

VERSION 0.5

Etherisc
Smart Contracts
Engagement Report

 Etherisc Smart Contracts

Auditors
Christoph Jentzsch (christoph@slock.it)
Jonas Bentke (jonas@slock.it)

Address
Slock.it UG (haftungsbeschraenkt)
Markt 16, 09648 Mittweida,
Sachsen, Germany
HRB 30026

Slock.it Confidential Document—Page 1

 Etherisc Smart Contracts

1. Introduction 3

2. Scope 4
2.1 Services In-scope 4
2.2 Areas Out of Scope 5

3. Executive Summary 6

4. Risks 6

5. Code Analysis 7

6. Design Analysis 11
6.1 External calls 11
6.2 Modifier 11
6.3 Math operations 12
6.4 Griefing through inactivity 12
6.5 Race conditions 12
6.6 Transaction ordering 13
6.7 Timestamp dependencies 13
6.8 Unbound loops 13
6.9 DoS 14
6.10 Circuit breakers 14
6.11 Speed bumps 14
6.12 Type deduction 15
6.13 Call data 15
6.14 Inheritance overwrite 15
6.15 Upgradability 15
6.16 Fallback functions 16
6.17 Invariants 16

7. Disclaimers 17

Slock.it Confidential Document—Page 2

 Etherisc Smart Contracts

1. Introduction
Etherisc aims to be a decentralized insurance platform. This review seeks
to enumerate implementation choices that can facilitate or expose six
selected smart contracts from this project to attack or exploitations
commonly found in the wild.

Note, this review solely covers the six smart contracts used for the token
sale with the exception of everything else (view scope).

This review does not represent an endorsement for the upcoming Etherisc
token sale and does not constitute support or analysis of the Etherisc
project, business plan, capability and profitability, either for its team or the
project. This document is a purely technical analysis of the selected six (6)
smart contracts.

Please consult the risk and disclaimer sections of this
document for more information.

Slock.it Confidential Document—Page 3

 Etherisc Smart Contracts

2. Scope

2.1 Services In-scope
This review covers the following smart contracts that represent the
Etherisc token sale:

● TokenStake.sol

● DipToken.sol

● DipTge.sol

● DipWhitelistedCrowdsale.sol

● TokenTimelock.sol

● VestedTokens.sol

We will solely examine the aforementioned six smart contracts at, and only
at, the hash of 173cc61d936c8f2c0859e9f5cdbdbb6b29b251d6

This review seeks to enumerate implementation choices that can facilitate
or expose these six smart contracts to attacks or exploitations listed in the
following two documents:

http://solidity.readthedocs.io/en/develop/security-considerations.html
(this specific document as it was written on the 20th
September 2017)

https://github.com/ConsenSys/smart-contract-best-practices
(this specific document as it was written on the 20th
September 2017)

Slock.it Confidential Document—Page 4

 Etherisc Smart Contracts

2.2 Areas Out of Scope
Any file not included in the agreed six smart contracts listed above or
within the Github Hash version agreed above.

Assessment of any solution, site or device for physical security.

Any issues not contained within code owned by the customer unless
otherwise specified.

Developing exploits or proof of concepts for vulnerabilities found.

No development or remediation work will be conducted as part of this
engagement, including development of security assessment tools,
techniques, scenarios, standards or metrics.

Implementation for any recommendations developed in this phase of the
project, including documentation of any existing or recommended
processes, standards, policies or guidelines.

Any security assessment for other applications besides those specified
above, this includes the hosting environment of the application.

Any security assessment of the EVM byte code, Solidity compiler,
Ethereum protocol and implementations, user interfaces and any
documentation, regardless of release date.

Slock.it Confidential Document—Page 5

 Etherisc Smart Contracts

3. Executive Summary
The ‘crowdsale’ is split into different timeslots where certain individuals
may be allowed to buy tokens. This is enforced by the DipTge contract.
Buying tokens through the DipTge contract results in a minting process
through the DipToken contract. This contract is a token contract
implementing ERC20 standards and adds additional functionality including
pausing and minting. The final contract is a vesting contract that enables
said individuals to vest any ERC20 token (in this case the DipToken) and
redeem it after the end of vesting period.

4. Risks
The suggestions delivered as part of this engagement are made based on
Slock.it UG and/or industry accepted practices, nothing contained herein
(or in any deliverables provided hereunder) should be relied upon as or
otherwise considered to be a certification, warranty, guarantee, or other
validation that your computing environment is and will remain secure from
attack.

Ethereum smart contracts are a fairly new technology which lack many of
the analysis tools from other, more mature programming language. For
this reason, Slock.it UG makes no warranties, express or implied, in this
document. Furthermore, the conduct of this review does not warrant that
the smart contracts reviewed will be free from bugs, errors, exploits or
generally impervious to attack, even after our suggestions have been
implemented.

Finally, all suggestions provided, if any, should be implemented only after
thorough testing to ensure that no performance anomalies are introduced.
In some cases, additional work will be required based upon actual
business needs and applications that may be deployed by Etherisc.

Slock.it Confidential Document—Page 6

 Etherisc Smart Contracts

5. Code Analysis

DipTge

Ref. Issue Description

5.1

Medium

Severity
Pause functionality
has limited effect.

The pause function from the token contract does not
influence the minting process, because the buyToken
function from DipTge is using mint in order to create
tokens for the user, even if the token contract is paused,
users can still buy tokens. This might be a risk in case the
token contract is compromised. The same is true for the
salvageTokens function.

Suggested Solution
Add whenNotPaused modifier to the affected functions.

5.2

Critical

Severity

Ownership of
DipToken

The DipTge contract is the owner of the DipToken
contract. Only onlyOwner functions that are implemented
into DipTge can be executed successfully. It is the pause
system as a whole that is affected by this issue as well as
the salvageTokens function in DipToken. The only way to
pause the token contract is through the constructor, which is
discarded after creation. After the initial pause, there is no
function to pause it again at a later stage, in case of
emergency.

Suggested Solution
Implement a forward function in DipTge which can only be
called by the owner.

5.3
Low

Severity
Fallback function

The fallback function as inherited by the Crowdsale.sol
contract uses more than 2300 gas and will generally fail if
the call is not explicitly sending more gas. This means any
<address>.send or <address>.transfer to this
function will fail.

Slock.it Confidential Document—Page 7

 Etherisc Smart Contracts

5.4

Medium

Severity

Missing invariants

Invariants are a good way to ensure that everything in the
contract works as expected. They should be defined as
states that are never reachable and run an assert on them.
This will warn the user against irregular and unexpected
behaviour and shows security leaks in advance, or even
prevent them from happening at all. There are Invariants in
the spec.

Suggested Solution
We recommend checking the spec Invariants after each
state changing function call.

5.5

Medium

Severity
Validation of input
parameter in
DipWhiteListed

Crowdsale

In the constructor from DipWhiteListedCrowdsale a
validation of the input parameters is missing.

Suggested Solution
Validation of that input data would help ensure that the
passed timestamps are consistent with each other.

5.6

Medium

Severity
Unsafe Math
operation

Use of subtraction without safe math functionality at
DipWhitelistedCrowdsale.sol L111.

Suggested Solution
Use safeMath library for this operation

5.7

Low

Severity
Min cap has no
purpose

There is no minimum cap in the specification and it is not
enforced in the contracts.

Suggested Solution
It should be either removed from the buyToken function or
enforced by allowing a refund in the case it is not met.

5.8
Low

Severity
No speed bumps

In case an attacker takes control of the keys of the wallet
contract/address, there is no delay in value transfers to
respond.

Suggested Solutions
Delay every value transfer by a certain amount of time.

Slock.it Confidential Document—Page 8

 Etherisc Smart Contracts

DipToken

5.9

No

Severity
Unused state
changing code

In Crowdsale.sol L89 the function forwardFunds is
never called.

Suggested Solution
Remove unused code since it removes complexity and
therefore security risks

5.10

Low

Severity
Calling a
non-constant
function from a
constant function

DipWhitelistedCrowdsale.sol L223

setCrowdsaleState is called, which is a non-constant
function. validPurchase, the function from which it is
called, is a constant. Therefore no state change will be
made.

Suggested Solution
Remove function call

5.11

No

Severity
Inconsistent usage
of type alias

In DipWhitelistedCrowdsale.sol L89 uint is used
instead of uint256 which is used in the rest of the contract.

Suggested Solution
Use uint256 (preferred) or uint consistently

VestedToken

5.12
Critical

Severity
stakeFor lock

The stakeFor function stakes token without a timelock.
Releasing tokens only works with the releaseTimeLock
function and the internal accounting. Therefore, stakeFor
should be an internal function like stake. Otherwise an
actor could call stakeFor directly and would never be able
to release his token.

Suggested Solution
Make stakeFor internal

Slock.it Confidential Document—Page 9

 Etherisc Smart Contracts

5.13

No

Severity
Missing Natspec
documentation

The documentation of the code is limited and is not
complete (examples: VestedTokens.sol and
TokenStake.sol are missing NatSpec documentation)

Suggested Solution
A complete documentation of every function following the
NatSpec standard.

5.14
Low

Severity

Owner not used

VestedToken inherits from TokenTimeLock which inherits
from Ownable. No functionality of Ownable is used in the
contract.

Suggested Solution
Remove inheritance from Ownable

TokenStake

5.15

No

Severity
Add indexed to
events involving
addresses

It is recommended to index addresses for better light client
integration.

Suggested Solution
Add indexed in TokenStake.sol L27-28 and
VestedToken.sol L19

5.16
No

Severity
Add public getter

It is more convenient for UI developer and for interoperability
with other smart contract to add public getters for state
variables

Suggested Solution
add missing “public” to TokenStake.sol L24 and
DipTge.sol L37

Slock.it Confidential Document—Page 10

 Etherisc Smart Contracts

6. Design Analysis
This section analyzes whether the smart contracts may be vulnerable to
common security risks and whether certain industry-standard security
recommendations were followed.

6.1 External calls

The most important security flaws arise from calls to unknown external
sources. Except of one call to msg.sender, all three contracts do not have
any calls to unknown contracts. The only calls are to the wallet, to the
DipToken contract, to an ERC20 token contract supplied by the owner and
the one call to msg.sender. This call is executed using the transfer
functionality.

Only 2300 gas are sent with the call, therefore no state changes can occur
in the case of any code execution of code which belongs to msg.sender.
The calls to the wallet and the DipToken are also executed either
through send or transfer, both only giving 2300 gas to the process.
Return parameters of send are properly caught and checked.

Running the function salvageTokens from DipTge and DipToken will
send all tokens owned by the contract on any given ERC20 token to a given
address. This call is only secured through the onlyOwner modifier.

6.2 Modifier

‘Callable’ functions for the user (non-owner) are restricted to the necessary
calls for the token, the token sale and the vesting processes through
modifiers.

Slock.it Confidential Document—Page 11

 Etherisc Smart Contracts

6.3 Math operations

In order to remove the risk of overflow and underflow most mathematical
operations are done with the SafeMath library provided by
OpenZeppelin, except of one (see issue 5.6 for this exception). The
function calculateMaxContribution is using an unsafe subtraction
which should be replaced with the safe sub function of the safeMath
library.

There is one division operation in the TokenStake contract. The function
grant divides the vestingPeriod in parts. Below it we find a check that
will throw if there was a integer rounding. This requires the user that calls
grant to choose a vestingPeriod and a cliff that does not create an
uneven split.

6.4 Griefing through inactivity

The contracts do not contain any logic where one user has to wait for input
of another user. Approving token transfers for another user might fall
under that category, but as it is a standard ERC20 token, dapps from third
party institutions should be aware of that.

6.5 Race conditions

Due to the fact that there are no unsafe external calls, there is no
possibility of re-entrancy or cross function race conditions, therefore there
are no mutex implementations or similar constructs.

Slock.it Confidential Document—Page 12

 Etherisc Smart Contracts

6.6 Transaction ordering

The contracts do not contain transactions that depend on one another,
each action from the user is one closed use case. There are stages in the
contract but having several transactions to the contract in one block does
not affect its security.

6.7 Timestamp dependencies

Timestamps play an important role in these contracts. However, the use
cases do not require a totally accurate timestamp to function properly. In
the contracts, now is used to make sure that a set timeframe is enforced
upon making a purchase or changing the state of the ‘crowdsale’. The
small time difference between the miners can practically be ignored
looking at the uncertainty that arises from the blocktime itself.

One possible attack vector lies in the fact that the miner can manipulate
the timestamp to a certain degree. Such an attack would allow the miner to
either accept or reject transactions that call the buyToken function, by
adding or subtracting from the timestamp accordingly. In some edge
cases, this could change the outcome of the crowdsale as a whole, by
denying the lower funding limit to be reached.

6.8 Unbound loops

There are two for loops, both are capped by user input. The first is
DipTge and is used to add multiple addresses to an array. The second is a
loop to set a number of timelocks dependent on the vestingPeriod
found in VestingToken. The user can send large arrays as input
parameter which will lead to an out-of-gas exception. But this does not
affect the security of the contracts as a whole, or other users.

Slock.it Confidential Document—Page 13

 Etherisc Smart Contracts

6.9 DoS

At the buyingToken function potential code from the user is called. This
call, however, is used to pay back the user and does not influence the
workflow of the crowdsale. To throw an exception at this point in the code
would cost the user even more then accepting the money back. Every call
is handling one value transfer at a time or in the case of the grant
function only its own assets, there is no attack surface for DoS attacks
against the contract system. Nevertheless, a DoS attack against the
Ethereum network is always possible. Someone could spam the network
by sending transactions with high gas prices, leading to a situation where
the contract system can not be used with average gas prices.

6.10 Circuit breakers

It is important to implement methods that stop the workflow in case of
emergencies. Such methods could include pause functions. The
DipToken includes a pause mechanism that enables the owner to stop all
transfer and approval functions. This implementation is not
practically usable due to the issues described in 5.1 and 5.2.

6.11 Speed bumps

In conjunction with a working pause system, speed bumps delay any
transfers of value so there is time to pause the system and respond. It is
only at the moment of buying tokens that Ether is used and sent. This Ether
goes straight into a pre-assigned wallet leaving no incentive for an attacker
to attempt to withdraw any Ether from the contract itself. In case the wallet
contract is taken over by an attacker, there would be no time to respond.

Slock.it Confidential Document—Page 14

 Etherisc Smart Contracts

6.12 Type deduction

We found no possibility of type deduction in the contracts.

6.13 Call data

There is no direct use of msg.data which excludes errors through dirty
higher bits.

6.14 Inheritance overwrite

The inheritance graph is extensive, nevertheless, there is no unexpected
use of super functions along the C3 linearization graph. All super calls
are directed towards function signatures that are unique to their parent
contracts and thus avoid calling unintended functions.

6.15 Upgradability

None of the contracts are updatable. It would be a security improvement
for the contracts in case of an unexpected error or newly discovered EVM
vulnerability. Making the tokens upgradable will allow the owner to change
broken code and unlock functionality. It is also important to consider
updatable contracts in the context of future compatibility and protocol
changes. Updateable contracts would mean the introduction of secure
governance and a set of procedures on how to upgrade the contracts.
Upgradability means the contracts can be changed at a loss of trust from
users (as they can no longer rely on the functionality they initially trusted to
exist in the future). All being considered, we still recommend including
upgradability in the beginning and to remove that option in the future (by
setting the owner key to zero) once the contracts have been battle tested.

Slock.it Confidential Document—Page 15

 Etherisc Smart Contracts

6.16 Fallback functions

Except for the fallback function in the DipTge contract there are no others
defined. The one in DipTge will not work when used with
<address>.send or <address>.transfer because only 2300 gas is
initially supplied. Both the other contracts will throw by default.

6.17 Invariants

Invariants should be checked at the end of a function to ensure that the
reached state is safe. Some invariants are checked in the code (such as
validPurchase) but they are not checked at the end of a transaction (in
particular in buyTokens). The specification defines a number of invariants
which are not enforced in invariant checks. This reduces their overall
security. Invariants are preventive measures that ensure the correct
operation of the contract. (See issue 5.4)

Slock.it Confidential Document—Page 16

 Etherisc Smart Contracts

7. Disclaimers
Except as expressly set forth in this agreement or any applicable
attachment, Slock.it UG disclaims all other warranties and representations
with respect to the services and deliverables, express or implied, either in
factor by operation of law, statutory or otherwise, including warranties of
merchantability, fitness for a particular purpose, non-infringement, or title
and warranties as to the quality, suitability, adequacy, accuracy, or
completeness of the services and deliverables.

The warranties, obligations, and liabilities of slock.it ug and the rights,
claims, and remedies of Etherisc specifically set forth in this review are
exclusive. Etherisc hereby releases Slock.it UG from all other warranties,
obligations, and liabilities, than otherwise mentioned in review and hereby
waives all other rights, claims, and remedies against Slock.it UG and its
affiliates, express or implied, arising by law or otherwise, with respect to
any equipment, information, or other tangible or intangible items or
services provided under this agreement, and releases Slock.it UG from all
liability for loss or damage sustained relating thereto.

Slock.it Confidential Document—Page 17

