CLOUDFLARE

A Channel Compendium
April 24, 2014

John Graham-Cumming

www.cloudflare.com ﬂ CLOUDFLARE

Often mentioned; rarely understood

C.A.R.Hoare
Communicating
Sequential
Processes

www.cloudflare.com

Where channels came from

Towards & Theory of
COMMUNICATING SEQUENTIAL PROCESSES
C. A. R. HOARE

February 1979.

Summary, This paper extends the methods of a previous
paper {] to describe nondeterministic processes. These

are modelled as sots of deterministic processes. The

problem of concealment of internal communication Is solved.
Some additlonal operators are defined, and thelr use 11lustrated
In the design of some simple modules of an operating system.

www.cloudflare.com

Channels

3.5.

B — R

www.cloudflare.com

Channels.

The definition of parallel iteration glven In the previous
section provides a method of triggering a number of actlvations
of a process S, which run in parallel with each other. Unfortunately,
this definition Is not very useful, because it Is Impossible to
communicate with some particular activation of §; any symbol
communicated with the parallel Iteration may be accepted by any
of the activations already triggered. What we require Is that
each new activation of $ comes equipped with a new channel,
one end of which is connected to the activation, and the other to
the process which triggered that activation. The channel is then
used by each process to achieve communication with the other.
Each process should be able to declare its own (different) local
name for the channel.

Yo achieve the required effect, we use a denumerably Infinite
set CHAR of channels (the natural numbers will serve this purpose
If required). In order to "acquire' a fresh channel, a process §
should simply “input" It:

(x:CHAN » ... 2.5 ... 2?n:NN...)

The local name '2"' stands for the channel, and Is used for
communication rather like a process name. Suppose another process
T Is running in parallel with S, and contains an exactly similar
command:

(Y CHAN =+ ...y7n:NN ... y.3 .

If botYS and T are V ready to execute these commands simultaneously,
the-effect will be that both will "input" the same arbltrary member
of CHAN. In S this will™Be bound to x and In T Tt will be bound

to y. Nevertheless, because x and y denote the same channel, every
communication on x by S will match a communication on y by T.

In general, more than one channel will be required between
S and T, and we must ensure that any newly acquired channel is
distinct from all previously acquired ones. This can be achieved

by a third process GEN, whose sole task Is to allocate fresh e

A couonare

CSP

- Communication == synchronization

VendingMachine = coin — choc — STOP

Person = (coin — STOP)U(card — STOP)

VendingMachine |[{ coin}|| Person = (coin — choc — STOP) O (card — STOP)

- When communication and synchronization go together it’s
easy to reason about processes

www.cloudflare.com

Channels

* Quick syntax review

c := make(chan bool)- Makes an unbuffered channel
of bools

c <- x - Sends a value on the channel
<- ¢ - Receive a value on the channel
x = <- c¢ - Receive a value and stores it in x

x, ok = <- c - Receive a value; ok will be false if
channel is closed and empty.

www.cloudflare.com

Unbuffered channels are best (mostly)

- They provide both communication and synchronization

func from(connection chan int) {
connection <- rand.Intn(100)

}

func to(connection chan int) {
1 := <- connection
fmt.Printf("Someone sent me %d\n", i)

}

func main() {
cpus := runtime.NumCPU/()
runtime.GOMAXPROCS (cpus)

connection := make(chan int)
go from(connection)
go to(connection)

www.cloudflare.com

SIGNALLING

Wait for an event

- Sometimes just closing a channel is enough

:= make(chan bool)

go func() {
// ... do some stuff
close(c)

}H(O)

// ... do some other stuff
<- C

* Could replace close(c) withc <- true

www.cloudflare.com

Coordinate multiple goroutines

* Close a channel!

func worker(start chan bool) {
<- start
// ... do stuff

}

func main() {
start := make(chan bool)

for i := 0; i < 100; i++ {
go worker (start)

}

close(start)

// ... all workers running now

}

www.cloudflare.com

Select

Select statement enables sending/receiving on multiple
channels at once

select {
case X := <- somechan:
// ... do stuff with x

case y, ok := <- someOtherchan:
// ... do stuff with y
// check ok to see if someOtherChan
// is closed

case outputChan <- z:
// ... ok z was sent

default:
// ... no one wants to communicate

www.cloudflare.com

Common idiom: for/select

for {
select {
case X := <- somechan:
// ... do stuff with x

case y, ok := <- someOtherchan:
// ... do stuff with y
// check ok to see if someOtherChan
// is closed

case outputChan <- z:
// ... ok z was sent

default:
// ... no one wants to communicate

www.cloudflare.com

Terminate workers

* Close a channel to terminate multiple goroutines

func worker(die chan bool) {
for {

select {

// ... do stuff cases
case <- die:

return

}
}

func main() {

die := make(chan bool)

for i := 0; 1 < 100; i++ {
go worker (die)

}

close(die)

www.cloudflare.com

Verify termination

- Terminate a goroutine and verify termination

func worker(die chan bool) {
for {

select {
// ... do stuff cases

case <- die:
// ... do termination tasks
die <- true
return

}
}

func main() {
die := make(chan bool)
go worker (die)
die <- true
<- die

)

www.cloudflare.com

Closed channels never block

func main() {
¢ := make(chan bool)
close(c)
X 1= <- C
fmt.Printf (“%#v\n”, x)
}

func main() {
c := make(chan bool)
close(c)
X, ok := <- ¢
fmt.Printf (“%#v %#v\n”, x, Ok)

x has the zero
value for the
channel’s type

}

func main() {
c := make(chan bool)
close(c)
c <- true

}

www.cloudflare.com

Closing buffered channels

func main() {
c := make(chan int, 3)
c <- 15
c <- 34
c <- 65
close(c)

fmt.Printf(“%d\n",
fmt.Printf(“%d\n”,
fmt.Printf(“%d\n",

Drains the buffered

fmt.Printf(“%d\n", data

Starts returning the
zero value

www.cloudflare.com

range

Can be used to consume all values from a channel

func generator(strings chan string) {
strings <- "Five hour's New York jet lag"
strings <- "and Cayce Pollard wakes in Camden Town"
strings <- "to the dire and ever-decreasing circles"”
strings <- "of disrupted circadian rhythm."
close(strings)

}

func main() {
strings := make(chan string)
go generator(strings)

for s := range strings {
fmt.Printf("%$s ", s)

}
fmt.Printf("\n");

}

www.cloudflare.com

HIDE STATE

Example: unique ID service

- Just receive from id to get a unique ID
- Safe to share id channel across routines

:= make(chan string)

go func() {
var counter int64 = 0
for {
id <- fmt.Sprintf("%$x", counter)
counter += 1
}
}()

X = <- 1id // x will be 1
X = <= 1id // x will be 2

www.cloudflare.com

Example: memory recycler

func recycler(give, get chan []byte) {
g := new(list.List)

for {
if g.Len() == 0 {
g.PushFront (make([]Jbyte, 100))

}

e := g.Front()

select {
case s := <-give:
g.PushFront(s[:0])

case get <- e.Value. ([]byte):
gq.Remove(e)

}

|

www.cloudflare.com

DEFAULT

select for non-blocking receive

A buffered channel
makes a simple
queue

idle:= make(chan []byte, 5)

select {
case b = <-jdle:

default: Try to get from the

makes += 1 idle queue
b = make([]byte, size)

|dle queue empty?
Make a new buffer

www.cloudflare.com

select for non-blocking send

A buffered channel
makes a simple
queue

idle:= make(chan []byte, 5)

select {
case idle <- b:

default:

} Try to return buffer

to the idle queue

|dle queue full? GC
will have to deal
with the buffer

www.cloudflare.com

NIL CHANNELS

nil channels block

func main() {
var ¢ chan bool
<- C

}

func main() {
var ¢ chan bool
c <- true

www.cloudflare.com

nil channels useful in select

for {
select {
case x, ok := <-cl:
if !ok {
cl = nil

}

case X, ok := <-c2:
if lok {
c2 = nil
}
}
if ¢l == nil && c2 == nil {
return

}

www.cloudflare.com

Works for sending channels also

= make(chan int)
= make(chan bool)
func(src chan int) {
for {
select {
case src <- rand.Intn(100):

case <-d:
src = nil

}

}(c)

fmt.Printf ("
fmt.Printf ("
d <- true

fmt.Printf ("

www.cloudflare.com

TIMERS

Timeout

func worker(start chan bool) {
for {
timeout := time.After (30 * time.Second)
select {
// ... do some stuff

case <- timeout:
return

func worker(start chan bool) {
timeout := time.After (30 * time.Second)
for {
select {
// ... do some stuff

case <- timeout:
return

www.cloudflare.com

Heartbeat

func worker(start chan bool) {
heartbeat := time.Tick(30 * time.Second)
for {
select {
// ... do some stuff

case <- heartbeat:
// ... do heartbeat stuff

www.cloudflare.com

EXAMPLES

Example: network multiplexor

* Multiple goroutines can send on the same channel

func worker (messages chan string) {
for {

var msg string // ... generate a message
messages <- msg

}
}

func main() {

messages := make(chan string)
conn, _ := net.Dial("tcp", "example.com")

for i1 := 0; 1 < 100; i++ {
go worker (messages)

}
for {

msg := <- messages
conn.Write([Jbyte(msg))

Example: first of N

Dispatch requests and get back the first one to complete

type response struct {
resp *http.Response
url string

}

func get(url string, r chan response) {
if resp, err := http.Get(url); err == nil {
r <- response{resp, url}
}
}

func main() {
first := make(chan response)
for , url := range []string{"http://code.jquery.com/jquery-1.9.1.min.js",
"http://cdnjs.cloudflare.com/ajax/libs/jquery/1.9.1/jquery.min.js",
"http://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js",
"http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.9.1.min.js"} {
go get(url, first)

... do something

www.cloudflare.com

Passing a ‘response’ channel

type work struct {
url string
resp chan *http.Response

}

func getter(w chan work) {
for {
do := <-w
resp, _ := http.Get(do.url)
do.resp <- resp

}

func main() {
w := make(chan work)

go getter(w)
resp := make(chan *http.Response)
w <- work{"http://cdnjs.cloudflare.com/jquery/1.9.1/jquery.min.js",

resp}

r := <- resp

www.cloudflare.com

Example: an HT TP load balancer

* Limited number of HTTP clients can make requests for
URLs

- Unlimited number of goroutines need to request URLs and
get responses

- Solution: an HTTP request load balancer

www.cloudflare.com

A URL getter

type job struct {
url string
resp chan *http.Response

type worker struct {
jobs chan *job
count int

func (w *worker) getter(done chan *worker) {
for {
j := <- w.Jjobs
resp, _ := http.Get(j.url)
j.resp <- resp
done <- w

www.cloudflare.com

A way to get URLs

func get(jobs chan *job, url string, answer chan string) {
resp := make(chan *http.Response)
jobs <- &job{url, resp}
r := <- resp
answer <- r.Request.URL.String()

}

func main() {
jobs := balancer (10, 10)
answer := make(chan string)
for {
var url string
if , err := fmt.Scanln(&url); err != nil {
break

}

go get(jobs, url, answer)
}
for u := range answer {
fmt.Printf("%s\n", u)

A load balancer

func balancer(count int, depth int) chan *job {
jobs := make(chan *job)
done := make(chan *worker)
workers := make([]*worker, count)

for i := 0; i < count; i++ {
workers[i] = &worker{make(chan *job,
depth), 0}
go workers[i].getter (done)

}

go func() {
for {

var free *worker

min := depth

for , w := range workers {

if w.count < min {

free = w
min = w.count

}

var Jjobsource chan *job
if free != nil {
jobsource = jobs

}

www.clioudliale.culll

THANKS

The Go Way: “small sequential pieces joined
by channels”

