

1/8 etherisc Token Contract Audit –
inacta AG

Version 0.6 / 04.10.2017

etherisc Token Contract Audit
inacta AG
Eugen Lechner [eugen.lechner@inacta.ch]

2/8 etherisc Token Contract Audit –
Eugen Lechner
[eugen.lechner@inacta.ch]

Inhaltsverzeichnis

1. Introduction ... 3

2. Scope .. 3

3. Executive Summary .. 3

4. Findings .. 3

5. Review Report of Token Sale Smart Contract .. 4

5.1 General 4

5.2 Compliance with ERC20 Standard 4

5.3 Compliance with Smart Contract Best Practices 4

5.3.1 Keep it Small and Modular... 4

5.3.2 Use safe math operators ... 5

5.3.3 Use modifiers for recurring checks ... 6

5.3.4 Use modifier to authenticate owner .. 6

5.3.5 Avoid negated conditions .. 6

5.3.6 Avoid external calls when possible.. 6

5.3.7 Lock pragmas to specific compiler version 6

5.3.8 Prefer newer Solidity constructs ... 6

5.3.9 Use constant modifier if possible .. 6

5.3.10 Implements default payable function .. 7

5.3.11 Lifecycle ... 7

5.3.12 Other findings.. 7

5.4 Compliance with Token Sale Terms and Conditions 7

5.5 Compliance with Code Style 7

5.6 Check known security attacks 7

5.6.1 Transaction Data Length Validation .. 7

5.6.2 ERC20 API: An Attack Vector on Approve/TransferFrom Methods 7

5.6.3 Re-Entrancy (Checks-Effects-Interactions Pattern) 8

5.6.4 Transactions May Affect Ether Receiver ... 8

5.6.5 Unhandled Exception .. 8

5.6.6 Missing Input Validation .. 8

6. Limitations ... 8

3/8 etherisc Token Contract Audit –
Eugen Lechner
[eugen.lechner@inacta.ch]

1. Introduction

Name etherisc

Web Presence http://etherisc.com

Name of Token DIP (Decentralized Insurance Platform Token)

Whitepaper Reference https://github.com/etherisc/tokensale/blob/de-
velop/specification.md

GitHub Repository / Commit https://github.com/etherisc/tokensale
7c243536be9bc825038ebc99a0529ebb2967cca7

2. Scope

This is an, ‘eyes over’ code review only of the contracts’ source code. No static
or dynamic testing has been done by the reviewing author. Only the Smart Con-
tracts available under GitHub are reviewed. Frameworks like OpenZeppelin are
excluded from the audit.

3. Executive Summary

We reviewed the Token Sales Contract and did not find any critical security
problems. Our findings included one important and one moderate issue and we
suggest four low severity improvements regarding code readability. In the latest
version of the contract, all issues have been resolved.

4. Findings

Description Severity Priority Resolved

1 Safe math operators are not used continu-
ously (5.3.2, reported at Sep 18, 2017)

low low yes

2 Hight cyclomatic complexity of function cal-
culateMaxContribution (5.3.1)

low low

3 Lock pragmas to specific compiler version
(5.3.7)

low low

4 Constant modifier incorrect (5.3.9) low low

http://etherisc.com/
https://github.com/etherisc/tokensale/blob/develop/specification.md
https://github.com/etherisc/tokensale/blob/develop/specification.md
https://github.com/etherisc/tokensale
https://github.com/etherisc/tokensale/commit/7d074dad2c51def154a9bd1770918fe7d577aa1d

4/8 etherisc Token Contract Audit –
Eugen Lechner
[eugen.lechner@inacta.ch]

5 Missing Input Validation (5.6.6) medium medium

6 No transaction error on illegal sales phase or
impossible sale of tokens (5.3.12)

medium height

5. Review Report of Token Sale Smart Contract

5.1 General

Use latest Solidity version?
The contract uses the latest stable Solidity version 0.4.11, supported by Truffle
Framework.

Use an open bug bounty program?
We recommend to use it, this is good security practice to incentivize security re-
searchers to further review the contract.

5.2 Compliance with ERC20 Standard

DIP Token is an ERC20 Standard Token, based on OpenZeppelin Solidity Frame-
work.

5.3 Compliance with Smart Contract Best Practices

5.3.1 Keep it Small and Modular

The smart contracts are good structured

TokenStake.sol Generic Token Staking Contract

DipToken.sol DIP Token

DipWhitelistedCrowdsale.sol DIP Token Generating Event

DipTge.sol inherits from DipWhitelistedCrowdsale

TokenTimelock.sol Generic Token Time Lock

VestedTokens.sol inherits from TokenTimelock

By using OpenZeppelin libraries, the contract code is very slim and clear. Only
the contract logic in DipWhitelistedCrowdsale has become very confusing due to
the nesting of if-else. The cyclomatic complexity of function calculateMaxContri-
bution() is 7. We recommend to simplify it, e.g. as follows:

5/8 etherisc Token Contract Audit –
Eugen Lechner
[eugen.lechner@inacta.ch]

function calculateMaxContribution(address _contributor) public constant returns

(uint256) {

 uint256 maxContrib = 0;

 if (crowdsaleState == state.priorityPass) {

 maxContrib = allowanceSum(_contributor).sub(

 contributorList[_contributor].contributionAmount);

 if (maxContrib > hardCap1.sub(weiRaised)) {

 maxContrib = hardCap1.sub(weiRaised);

 }

 } else if (crowdsaleState == state.openedPriorityPass) {

 if (allowanceSum(_contributor) > 0) {

 maxContrib = hardCap1.sub(weiRaised);

 }

 } else if (crowdsaleState == state.crowdsale) {

 maxContrib = hardCap2.sub(weiRaised);

 }

 return maxContrib;

 }

 function allowanceSum(address _contributor) internal constant returns (uint256) {

 return contributorList[_contributor].priorityPassAllowance.add(

 contributorList[_contributor].otherAllowance);

 }

Furthermore, there is no need to distinguish between field priorityPassAllowance
and otherAllowance in the code - both are for the priority phase. The fields can
be merged and further simplify the code.

5.3.2 Use safe math operators

DIP Token smart contracts use a safe math library from OpenZeppelin Solidity
Framework, unfortunately this library is not used continuously. See DipWhite-
listedCrowdsale function calculateMaxContribution(…), VestedTokens function
grant(…). We recommend using the safe math operations throughout whole con-
tracts.
Update: This comment has already been put back into the code. The SafeMath
is now used continuously, with one exception in function calculateMaxContribu-
tion:

if (maxContrib > hardCap1 - weiRaised) {

 maxContrib = hardCap1.sub(weiRaised);

 }

I recommend to modify it as follows:

6/8 etherisc Token Contract Audit –
Eugen Lechner
[eugen.lechner@inacta.ch]

if (maxContrib > hardCap1.sub(weiRaised)) {

 maxContrib = hardCap1.sub(weiRaised);

 }

5.3.3 Use modifiers for recurring checks

No findings, the Etherisc smart contract has no recurring pre-condition
checks.

5.3.4 Use modifier to authenticate owner

Etheris uses the onlyOwner modifier from OpenZeppelin to check whether
the sender is the contract owner.

5.3.5 Avoid negated conditions

Be aware that the negated conditions must be avoided because they can
cause errors if the condition is complex.

No findings in Etherisc smart contract code.

5.3.6 Avoid external calls when possible

No findings, Etherisc smart contract has no external calls.

5.3.7 Lock pragmas to specific compiler version

Contracts should be deployed with the same compiler version and flags that
they have been tested the most with. Locking the pragma helps ensure that
contracts do not accidentally get deployed using, for example, the latest com-
piler which may have higher risks of undiscovered bugs.

Etherisc does’t do it, we strongly recommend it.

5.3.8 Prefer newer Solidity constructs

No findings in Etherisc smart contract code.

5.3.9 Use constant modifier if possible

Use constant modifier if possible, otherwise consumes these variables or meth-
ods unintentionally and unnecessarily state slots and increases gas cost when-
ever are called.

Function validPurchase() of DipWhitelistedCrowdsale.sol is declared as constant,
although it cannot be, since it calls a function that is not constant.

7/8 etherisc Token Contract Audit –
Eugen Lechner
[eugen.lechner@inacta.ch]

5.3.10 Implements default payable function

This fallback function is implements by OpenZeppelin Crowdsale Smart Contract.

5.3.11 Lifecycle

Etherisc uses a default Lifecycle from OpenZeppelin Crowdsale (start, stop, fi-
nalize).

5.3.12 Other findings

The Token buying function buyTokens() in DipWhitelistedCrowdsale.sol update
the crowdsale state, however does not use this state to check whether the buy-
ing possible. So it is still possible to transfer the ether, even if the hard cap has
already been reached. In this case, a transaction error must be throw instead of
returning the money and the transaction fees will be saved.
The same goes for token sales in the priority phase. When any no PriorityPass
member and no selected individual want buy some tokens in the priority phase,
it must be checked by require() and a transaction error must be throw for revert
any changes.

5.4 Compliance with Token Sale Terms and Conditions

The conditions controlling the Token Sale reflect the Token Sale Specification.

5.5 Compliance with Code Style

Etherisc smart contracts code corresponds to the recommended Code Style. The
overall contract complexity is low and make it easy to read and understand the
contract. It does not contain any complex duplicate code that can lead to di-
verging pro-gram logic.

5.6 Check known security attacks

The patterns of attacks that have already been successfully executed are
checked.

5.6.1 Transaction Data Length Validation

Also known as ERC20 short address attack. It is recommended to remove all
checks for this attack, it is not effective and cause new problems. Etherisc fol-
lows this recommendation and not use that mitigation.

5.6.2 ERC20 API: An Attack Vector on Approve/TransferFrom Methods

This attack is fixed it in OpenZeppelin StandardToken, which is used by Ether-
isc.

8/8 etherisc Token Contract Audit –
Eugen Lechner
[eugen.lechner@inacta.ch]

5.6.3 Re-Entrancy (Checks-Effects-Interactions Pattern)

No findings in etherisc smart contract code.

5.6.4 Transactions May Affect Ether Receiver

A contract is exposed to this vulnerability if a miner (who executes and vali-
dates transactions) can reorder the transactions within a block in a way that af-
fects the receiver of ether.

No findings in etherisc smart contract code.

5.6.5 Unhandled Exception

A call/send instruction returns a non-zero value if an exception occurs during
the execution of the instruction (e.g., out-of-gas). A contract must check the
return value of these instructions and throw an exception.

No findings in etherisc smart contract code.

5.6.6 Missing Input Validation

Unexpected method arguments may result in insecure contract behaviors. To
avoid this, contracts must check whether all transaction arguments meet their
desired preconditions.

The initial creation parameters for DipTge smart contract (as a consequence
also for DipWhitelistedCrowdsale) smart contract are not checked meet their de-
sired preconditions. For example, it is possible to set the hard cap less than the
min cap or start public time before start open priority time by mistake.

6. Limitations

We just reviewed and audited the Solidity source code of the smart contract. We
did not review the low-level assembly code that is created by the Solidity com-
piler. We only audited the Etherisc smart contract and did not evaluate the
Ethereum project in any other matters.

