it needs a separate receiver and it must have at least three 
available satellite signals. Moreover it is also vulnerable to the indoor case (Gleanson, 2006) 
or the reflected signal fading. 
There have been many researches to substitute or to assist the GPS. One of them is the 
method of using the time difference of arrival (TDoA) which needs no special equipment 
and can be operated in indoor multipath situation (Najar & Vidal, 2001). The TDoA means 
an arrival time difference of signals transmitted from a mobile station to each base station. It 
is the basic concept of estimation that the position of a mobile station can be obtained from 
the crossing point of hyperbolic curves which are derived from the definition of TDoA. 
Including some uncertainties, there have been several approaches to find the solution of 
TDoA based geolocation problem using the least square method, for example, Tayler series 
method (Xiong et al., 2003), Chan’s method (Ho & Chan, 1993), and WLS method (Liu et al., 
2006). However in case of a moving source, it demands a huge amount of computational 
efforts each step, so it is required to use a method which demands less computational time. 
As a breakthrough to this problem, the application of EKF can be reasonable. 
The modeling errors happen in the procedure of linear approximation for system behaviors 
to track the moving source’s position. The divergence caused from the modeling errors is a 
critical problem in Kalman filter applications (Julier & Uhlmann, 2004). The standard 
Kalman filter cannot ensure completely the error convergence because of the limited 
knowledge of the system’s dynamical model and the measurement noise. In real 
circumstances, there are uncertainties in the system modeling and the noise description, and 
the assumptions on the statistics of disturbances could be restrictive since the availability of 
a precisely known model is very limited in many practical situations. In practical tracking 
filter designs, there exist model uncertainties which cannot be expressed by the linear state-
space model. The linear model increases modeling errors since the actual mobile station 
moves in a non-linear process. Especially even with a little priori knowledge it is quite 
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valuable concerning the strategy. 
Hence, the compensation of model uncertainties is an important task in the navigation filter 
design. In modeling or formulating the mathematical equations, the possible prediction 
errors are approximated or assumed as a model uncertainty. The facts discussed above leads 
to unexpected deterioration of the filtering performance. To prevent the divergence problem 
due to modeling errors in the EKF approach, the adaptive filter algorithm can be one of the 
good strategies for estimating the state vector. This chapter suggests the adaptive fading 
Kalman filter (AFKF) (Levy, 1997; Xia et al., 1994) approach as a robust solution. The AFKF 
essentially employs suboptimal fading factors to improve the tracking capability. In AFKF 
method, the scaling factor is introduced to provide an improved state estimation. The 
traditional AFKF approach for determining the scaling factors mainly depends on the 
designer’s experience or computer simulation using a heuristic searching plan. In order to 
resolve this defect, the fuzzy adaptive fading Kalman filter (FAFKF) is proposed and used as 
an adaptive geolocation algorithm. The application of fuzzy logic to adaptive Kalman 
filtering gains more interests. The fuzzy logic adaptive system is constructed so as to obtain 
the suitable scaling factors related to the time-varying changes in dynamics. In the FAFKF, 
the fuzzy logic adaptive system (FLAS) is used to adjust the scaling factor continuously so 
as to improve the Kalman filter performance. 
In this chapter, we also explain how to compose the FAFKF algorithm for TDoA based 
position tracking system. Through the comparison using the simulation results from the 
EKF and FAFKF solution under the model uncertainties, it shows the improved estimation 
performance with more accurate tracking capability. 

 
2. Geolocation with TDoA analytical methods 
 

When the mobile station (MS: the unknown position) sends signals to each base station (BS: 
the known position), there is a time difference because of the BS’s isolated location from MS. 
The fundamental principle of position estimation is to use the intersection of hyperbolas 
according to the definition of TDoA as shown in Fig. 1.  
The problem of geolocation can be formulated as 
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b

 
is the known position of i-th signal receiver (BS), s is the unknown position of 

signal source (MS), and c is the propagation speed of signal. In Eq. (1), id means the 

distance between MS and i-th BS and it is the time of signal arrival (ToA) (Schau & 

Robinson, 1987) from MS to i-th BS. Hence 1it  becomes the time difference of arrival 

(TDoA) which is the difference of ToA between it  (from MS to the i-th BS) and 1t  (from  
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Fig. 1. Geometric method using hyperbolas. 

 

MS to the first BS). The distance difference of 1id  results from the multiplication of TDoA 

and c. 
Generally it is possible to estimate the source location if the values of ToA could be 
provided exactly. However, it is required to be synchronized for all MS and BS’s in this case. 
To find the TDoA of acknowledgement signal from MS to BS’s, the time delay estimation 
can be used. As shown in Fig. 1, the estimation of geolocation can be obtained by solving the 
nonlinear hyperbolic equation from the relation of TDoA. If there are three BS’s as in Fig. 1, 
we can draw three distinct hyperbolic curves using distance difference from TDoA signal. It 
is the principle of geometric method that the cross point becomes the position estimation of 
MS. 
To find the position estimation (s) of the unknown MS in an analytical method, let’s rewrite 
the distance difference equation (1) as 
 

1 1 , 2, 3, , .i id d d i m= + = L  (2) 

 

By squaring Eq. (2) with the relation of 2 =
i i i

d s b s b( ) - , - , the nonlinear equation for 

positional vector of s can be formulated as following. 
 

2 22 2 2
1 1 1 1 12 2 2 ( ) , 2, ,T T

i i i is b s b s b s b d d d i m− + = − + + + = L  (3) 
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To represent the solution in linear matrix equality form, Eq. (3) can be simplified as 
 

2 2 2

1 1 1 1 1( ) 2 , 2 , 2, ,− + = − − = Li i i ib b d b b s d d i m  (4) 

 

Using the distance from MS to the first BS,
2 2 2

1 1 1( ) ( ) ( ) ,d x x y y= − + − and with 1b  as the 

origin of coordinates, i.e., 1b = {0, 0}col , we can obtain the position estimation from the 

following two nonlinear constraints. 
 

2 2

1 1 1

2 2 2

1

1
( ( ) ) , , 2,3, ,

2

( ) 0

i i i ib d b s d d i m

x y d

− + = − − =
+ − =

L
 (5) 

 
To find the solution of s, Eq. (5) is rewritten in linear matrix equation. Now the source vector 
s  can be acquired by solving the following MS geolocation problem. 
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where [ ]2

T

mb b=G L and •  means the Hadamar operator.  

 
3. Geolocation with model uncertainty 
 

This section describes the geolocation using the estimation filter in state-space. As stated in 
the section 2, the conventional analytical methods are focused on solving the nonlinear 
hyperbolic equations. In this section, we introduce the fuzzy adaptive fading Kalman filter 
to get the precision estimation for multiple model uncertainties.  

 
3.1 System modeling 

In the real case, TDoA signal can be distorted by the timing error due to non-line-of sight or 
by additive white Gaussian noise. To find the precision geolocation in real case, the system 

modeling must include the model uncertainty. Let 
o

t  be the ideal TDoA signal and tΔ  is 
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the distorted amount by external noises. The real value of TDoA is changed as = + Δ
o

t t t . 

If the real value of TDoA is used in Eq. (6), it becomes more complicated nonlinear equation 
and this complexity may cause huge computational efforts in the real-time process. As a 
breakthrough to this problem, the Kalman filter which needs relatively less computational 
time can be an alternative solution. 
Since the hyperbolic equation of TDoA is nonlinear, the extended Kalman Filter (EKF) can 
be used as a nonlinear state estimator. The basic algorithm of EKF is shown as in Fig. 2.  
 

 
Fig. 2. Flow chart of extended Kalman filter. 

 
The first step is the time update in which it predicts the state of next steps from processing 

model and it compares the real measurement with the prediction measurement of ŝ  

obtained by time update process. For TDoA based geolocation using extended Kalman filter, 
the discrete state-equation of the processing and measurement model for MS can be 
formulated as 
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where ( ) [ ]Ts k x y x y= & & , ku  is the known velocity of moving MS, Δ  is the time interval 

of sampling, k
w  is an additive white Gaussian noise (AWGN). 

From the definition of TDoA, the measurement model can be written as 
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where ν k  is the measurement noise in AWGN. 

The output result of kz which is the TDoA signal provides the information of MS position. 

As an accurate geolocation method, the frequency difference (FDoA) resulted from Doppler 
shifts observation can be added in the state equation. However, to make the problem more 
simple, we consider only the TDoA signal as an output measurement in this section.  

Since the measurement model kz  is nonlinear equation, the linear approximation using 

partial differential method should be done for the use of EKF. 
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3.2 Geolocation using fuzzy adaptive fading Kalman filter (FAFKF) 

EKF is a very useful method for nonlinear state estimation. However, as EKF is based on the 
linearization of nonlinear system using partial differential method, the modeling errors can 
easily lead to the divergence problem. To solve this problem, an adaptive fading Kalman 
filter (AFKF) with a fading factor can be applied. The application of AFKF to geolocation 
estimation is given in the following mathematical expression. 

Basically, the fading factor 
k

λ  is added in the error covariance projection during the time 

update process. 
  

1λ− −= +T T

k k k k k k k kP A P A W Q W  (10) 

 

where 1 2
( , , , )

k m
diagλ λ λ λ= L . In normal case of 1λ =

k , it means the general EKF. If the 

estimated value approaches to the steady-state value, the fading factor 
k
λ  becomes less 

than 1. If 
k
λ  is greater than 1, the divergence could happen. This iterative process is called 

as the adaptive fading loop given as follows. 
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where α is a scaling factor and [ ]tr ⋅  is the trace of a matrix. 

Moreover the measurement estimation of ˆ
kz  is predicted through the estimation of ˆ

ks . 

That is, if we get more accurate ˆ
ks , then the more accurate ˆ

kz  can be obtained. As the 

error of output measurement is within the ε − neighborhood i.e., ˆ|| || ε− ≤k k kz z
 
and 

1 0ε ε −− ≤k k , it is confirmed that the present estimation performance is guaranteed and the 

fading factor becomes 1 1kλ + ≤ . 

The fuzzy logic adaptive system (FLAS) offers an effective method when the problem is too 
complicated or hard to be analyzed in mathematical way. The procedure of general fuzzy 
system can be classified as three parts; fuzzification, fuzzy inference, and defuzzification. 
The first step of fuzzification is to make linguistic variables from inputs and outputs. The 
second step of fuzzy inference is to make rules using if-then expression. Finally the third step 
of defuzzification is to decide the degree of the output value. 
Using the scaling factor (α ) as an output from FLAS, the fading factor in FAFKF is updated 

as 1 [ ] [ ]λ α+ = ⋅k k ktr F tr E . According to the following two degree of divergence (DoD) 

parameters from the innovation covariance matrix and the trace of innovation covariance 
matrix, it is possible to identify the changing degree in dynamics of MS. The first DoD 

parameter δ  is defined as the ratio of the trace of innovation covariance matrix at present 

state and the number of measurements used for estimating location. 
 

φ φδ = T

k k

m
 (12) 

 

where 1 2[ ]φ φ φ φ= L T

k m , m is the number of measurements (number of TDoA signals). 

The second DoD parameter σ  is defined as the average of the absolute value of the 

measurement error kφ . 
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The fading factor kλ  
updated through the adaptive fading loop is used to change the error 

covariance kP . 

 

 
Fig. 3. Flow chart of the fuzzy adaptive fading Kalman filter process. 

 
Fig. 3 shows how the FAFKF works for TDoA geolocation problem. As a first step in the 
process of FAFKF, the two DoD parameters ( ,δ σ ) are obtained from measurement 

difference between the real value ( kz ) and the estimation result ( ˆ
kz ). These DoD 

parameters are used as the inputs for the fuzzy system. Finally the FLAS is employed for 
determining the scaling factor α  from the innovation information. According to the scaling 

factor α , the estimation accuracy is determined. Using the fuzzy logic system, we can 

adjust the fading factors adaptively to improve the estimation performance.  

 

4. Simulation results 
 

The basic circumstance to be used in the simulation is shown in Fig. 4. There are two BS’s 
and the signal source of MS is supposed to move at a constant speed but changes its 
direction every 2.5 sec. In Fig. 4, the dotted line is an ideal path of MS with no external forces. 
The solid line is the real path which is affected by the multiple noises such as the 
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measurement noise kv  and the process noise kw . The thick solid line is the path of MS 

estimated by the standard EKF with no adaptive method. Fig. 4 shows that the performance 
of EKF is restricted especially when the MS changes the direction. The accumulated position 
error is increased as the MS changes its direction frequently.  
To prove the effectiveness of the adaptive fading factor in TDoA gelocation, the simulation 
parameters are set close to the real values. Table 1 shows the simulation parameters. 
 

 

Fig. 4. Simulation circumstance for MS  

 
The FLAS consists of the following 9 rules and is represented in the following if-then form. 

The membership functions of input fuzzy variable (DoD parameters: δ  and σ ) and 

output (scaling factor: α ) are shown in Fig. 5. 

 

i. if δ  is n (negative) and σ  is n,  then α  is nb (negative big). 

ii. if δ  is z (zero)  and σ  is n,  then α  is ns (negative small). 

 

 EKF AFKF FAFKF 

Speed Constant Constant Constant. 

(time interval)฀  0.1 sec 0.1 sec 0.1 sec 

(scaling factor)α  None 0.12 FLAS output 

(fading factor)λ  None Constant Fuzzy based 

Table 1. Parameters for the TDoA geolocation simulation 
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Fig. 5. Membership functions in FLAS 

 
iii. if δ  is p (positive) and σ  is n,  then α  is z. 

iv. if δ  is n and σ  is z,   then α  is ns. 

v. if δ  is z and σ  is z,   then α  is z. 

vi. if δ  is p and σ  is z,   then α  is ps (positive small). 

vii. if δ  is n and σ  is p,   then α  is z. 

viii. if δ  is z and σ  is p,   then α  is ps. 

ix. if δ  is p and σ  is p,   then α  is pb (positive big). 

 

As the DoD parameter ( δ ) and the averaged magnitude (σ ) of ( )kφ  change within 

0.003~0.007 and 0.03~0.1 respectively, we define those range as zero for δ  and σ . The 

output of the scaling factor (α ) is determined as 0.12 following that of AFKF in the 
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associated range. Other values can be determined from experiential way. The simulation 
result of FLAS and adaptive fading loop is given in Fig. 6.  

Fig. 6 shows the change of the scaling factor αk  and the fading factor kλ . The values of 

αk  and kλ  change very steeply to correct the position error from the beginning and the 

estimate ˆ
ks  gets close to the real value within ε -neighborhood about after 1 sec since the 

fading factor becomes small.  

 
Fig. 6. Change of scaling factor (α ) and fading factor (λ ). 

 
Fig. 7 shows the performance of the proposed geolocation algorithm (FAFKF) through the 
comparison with AFKF and EKF. The performance is measured in terms of the norm of 

positioning error, i.e. ˆ−k ks s . As shown in Fig. 7, the positioning error of FAFKF is much 

smaller than that of EKF. It can be confirmed that the difference of position error between 
EKF and FAFKF is increased as the MS changes its direction more frequently. It means that 

the position estimation with FAFKF is tracking more precisely to the real value of ks
 
than 
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Fig. 7. Comparison of error performance  

 
AFKF or the standard EKF. 
Fig. 8 indicates the path estimation performance of the proposed geolocation algorithm 
through the comparison with AFKF and EKF under the situation of Fig. 4. As the adaptive 
fading factor takes the sub-optimal value at each iteration, the error covariance has been 
updated and is used to modify the Kalman filter gain adaptively. As shown in Fig. 8, the 
trajectory estimation using FAFKF is close to the real value under noise added real 
circumstance. 

 

5. Conclusion 
 

In this chapter, we introduced TDoA geolocation algorithm to reduce the position 
estimation error. To be more similar to real circumstance, the MS is supposed to change its 
direction periodically. The standard EKF which solves a huge computational problem of 
TDoA based geolocaion can estimate the location of source through the linearization of 
nonlinear measurement equation. However, the linearization from partial differentiation 
causes a divergence problem which restricts the performance of the EKF. 
To solve this problem, we applied FAFKF algorithm which changes the error covariance 

using an adaptive fading factor (λ )
 
from fuzzy logic. The scaling factor α  which is used  
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Fig. 8. Comparison of path estimation.  

 
to update the fading factor has been decided by the fuzzy logic to minimize the estimation 
error. Through the simulation results, it is confirmed that the trajectory estimation using 
FAFKF follows the real one more precisely than EKF. The positioning error from FAFKF is 
less than that performed by AFKF. 
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