
Karlsruher Institut für Technologie

Voltage-based Covert Channel

Communication between logically

separated IP Cores in FPGAs

Bachelor Thesis of

Cong Dang Khoa Nguyen

at the Department of Informatics
Institute of Computer Engineering

Chair of Dependable Nano Computing

Reviewer:

Advisor:

Prof. Dr.-Ing. Mehdi Tahoori

M.Sc. Dennis Gnad

Tag der Anmeldung: 01. April 2018

Tag der Abgabe: 31. August 2018

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Erklärung

Ich versichere hiermit wahrheitsgemäß die vorliegende Arbeit selbstständig und ohne fremde
Hilfe angefertigt zu haben. Alle benutzten Hilfsmittel sind vollständig angegeben, und alle
Stellen, die wörtlich oder sinngemäß aus veröffentlichtem oder unveröffentlichtem Schrift-
tum entnommen sind, habe ich als solche gekennzeichnet.

Karlsruhe, den 31. August 2018

Cong Dang Khoa Nguyen

Abstract

Field Programmable Gate Arrays (FPGAs) are increasingly used in systems like Systems-
on-Chip (SoCs) or cloud computing. In these systems users are getting remote access to
programmable blocks of the FPGA, which can be customized to their needs. Nowadays, one
FPGA is assigned to one user, but in the near future there will be multiple users on one FPGA,
which creates new security vulnerabilities at an electrical level. A successful side-channel
attack was proven by using malicious IP-cores or a loaded software accelerator containing
a Time-to-Digital Sensor (TDC-Sensor), which can measure the voltage fluctuations. These
information and a correlation analysis is already enough to successfully get the secret keys
of an AES implementation. There is also a successful fault attack, in which several Ring
Oscillators(ROs) are used to crash FPGAs inside System-on-Chip (SoC) systems. Before
multi-user FPGAs are being used frequently, as many security vulnerabilities as possible
must be found. In this thesis the possibility to implement a voltage-based Covert Channel
(CC) between logically separated IP-Cores in FPGAs is explored. To do so a concept is
presented, where the two components from the successful attacks are used as sender (ROs)
and receiver (TDC-Sensor) of the CC. The ROs are turned on and off in a specific way which
depends on the dataword being sent, to create a specific waveform of the voltage fluctuations
in the "Power Distribution Network" (PDN) so that the TDC-Sensors can read it and then,
can be interpreted into data. Finally, the working transmission is tested in reliability.

Zusammenfassung

Field Programmable Gate Arrays (FPGAs) werden zunehmend in Systemen wie System-on-
Chip (SoCs) oder Cloud Computing eingesetzt. In diesen Systemen erhalten Nutzer Zugriff
auf programmierbare Bausteine des FPGAs aus der Ferne, die an ihre Bedürfnisse ange-
passt werden können. Heutzutage wird ein FPGA einem Nutzer zugewiesen, aber in naher
Zukunft wird es mehrere Nutzer auf einem FPGA geben, wodurch neue Sicherheitlücken
auf elektrischer Ebene entstehen. Ein erfolgreicher Seitenkanal-Angriff wurde durch den
Einsatz bösartiger IP-Cores oder eines geladenen Software-Beschleunigers, der Time-to-
Digital-Sensoren (TDC-Sensoren) enthält, der die Spannungsschwankungen messen kann,
nachgewiesen. Diese Informationen und eine Korrelationsanalyse reichen bereits aus, um
die geheimen Schlüssel einer AES-Implementierung erfolgreich herauszulesen. Es gibt auch
einen erfolgreichen Fehlerangriff, bei dem mehrere Ringoszillatoren (ROs) verwendet we-
ren, um FPGAs in System-on-Chip-Systemen(SoC) zum Absturz zu bringen. Bevor FPGAs
immer häufiger von mehreren Nutzern gleichzeitig genutzt werden, sollten so viele Sicher-
heitslücken wie möglich gefunden werden. In dieser Arbeit wird die Möglichkeit unter-
sucht, einen spannungsbasierten verdeckten Kommunikationskanal (CC) zwischen logisch
getrennten IP-Cores in FPGAs zu implementieren. Dazu wird ein Konzept vorgestellt, bei
dem die beiden Komponenten der erfolgreichen Attacken als Sender (ROs) und Empfänger
(TDC-Sensor) des CCs verwendet werden. Die ROs werden auf eine bestimmte Art und
Weise ein- und ausgeschaltet, die von dem gesendeten Datenwort abhängt, um eine spezifi-
sche Wellenform der Spannungsschwankungen im "Power Distribution Network"(PDN) zu
erzeugen, so dass die TDC-Sensoren es lesen und als Daten interpretiert werden können.
Schließlich wird die Übertragung durch den CC auf Zuverlässigkeit getestet.

Contents

1. Introduction 1

1.1. Motivation . 2

1.2. Overview . 2

2. Background and Related Work 3

2.1. FPGA . 3

2.2. HDL . 3

2.3. Power Distribution Network . 4

2.4. Ring Oscillator . 4

2.5. IP Cores . 4

2.6. Covert Channel . 5

2.7. Covert Channels in FPGAs . 6

2.8. Ring Oscillators for Fault Attack . 7

2.9. TDC-Sensors for Side-Channel Attack . 8

3. Methods for Voltage-based Covert Channels in FPGAs 11

3.1. Overview . 11

3.2. Signal Coding . 12

3.3. Construction of Sender . 12

3.4. Construction of Receiver . 12

3.5. Combining Sender and Receiver . 13

4. Experiments and Implementation 15

4.1. Overview . 15

4.2. Shaping Voltage in PDN . 17

4.2.1. Method-1 for Sending 1-Bits . 18

4.2.2. Method-2 for Sending 0-Bits . 20

vii

Contents

4.2.3. Test Transmission by combining Method-1 and Method-2 20
4.2.4. Reverse Method-1 for Sending 0-Bits 21
4.2.5. Combined Sending and Receiving 22

4.3. Higher Error Tolerance by Skipping Bits outside Timeframes 23
4.4. Using VIO and TCL-Script for Testing . 24

5. Results 27

5.1. Transmission with Timeframe and Boundaries 27
5.2. Transmission with adjusted Timeframe and Boundaries 29
5.3. Discussion . 36
5.4. Future work . 36

6. Conclusion 37

6.1. Conclusion . 37

A. Appendix 39

A.1. VHDL Code . 39
A.2. TCL-Script . 47
A.3. Python-Script . 49

Bibliography 53

List of Figures 55

viii

1. Introduction

Field Programmable Gate Arrays (FPGAs) are increasingly used in systems like Systems-
on-Chip (SoCs) or cloud computing. In these systems users are getting remote access to
programmable blocks of the FPGA, which can be customized to their needs. Nowadays, one
FPGA is assigned to one user, but in the near future there will be multiple users on one FPGA,
which causes security issues. There are "Intellectual Property Cores" (IP-Cores), which
are already programmed blocks by different developers and have different functions. Since
anyone can create an IP-core, it is possible that some of those are created for a malicious
purpose, hence they are not trustworthy. So theoretically it is possible for IP-Cores to contain
hardware-trojans. If a user installs the malicious IP-Cores, hardware-trojans can infiltrate its
systems only through software (i.e. FPGA bitstreams), which is a security problem.
It has already been shown that isolation primitives on the logical level can increase security
between IP-Cores. However, the state of the art isolation mechanism Moats and Drawbridges

[1] was already proven in [2] and [3] to not have proper security against attacks through the
electrical level, even when only standard FPGA-logic are used.
The voltage drop-based fault attack [3] uses several ROs to crash the FPGA. By turning ROs
on and off voltage fluctuations in the PDN are caused. So by turning all ROs on and off at
a specific frequency which produces huge voltage fluctuations that the PDN can not handle
and thus the FPGA crashes.
The side-channel attack [2] uses TDC-Sensors (TDCs), which can measure the voltage
fluctuations of the PDN, caused by processes and runtime variations. These information
and a correlation analysis is already enough to successfully get the secret keys of an AES
implementation. The TDCs can be implemented by using malicious IP-Cores or a loaded
software accelerator.

1

1. Introduction

1.1. Motivation

With the voltage drop-based fault attack and the side channel attack, it is already proven, that
security threats in a single FPGA accessed by multiple users exist. With this thesis the goal
is to show another possible security threat by using the already working components of those
two successful attacks to create a Covert Channel between two logical isolated FPGA-blocks
to exchange information between these systems. Ring Oscillators (ROs) can be used as data
senders, while TDCs act as data receivers.
To achieve this goal, the first thing to do was to experiment with different activation se-
quences of the Ring Oscillators, to shape different voltage fluctuations of the PDN and
then use the best shape for the transmission. After that, the stability and the speed of the
communication in the covert channel is tested.

1.2. Overview

The content of this thesis is split into six chapters. The first chapter contains the introduction
to the thesis. The second chapter contains the background information and the related
work about relevant components and tools, such as the FPGA-board, Hardware Description
Language (HDL), Power Distribution Network, Ring Oscillators and TDC-Sensor. Followed
by the basics of an IP-Core and a Covert Channel and some more details on an existing
temperature-based Covert Channel (CC). After that the construction of both sender and
receiver are shown and explained.
The third chapter explains the theoretical methods of how to successfully design an electrical
Covert Channel in two different blocks in the FPGA.
The third chapter shows the construction of the design followed by different experiments
to test how the changes of different RO activation influences the changes in the voltage of
the PDN. While doing these experiments the design has been implemented piece by piece.
After the Covert Channel was implemented stress tests were run. These tests run 100000
transmissions in a row and write the result in a csvfile. In the fourth chapter the results of the
tests are shown and discussed. These were then being evaluated. The last chapter contains
the conclusion.

2

2. Background and Related Work

2.1. FPGA

FPGA (Field Programmable Gate Array) is a semiconductor device which is widely used
in electronic circuits. Different than other integrated circuits e.g. Application Specific
Integrated Circuits (ASICs), which are manufactured for a specific design task and can not
be reprogrammed, FPGAs contain programmable logic blocks and interconnection circuits,
which can be reprogrammed after manufacturing. So FPGAs contain circuit which do not
have any functions yet, unless they are being designed. To create a design we use a Hardware
Description Language (HDL) like Verilog and VHDL. Then the HDL is synthesized into a bit
file using a bitgen to configure the FPGA. The configuration is stored in the FPGA-internal
configuration and must be configured every time power is supplied [4].

2.2. HDL

A Hardware Description Language (HDL) is a type of computer language used to describe
the behavior and structure of electronic systems like ASICs, FPGAs and other digital circuits.
HDL enables a formal description of electronic circuits which can be analyzed and simulated.
The HDL description can also be synthesized into a netlist and then be placed and routed to
create an integrated circuit. HDL looks like a programming language with an important
difference, that HDL is inherently parallel, and requires the designer to manually control the
sequence in which computations are performed, i.e. in which clock cycle. The two most used
HDLs are Very High Speed Integrated Circuit Hardware Description Language (VHDL) and
Verilog [5].

3

2. Background and Related Work

2.3. Power Distribution Network

A Power Distribution Network (PDN) is responsible for the power supply of modern ICs. A
PDN has resistive, capacitive and inductive components at board level and on-chip. Through
different operating conditions the power consumption changes, which causes the voltage
in the network to be unstable. Since the power consumption changes, the supply current
and voltage will change, too, which can be measured depending on the power. (P = V · I)
Differences in power causes voltage fluctuations in the PDN. These fluctuations affects
circuit delay, which can be measured to reveal power consumption information about a
running workloard. This information can be used e.g. to recover secret keys [2].

2.4. Ring Oscillator

Ring Oscillators (ROs) are cascaded combinations of delay stages which are connected in a
close loop chain. In [3] it was shown, that ROs, implemented in an FPGA, can change the
voltage of the PDN, and induce a crash of an FPGA. In this work we actively use the ROs
to influence the voltage of the PDN and shape them into waveforms, which the TDC-Sensor
can interpret. To find out, how to best influence the voltage, many experiments were run, in
which different kind of RO-Activation were tested while the voltage of the PDN was being
observed.

2.5. IP Cores

An intellectual property core (IP core) is a predefined block of logic or data. It can be used
multiply for FPGAs or ASICs and can be portable across technology generations. Examples
for IP cores are Universal Asynchronous Receiver/Transmitter (UART), central processing
unit (CPU), Ethernet controllers and PCI interfaces. There are three different kind of IP
cores: hard cores, firm cores and soft cores. Soft cores are the most flexible and exist as a
netlist or HDL code. Hard cores are fixed and unchangeable IP designs. The performances in
speed, surface needed and power consumption is optimized, but these cores are less portable
and flexible. The firm cores a mixture of both hard and soft cores [6] [7].
Modern System on Chip (SoC) design often integrate a lot of IP-cores into a single chip.

4

2. Background and Related Work

Also multi tenant FPGAs integrate IP cores from multiple users [8]. Anyone can create an
IP-core, so it is possible that some of those are created for a malicious purpose, e.g. a IP-core
can contain TDC-Sensors, which can read the voltage values from a PDN.

2.6. Covert Channel

Covert channels are a way to secretly exfiltrate information from a system, and thus fall in
the category of computer attacks. They allow hidden communication by using an existing
medium to convey data in small parts, which is virtually undetectable. They add a small
amount of data to a data stream without affecting the main body. A package might contain
as little as 1-2 bits of payload data.

There are different types of CCs.

Covert storage channel

CC that use shared resources, which uses the attribute of the shared resource.

Cover timing channel

CC, which uses the temporal/ordering relationship among accesses to a shared re-
source, e.g. it uses a real-time clock to measure intervals between accesses. Relative
ordering of events are covert timing channels, too.

Temperature covert channel

CC, which uses the temperature to communicate. It creates heat patterns, which spread
through the system, so it can be received at a different position.

Electrical covert channel

CC, which uses voltage to communicate. It creates specific voltage fluctuations in the
PDN, which can be interpreted by decoder.

Noiseless CC

CCs that only the sender and the receiver have access to. In noiseless CCs the receiver
gets the information only from the sender and in noisy CCs the sender’s information
is mixed with meaningless information from others entities. That’s why it additionally
requires a protocol to minimize these interference from other entities.

5

2. Background and Related Work

Noisy CC

CCs that other besides the sender and the receiver have access to.

The key properties which all CCs have in common are the existence (does a channel where
information can be transmitted exist?) and the bandwidth (how fast can information be sent)
of a CC [9].

2.7. Covert Channels in FPGAs

In FPGAs so far, temperature-based covert channels have been shown [10]. This channel
enables circuits located in distant areas to exchange information. The basic idea of a thermal
based CC is to insert a thermal transmitter in the secure IP-core, isolated via Moats and

Drawbridges [1]. The thermal transmitter encodes secret data (encryption key) by creating
heat patterns correlated to the transmitted data. The heat is able to spread through the silicon
die and the chip package. So the external receivers can get these covert transmission in
those heat form. As seen in Fig. 2.1 primitives which were used for the construction of a
temperature-based covert channel:
Transmitter module: This module consists of the data encoder and the heater. The data
encoder encodes the data into the heater control data which is used to control the operation
of the heater. Thus, it provides timing control of the transmitter. The heater consists of ROs
and shift registers (SR).
Receiver module: The components of this module are a RO, a counter and a small control
logic. This module is used to detect the thermal transmission. The RO cycles are recorded
by a 16-bit counter. The counter represents the frequency of the RO, which determine the
temperature. The counter is decoded in two steps. In step 1 the decoder decides on the
transmitted bit and in step 2 the received data stream is decoded. The receiver also has a last
block to decode error detection.
In this work, electrical instead of thermal covert channels will be used, with the main similar-
ity, that they use a CC to communicate between secure IP-cores in FPGAs, which are isolated
via moats. They also use ROs for the transmitter module. While their communication
is thermal based, this work does the same, but is voltage based. It is also most similar
to the covert timing channels, because it hides information in voltage instead of timing
variations.

6

2. Background and Related Work

Figure 2.1.: Thermal Channel Communicator [10]

2.8. Ring Oscillators for Fault Attack

The basic idea of the fault attack in [3] is to try crashing FPGAs by generating voltage drops
temporarily with huge current difference. This is achieved by activating many ROs and let
them toggle. The system gets unstable and crashes within a few milliseconds. For their
implementation only a small part of the FPGA was used (8-35 percent). This procedure was
tested on many FPGA Boards. Every tested FPGA crashed after these voltage drops, some of
them crashed permanently until they were power-cycled. Possible reason for the crash are the
resonance of the voltage regulator, faults inside the JTAG module or loss of the configuration
in the SRAM.
As shown in Fig. 2.2, a Xilinx LUT5 FPGA component is configured as an inverter and their
input is connected their output in a loop. This configuration forms a RO that can oscillate
at a very high frequency. To toggle the RO on and off, there is an AND in the LUT with an
additional input "enable" signal [3]. Standard FPGA tools were used to implement this RO.
In this work the same ROs are being used for the sender module. The construction is shown
in 3.3.

7

2. Background and Related Work

Figure 2.2.: Single ring oscillator [3], implemented using a Xilinx LUT5 FPGA component

2.9. TDC-Sensors for Side-Channel Attack

The basic idea of the power-based side-channel attack in [2] is to measure the voltage
fluctuations, temporary caused by processes and runtime variations, with voltage variation
sensors. Then the voltage traces were used to correlate with a hypothesis of the secret keys.
The more voltage traces there is, the higher the chances to deduce the key. This experiment
was carried out at a Sakura-G board (FPGA). The voltage variation sensor was first placed
nearby the attacked core and then in a position which was further away of that core. After
sending a random plain text to the AES core, the correlation between the cipher text from
the core with the voltage data resulted in a successful key recovery attack in both differently
positioned sensors. As shown in Fig. 2.3, a custom sensor based on the concept of measuring
propagation time of signal with Time-to-Digital Converters (TDCs) is used to sense variation
in supply voltage.
The sensor uses a delay line, where a clock signal goes through a chain of buffers. Since the
delay of these buffers depends on the supply voltage, we can just monitor the buffers. By
adding latches between these buffers the delay line can be tapped. The latches has the same
clock as input as the buffers. When other circuits on the same PDN becomes active, it will
cause a voltage drop which slows down the buffers of the delay line. Thus, the numeric value
of the TDC register will fall [2].
In this work the same TDC-Sensors are used for the receiver module. The construction is
shown in 3.4.

8

2. Background and Related Work

Figure 2.3.: TDC-Sensor [11], to sense voltage fluctuations through variations in the speed
of the buffers

9

3. Methods for Voltage-based Covert

Channels in FPGAs

3.1. Overview

The idea of creating a voltage-based Covert Channel is to use the voltage behavior of the PDN
as the medium, which can be read and influenced by circuit designs in different logically
separated IP-cores. In this work the ROs in [3], which act as sender, are used to shape the
voltage into a specific form like a signal code. The TDC-Sensors in [2], which act as receiver,
are used to read the voltage values of the PDN which can then be interpreted by a decoder.
Before a full data transmission is possible, some preliminary experiments are required.
Firstly, toggling the amount of designed ROs need to cause voltage fluctuations. Secondly,
the voltage fluctuations have to be large enough to be distinguishable from noise. Finally,
a good way of shaping the voltage fluctuations has to be found, so it is similar to a form of
signal codes. Overall, the following software and hardware are used to achieve the goal in
this work:
The FPGA part of the circuit board called PYNQ-Z1 [12] is used to implement the CC design.
To create the design the software Vivado 2017.1 from Xilinx is used. It uses a synthesis tool
to create a netlist with the given code in HDL. Then it calculates an optimal way to place
the netlist in the given board. After that, a bitstream file is generated, which can be used to
program the given board. The design in this work is written in VHDL.

11

3. Methods for Voltage-based Covert Channels in FPGAs

3.2. Signal Coding

This section mentions preferences for the signal coding briefly. The actual signal coding
which is used, is described in section 4. Because the behavior of the voltage fluctuations for
different kind of RO toggling is unknown, to find proper Signal Coding, it has to be tested
and monitored first. The ideal way of Signal Coding would be something like line codes, e.g.
the "Non Return to Zero" (NRZ) line code [13] or something close to it, because it is already
in use and is working. So given a dataword with 8-bits, for all one bits the RO should use a
specific activation sequence to cause the voltage to be high and for all zero bits the voltage
should be low. Hence, two different kind of RO toggling has to be found and then combined
as a sequence.

3.3. Construction of Sender

This section describes the construction of the sender briefly. This will be described in more
details along with the experiments in section 4. For the construction of the sender the ROs
in [3] is used. In total, 2504 ROs are being used to influence the voltage of the PDN. These
are separated into 8 groups, that can be controlled independently. By that, the strength of
a voltage drop can be controlled in 8 levels. The process of the ROs activation is being
handled by a state machine. The state machine iterates through each bit of the dataword and
decide how to activate the ROs. When the machine goes through the dataword, it will be in a
finished state and will deactivate the ROs. It also has two waiting states, one makes sure that
the transmission of each bit is done first, before transmitting the next bit. The other waiting
state is used to adjust the placement of the RO activation 4.1, so that the maxima and minima
would be at the same distance to each other.

3.4. Construction of Receiver

This section describes the construction of the receiver briefly. This will be described in more
details along with the experiments in section 4. For the construction of the receiver the
TDC-Sensors in [2] are used. This also includes the calibration of these sensors, to notice
differences in the voltage of the PDN and the TDC-decode to decode it to binary values

12

3. Methods for Voltage-based Covert Channels in FPGAs

that can be further processed in the system. In this work six TDC-Sensors are being used
with each 63 latches. Boundaries are identified in an experimental way, to find reasonable
upper and lower bounds that can be generated from the ROs. These values are than being
interpreted by a decoder. It decides which bit is being sent. The decided bit then is written
to a transmitted word array.

3.5. Combining Sender and Receiver

The sender and the receiver are placed in two different and logically separated IP-cores,
which uses the PDN as a communication medium. While the sender was sending the data-
word of a specific length by shaping the voltage in the PDN in a given form, the receiver
was trying to extract the dataword out of the read voltage fluctuations of the PDN. The order
of the transmission is as follows. At first a dataword is given for the transmission. Then
for each bit of the dataword the ROs are activated in a given order depending on the bit.
While that is happening, the decoder is getting the read voltage data from the TDC-Sensor.
It interprets the data by having upper and lower boundaries and only recognizes values in
the upper bound as 1 bit and values in the lower boundaries as 0 bit. After the transmission
is done and the dataword is received and written in the transmitted word array, the ROs will
stop.

13

4. Experiments and Implementation

4.1. Overview

Fig. 4.1 shows the complete floorplan of the implemented design in the PYNQ-Z1 board. In
this figure there are three areas. The upper area contains the logic of the TDC-Sensors. The
lower area contains the logic of the ROs. In the middle area there are logic which handles the
process of the transmission. This contains the state machine which handles the activation of
the ROs, the logic for the timeframe, the boundaries, the dataword which is being sent and
the transmitted word.

Fig. 4.2 shows the display of the the Integrated Logic Analyzer (ILA) [14]. We use the
mark_debug VHDL attribute that allows us to monitor the marked signals in ILA. On the
left side of Fig. 4.2, all selected signals are displayed, together with their value at the
current marker position(288). In this case there are signals for the timeframe and the bound-
aries displayed as timeframe_start[7:0], timeframe_end[7:0], LOWER_BOUND[7:0] and
UPPER_BOUND[7:0]. The signal active_part_reg[7:0] shows if the ROs are activated or
not. The signal tdc_s shows the voltage changes. To see the changes in the voltage, the
TDC-Sensor has to be calibrated first. After the calibration, the value of the tdc_s[5:0] is
typically between 36 and 38. There are cases where the value is way under or over the usual
value,but which has to be corrected in the calibration mechanism and is not part of this thesis.
If ROs are being activated the value of the tdc_s will change. At the top of the waveform is a
timescale. This shows how many clock pulses have passed already. In this experiment a 125
MHZ clock is used. This means, that 8 nanoseconds will pass after one clock pulse. Under
that indication the values of the signals are being displayed for every clock pulse which is
displayed in an analog waveform.

15

4. Experiments and Implementation

Figure 4.1.: Floorplan of the design implemented in the Zynq ZC7020 on the PYNQ-Z1
Board

Figure 4.2.: A Display of HW-ILA showing the initial calibration of the TDC-Sensors.
It can be seen that tdc_s[5:0] is an average idle value of about 34 after the
calibration is finished at sample 288

16

4. Experiments and Implementation

Figure 4.3.: This ILA display shows that the tdc_s[5:0] always falls a bit before it goes back
to its previous value, while the ROs are turned on and off

4.2. Shaping Voltage in PDN

At first, it has to be found out, how exactly the activation of the ROs influences the voltage
behavior in the PDN. Different possibilities to activate the ROs were being tested. The
numbers of ROs being used for shaping the voltage can be diversified, too. But since the main
goal of this work was to get any working design, a fixed number of 2504 ROs was determined
at the beginning and kept fixed to this value throughout all of the following experiments. It
was not in the scope of this work to further evaluate the differences in transmission between
different numbers of ROs, and is thus supsect to future work.
The intuitive thing to check first is to toggle all the ROs at the same time and speed and see
if there is already a change in the voltage in the PDN, observed through the TDCs. As you
can see in Fig. 4.3 the voltage fluctuations are similar to a wave. The waveform seen in
tdc_s[5:0] drops every time the active_part_reg[7:0] are activating, but with a small delay
Assumption-1. Most of the voltage fluctuations though, probably have not a high enough
amplitude for the decoder to interpret with little or not errors.

To check, if Assumption-1 was true, the time where the ROs stay activated while toggling,
are increased like in Fig. 4.4. This shows, that after activating the ROs the voltage clearly
falls after a delay of a few clock pulses.

17

4. Experiments and Implementation

Figure 4.4.: In this ILA display the ROs are being turned on longer than being turned off.
It shows that the value of the tdc_s[5:0] always falls with a delay after the ROs
are being turned on

To determine the time until the impact from ROs is not visible in the voltage anymore Fig.
4.5 shows what happens if the ROs are deactivated for a longer time. This figure shows, that
after deactivating the ROs the voltage rises for a short period. Based on Fig. 4.5 and Fig.
4.4 theoretically, the decoder can interpret the rise of tdc_s[5:0] as a 1 bit and the fall of
voltage as a 0 bit. However, using only this mechanism makes it still not possible to separate
these two kind of voltage fluctuations, because the voltage only rises after the ROs are being
turned from on to off, which always leaves a falling voltage before the rising voltage. So
voltage fluctuations for datawords like "1001" where two following zeros or more can not be
achieved yet.

In Fig. 4.4 the time the ROs are on is longer than the time they are off, resulting in less and
lower voltage peaks (i.e. high values of tdc_s[5:0]. To achieve higher voltage peaks and no
negative voltage peaks, the idea is to reverse the process, hence less time for ROs to stay on
and more time to stay off. However, as shown in Fig. 4.6, there is still a negative voltage
peak before the voltage peak, which is not yet sufficient for clear distinction between 0 or 1.

4.2.1. Method-1 for Sending 1-Bits

There is a way to represent zero bits shown in Fig. 4.4, but a way to represent ones still needs
to be found. To find it, another possibility to activate the ROs was implemented shown in

18

4. Experiments and Implementation

Figure 4.5.: In this ILA display the ROs stay activated and deactivated for a longer period.
It shows that the value of the tdc_s[5:0] falls with a delay after the ROs are
being activated and rises with a delay after the ROs are being deactivated. It
also shows that the value of the minima from the tdc_s[5:0] are 24 or close

Figure 4.6.: In this ILA display the time where the ROs stay deactivated are longer than the
time these are activated. After the ROs are activated for a short time the value
of the tdc_s[5:0] falls, but then rises higher than the normal value

19

4. Experiments and Implementation

Figure 4.7.: In this ILA display two methods to activate the ROs are combined. First the
ROs are being activated longer than being deactivated. This causes the value
of tdc_s[5:0] to fall under the normal value. Second the ROs are not being
activated all at once, but being activated one after another. This causes the
tdc_s[5:0] value to rise above the normal value.

Fig. 4.7. In the middle part of the waveform from active_part_reg[7:0] the ROs are activated
subsequently before they are all being turned off again, which is referred to as Method-1.
This method causes the voltage to rise and form a maximum for each iteration. This can be
used to represent the one bit.

4.2.2. Method-2 for Sending 0-Bits

There is also another method called Method-2 in Fig. 4.7 to activate the ROs, which happens
before and after Method-1 in the waveform from the signal active_part_reg[7:0]. This
method represents the zero bits and was used instead of the RO activation in Fig. 4.4. The
difference compared to the RO activation in Fig. 4.4 is, that Method-2 has a lower time
duration where the ROs stay activated, but still forms a minimum, which means, that it needs
less clock pulses to form minimums.

4.2.3. Test Transmission by combining Method-1 and Method-2

After finding suitable RO activation sequences for the transmission, a test for a dataword
transmission has been run. As shown in Fig. 4.8, for the transmission the ROs were activated

20

4. Experiments and Implementation

Figure 4.8.: In this ILA display the ROs are being activated depending on the dataword. For
1 bits the ROs are being activated one after another and for 0 bits the ROs are
being activated longer than being deactivated.The tdc_s[5:0] value shows that
after activating the ROs gradually, it rises once. After activating the ROs longer
than being dactivated, the value falls, but is rising once after the activation

subsequently (Method-1) once for each "1" bit and for each 0 bit, the ROs were turned on
and off three times like Method-2. Also a high enough waiting time between each bit has
been added so that both methods can not influence each other and the waveform is also much
clearer. As one can see in the activation sequence of the ROs the test dataword should be
"11001101". For "1" bits the decoder only needs to detect the maximum, but for the ’0’
bit the decoder has to detect subsequently three minima followed by one maximum. This
method should already work, but to simplify the decoder in the receiver module, another
method to represent the 0 bit has to be found.

4.2.4. Reverse Method-1 for Sending 0-Bits

Since Method-1 causes a maximum, the reverse Method-1, hence activating the ROs all at
once and then deactivating them gradually, could cause a minimum. As shown in Fig. 4.9
the reverse method is causing the value of tdc_s[5:0] to fall, forming exactly one minimum
after one iteration. This can be used to represent the ’0’ bits.

21

4. Experiments and Implementation

Figure 4.9.: This ILA display shows the final solution of the RO activation.By activating
the ROs gradually, the value of the tdc_s[5:0] rises. By activating the ROs all
at once and then deactivating them gradually, the value of the tdc_s[5:0] falls.

4.2.5. Combined Sending and Receiving

The final methods which are used for all the transmissions are Method-1 for 1 bits and the
reverse Method-1 for "0" bits. As the receiver the TDC-Sensor only has to read the values of
the voltage. Then upper and lower boundaries has to be determined. Then the decoder only
picks the voltage values which are higher than the upper boundary or lower than the lower
boundary, which should be the maxima and minima. Values higher than the upper boundary
are then interpreted as "1" bits and values lower than the lower boundary as 0 bits. Fig. 4.9
also shows that this method still has many flaws. There can be two values in a row, which
can be higher or lower than the boundaries, so the decoder identifies two bits instead of one.
To prevent that from happening, after the decoder identifies a bit, it needs to wait and skip
some clock pulses first, before being active again. However, skipping only one clock pulse
after identifying a bit showed to be sufficient in our experiments, since the problem did not
occur again. In the next section, a timeframe has been implemented, which also fixes the
problem.

22

4. Experiments and Implementation

4.3. Higher Error Tolerance by Skipping Bits outside

Timeframes

In this section a timeframe has been implemented and optimal boundaries has been found
to minimize transmission erros. One problem is that after many transmissions, the decoder
could fail to identify some bits, because the maximum or minimum were not over or under
the determined boundaries. In that case a measure has been made to detect them. After each
transmitted bit, a timeframe is defined, in which either a ’0’ or ’1’ is expected in. If that is
not the case, no bit can be identified. Depending on the speed of our sender logic, we chose
the default timeframe minimum and maximum values to be 13 and 37 respectively, which
means that the bit is to be expected between the 13th and the 37th clock pulse. To check
in which clock pulse the transmission occurs, a counter was implemented. After the second
bit the size of the timeframe is changing dynamically depending on when last bit was found
and the counter is reset to 0 again. The next timeframe minimum is calculated by replacing
the value with half of the time the decoder needs to find the next bit. The next timeframe
maximum is calculated by replacing the value with one and a half of the time the decoder
needs to find the next bit.
If no bit is found within the timeframe, the decoder still decides on a bit to be received and
the counter is reset to 0 again. To decrease the amount of transmission errors, each minima
and maxima have to be the same distance between each other or as close as possible, so that
the timeframe does not change that much. To achieve that, the waiting time between the RO
activation has been adjusted. Also the timeframe is always being reset back to the default
after every transmission.
Also boundaries were implemented so that the decoder only interpret the values over and
under the boundaries. To do so a average tdc_s[5:0] value is determined first, the boundaries
are then determined based on that. To calculate the average tdc_s[5:0] 32 values of the
tdc_s[5:0] are used after the calibration of the TDC-Sensor is finished. Then a fixed value
is added to the average tdc_s as upper boundary and a fixed value is subtracted from the
average tdc_s[5:0] as the lower boundary. To find the best possible boundary for a stable
transmission, different boundaries were determined experimentally. In this case the upper
boundary should be 4 and the lower boundary should be 8. Hence, given an average tdc_-

s[5:0] of 36 the LOWER_BOUND[7:0] is 28 and the UPPER_BOUND[7:0] 40.

23

4. Experiments and Implementation

Figure 4.10.: This figure shows how the VIO [15] works together with the Design Under
Test (DUT). The VIO puts test signals in the DUT, then the resulting signals
are being displayed on ILA, the VIO then gets the resulting signals from the
ILA

4.4. Using VIO and TCL-Script for Testing

The found and optimized RO activation sequence, the implemented timeframe and bound-
aries are used to test and observe the actual reliability of the transmission. To do so, a the
Xilinx Vivado Virutal Input/Output (VIO) has been used. Fig 4.10 shows how the VIO works
together with the Design Under Test (DUT). The VIO puts test signals in the DUT, then the
resulting signals are being displayed on ILA, the VIO then gets the resulting signals from the
ILA. One of the output called operation_mode functions as a trigger to turn the transmission
on and off. The other output called dataword_s is the dataword which is being transmitted.

The ILA shows what is happening in the design under test. In addition, the inputs of the VIO
is being updated after the transmission is done. One of the input called transmitted word,
which shows the transmitted word. The other input is called is_result_correct, which shows
if the transmitted word matches the dataword. To change the values of the VIO, a tcl script

24

4. Experiments and Implementation

has been used. This tcl script first configures the hardware device and then the properties in
the hw ILA. Then the process called launch_and_display_vio_ila is being executed. In this
process the output datawords of the VIO is being randomly changed, then after the hw ila is
displayed the transmission is being turned on. After the transmission is done the inputs of
the VIO has been updated and the transmission is being turned off again. Then the results
are being written in a csv.file. This is repeated a fixed time. In the first test a 8-bit dataword
is being transmitted. This transmission is only repeating for a few times, but has already
caused a strange error. The transmitted word which does not match the sent dataword, but
matches the dataword in the previous transmission or the one before as seen in Fig. 4.11. To
find out, why this error happens, the actual VHDL code is checked for any timing errors or
logical errors and then it is fixed. Then, a few transmission is run, but the same error occurs.
So it might be the VIO part, where the inputs did not update fast enough. So the script just
writes the old not updated inputs. To check that, after every updated outputs, a long waiting
time of 1000ms has been added. It has to be made sure, that this is the problem. When
doing that, this kind of error occurs much less. So to prevent this kind of error, the script is
on hold until the inputs of VIO have been updated. This is achieved by always checking if
the transmitted word still matches the previous transmitted word. If it does not match, the
script will continue and if it does match the transmitted word is going to be compared with the
datawords. If both match the script will continue. This case prevents the program being stuck
when the random number generator (RNG) generates two consecutive same numbers. So the
only case where the program could still get stuck is, when the transmitted word matches
the previous transmitted word, but do not match with the dataword. Since this case did not
happen in our experiments, the problem was not addressed yet and may be investigated in
future work.

After this VIO synchronization error is fixed, tests for the CC design are run. In these tests
the transmission were being repeated 100000 times to test the reliability of the CC and see
how many errors occur. Different sizes of the dataword (8bit and 16bit) are transmitted.
Also there is a difference in the bit to replace in case no bit is found within the timeframe
[5.1]. Then, a few adjustment in the boundaries and timeframe has been made to see if
the reliability of the CC has been improved. Also 32-bit dataword transmissions has been
included [5.2].

25

4. Experiments and Implementation

Figure 4.11.: Screenshot of a part in the csvfile of the 8-bit transmission. It shows the odd
error.

26

5. Results

5.1. Transmission with Timeframe and Boundaries

The tests are run with the tcl script, the python script are used to create a plot with the csvfile
and save it in a pdf file. This plot shows how many errors were made and on which position
the error happened. For every test one plot is created.
The first plot is made with a 16bit dataword. If within the timeframe no bit is found, 1 bit
is added, later on it will be called 1-bit timeframe. In this test 42 transmission errors out of
100000 transmission occurs. Each transmission error has only one wrong bit. As one can
see in Fig. 5.1 most of the errors happens in the last positions. These errors are either caused
by the maxima or minima not being high or low enough to be identified, or by maxima and
minima which are caused unintentionally by the RO sequence. Since in this case if the bit is
not found, 1 bit will be added to the position of the transmitted word, the first type of error
probably happens because a minima is not found.

The plot in Fig 5.2 is made with a similar test like in Fig. 5.1. The only difference is, that the
0 bit is added if no bit is found, later on it will be called 0-bit timeframe. This test only has
2 transmission errors out of 100000 transmissions. But it has 7 total bits which are wrong.
So multiple errors in one transmitted word can occur. The plot 5.2 shows, that errors occur
in the last positions of the transmitted word again. But a lot of errors also occur in the first
positions of the transmitted word.

The plot in Fig. 5.3 is made with 8-bit transmissions with the 1-bit timeframe and default
boundaries. The plot in Fig. 5.4 is also made with 8-bit transmissions but with the 0-bit

timeframe. The test in Fig. 5.3 has 31 transmission errors, but with 94 erroneous bits in total.
The test in Fig. 5.4 has 23 transmission errors and each transmitted word has only one wrong
bit again. If these two plots are compared there are more wrong bits at the start in the test
when using 0-bit timeframe and for the other one there are more wrong bits after the first

27

5. Results

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.000e+00

2.100e-05

4.200e-05

6.300e-05

8.400e-05

Error Rates
Avg. Error Per Bit

Figure 5.1.: This plot is made by the result of 100000 16bit-transmissions using the 1-bit
timeframe and default boundaries. It has 42 wrong datawords, each with 1
erroneous bit.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.000e+00

3.500e-06

7.000e-06

1.050e-05

1.400e-05

1.750e-05

2.100e-05
Error Rates

Avg. Error Per Bit

Figure 5.2.: This plot is made by the result of 100000 16bit-transmissions using the 0-bit
timeframe and default boundaries. It has 2 wrong datawords with 7 erroneous
bits.

28

5. Results

0 1 2 3 4 5 6 7
0.000e+00

4.700e-05

9.400e-05

1.410e-04

1.880e-04

Error Rates
Avg. Error Per Bit

Figure 5.3.: This plot is made by the result of 100000 8bit-transmissions using the 1-bit
timeframe and default boundaries. It has 31 wrong datawords with 94
erroneous bits.

positions of the dataword. But overall the test with the 1-bit timeframe in Fig. 5.3 has 71
more wrong bits than the test with the 0-bit timeframe.

The tests show, that the implemented covert channel is not completely error-free. These
errors are either caused by the maxima or minima not being high or low enough to be
identified, or by random maxima and minima, which are caused by unintentional noise in
the system.

5.2. Transmission with adjusted Timeframe and

Boundaries

In this section, the transmission has been improved with adjusted timeframe and boundaries.
The timeframe has been adjusted in a way, so that it does not grow to arbitrary lengths in case
multiple bits are missing and stays near the default timeframe. This is achieved as follows:
Instead of adding half of the time to the full time of when the bit is found, only a small and
fixed value is added to the full time. The fixed value is 7 and the default timeframe were also
changed from 13 and 37 to 13 and 32. If no bit is found within the timeframe the counter is

29

5. Results

0 1 2 3 4 5 6 7
0.000e+00

1.150e-05

2.300e-05

3.450e-05

4.600e-05

5.750e-05

6.900e-05

8.050e-05

Error Rates
Avg. Error Per Bit

Figure 5.4.: This plot is made by the result of 100000 8bit-transmissions using the 0-bit
timeframe and default boundaries. It has 23 wrong datawords, each with 1
erroneous bit.

not reset to 0, but divided by 4. This causes the timeframe to be close to the default value,
too. Also the boundaries are adjusted depending on which bit is being replaced in case no
bit is found within the timeframe. In the 1 bit case the upper boundary is five and the lower
boundary is still the same. In the other case the upper boundary stays the same and the lower
boundary is nine. By doing that, wrongly identified minima and maxima can be left out by
the decoder this time. But increasing the boundary may cause the actual maxima or minima
not to be recognized either. But since it will be replaced with the right bit anyway, if no bit
is found, and the timeframe has been adjusted, so that it stays close to the default range, this
problem is negligible.
Then six tests with each 100000 are run again with these few adjustments. Four tests are run
with 8bit and 16bit datawords like the first tests in section 5.1. Then the transmission with
32bit dataword are being tested, too. The first two tests are 8-bit dataword transmissions
using the adjusted 1-bit timeframe, 0-bit timeframe and boundaries. As one can see in Fig.
5.5 and in 5.6, no error are found. So in comparison to the previous tests, the adjustments in
the design improved the stability of the transmission.

Then, tests are run for the 16-bit dataword transmissions. In Fig. 5.7 is the plot of the result
from the transmissions with the 1-bit timeframe and adjusted boundaries. Out of 100000

30

5. Results

0 1 2 3 4 5 6 7
1

1e 17 Error Rates
Avg. Error Per Bit

Figure 5.5.: This plot is made by the result of 100000 8bit-transmissions using the adjusted
1-bit timeframe and boundaries. It has no errors.

0 1 2 3 4 5 6 7
1

1e 17 Error Rates
Avg. Error Per Bit

Figure 5.6.: This plot is made by the result of 100000 8bit-transmissions using the adjusted
0-bit timeframe and boundaries. It has no errors.

31

5. Results

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.000e+00

9.500e-06

1.900e-05

2.850e-05

3.800e-05

4.750e-05

5.700e-05

Error Rates
Avg. Error Per Bit

Figure 5.7.: This plot is made by the result of 100000 16bit-transmissions using the adjusted
1-bit timeframe and boundaries. It has 19 wrong datawords, each with 1
erroneous bit.

transmissions there are 19 wrong datawords. This plot shows that most of the errors happens
between the second and seventh bit. In Fig. 5.8 is the plot with the 0-bit timeframe. 2
incorrect transmissions happens here. Each incorrect transmitted word has 1 wrong bit. The
related plot shows that these errors happened at 14th and 15th position of the dataword.

Then, tests are also run for the 32-bit dataword transmissions. Fig. 5.9 shows the plot with
the 0-bit timeframe and adjusted boundaries. Only one incorrect transmitted word occurrs.
This dataword though, has 18 erroneous bits. As the plot shows, the errors happens nearly
everywhere and not in a specific pattern.

Fig 5.10 shows the plot with the 1-bit-timeframe and adjusted boundaries. In this chain of
transmissions, 101 transmitted words does not match the dataword. And there are a total of
103 erroneous bits. Hence, most the transmitted word has a 1-bit error. This plot also shows,
that most of the errors happens at the last half of the transmitted word. This suggests that
on transmission with longer words, the sender and receiver might get out of synchronization.
The bits from position 0 to 15 are even flawless.

The test with the 1-bit-timeframe has much more errors, which is probably caused by not
recognizing the sent bit. A bad timeframe or boundary can be the cause. Hence, the

32

5. Results

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.000e+00

1.000e-06

2.000e-06

3.000e-06

4.000e-06

5.000e-06

6.000e-06

7.000e-06

8.000e-06

9.000e-06

1.000e-05

Error Rates
Avg. Error Per Bit

Figure 5.8.: This plot is made by the result of 100000 16bit-transmissions using the adjusted
0-bit timeframe and boundaries. It has 2 wrong datawords, each with 1
erroneous bit.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0.000e+00

9.000e-06

Error Rates
Avg. Error Per Bit

Figure 5.9.: This plot is made by the result of 100000 32bit-transmissions using the adjusted
0-bit timeframe and boundaries. It has 1 wrong dataword and 18 erroneous bits.

33

5. Results

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0.000e+00

5.150e-05

1.030e-04

1.545e-04

2.060e-04

2.575e-04

Error Rates
Avg. Error Per Bit

Figure 5.10.: This plot is made by the result of 100000 32bit-transmissions using the
adjusted 1-bit timeframe and boundaries. It has 101 wrong datawords and
103 erroneous bits.

timeframe are checked by running some transmission again and observe the behavior of
the timeframe. The timeframe is always close to the default value. So the only problem lies
in the boundary. If the boundaries of both the tests as seen in Fig. 5.11 and Fig. 5.12 are
being compared, the UPPER_BOUND[7:0] is 43 and LOWER_BOUND[7:0] is 30 for one
and the other is 40 and 27. So there is a difference of 3 between both tests. This can be
a factor, why the 1-bit timeframe test has significantly more errors. The boundaries of the
16 bit and 8 bit transmission are checked, too. All of them have the UPPER_BOUND[7:0]

42 and the LOWER_BOUND[7:0] 29. Since those tests do not have a lot of errors, but
have close boundaries to both the 32-bit test with 0-bit-timeframe and 1-bit-timeframe, more
experiments in the boundary area has to be made. Also in Fig. 5.12 at the tdc_s wave there
is sometimes a really low minimum before the maximum. So it also can be assumed, that the
decoder could detect a 0 bit first and because of the timeframe, skip the 1 bit which should
be identified. This error may be fixed, if the decoder additionally checks within the next 3 to
4 pulses after detecting a "0" bit, whether there is a maximum or not.

34

5. Results

Figure 5.11.: ILA Display of a 32bit transmission with a 1bit timeframe

Figure 5.12.: ILA Display of a 32bit transmission with a 0bit timeframe

35

5. Results

5.3. Discussion

In this section, the results from section 5 are being discussed. None of the tests with
the default timeframes and boundaries are error-free. The tests with the 1-bit timeframe

have more errors than the tests with the 0-bit timeframe. This means, that more 1 bits
are being recognized than 0 bits. The tests also show that the 16-bit transmissions with
the 0-bit timeframe has the least errors. This is surprising, because more bits are being
transmitted here than in the tests with 8-bit transmissions. Also the 8-bit transmissions should
be more synchronized than the 16-bit transmissions, because of its smaller transmission
length. However, this might just be a coincidence. So more tests has to be made. The
tests with the adjusted timeframes and boundaries show better results. The 8-bit dataword
transmissions are completely error-free. In the 16-bit dataword tranmissions errors occur.
But in comparison to the tests with the default timeframe and boundaries, these tests have
less error. Also the 32-bit dataword transmissions with the 0-bit timeframe has even slightly
less errors than the 16-bit dataword transmissions with the 0-bit timeframe. This could be a
coincidence, too. The test with the 32-bit dataword transmissions with the 1-bit timeframe

has a lot more errors compared to the 16-bit dataword transmission with the 1-bit timeframe.
Most of the errors occur in the later positions of the dataword though. So there might
be synchronization errors from the sender and receiver. But overall,tests with the 0-bit

timeframe show better results than the tests with 1-bit timeframe. The adjusted boundaries
and timeframe are also slightly better than the default.

5.4. Future work

After doing the needed experiments to adjust the boundaries further and maybe improve
the decoder for more transmission stability, an Error Correction Code (ECC) could be im-
plemented for the transmission. After that, the tranmission could be tested under an other
interference source, to see if this approach of the transmission still would work. Then, the
CC could be implemented between two different cores. For instance, a CC between a FPGA
and an ARM-core would be interesting.

36

6. Conclusion

6.1. Conclusion

So as FPGAs are being increasingly used in systems like Systems-on-Chip (SoCs) or Clouds
and there will be multiple users on one FPGA, which causes many security issues, this work
shows an other security issue, by successfully implementing a voltage-based covert channel
between logically separated IP-cores in FPGAs. To do so, in section 2 relevant researches are
made, to get a basic understanding of this topic. Then a concept for the voltage-based covert
channel in FPGAs has been made in section 3. This concept shows, that theoretically you
need a specific signal coding, a sender and a receiver to build this covert channel and how you
combine them. In section 4 experiments are made, to understand how to implement the actual
covert channel. By experimenting with different methods to activate the ROs two methods
have been found and picked to successfully transmit datawords via the voltage of the PDN.
Lower and upper boundaries have been implemented for decoding purposes. Furthermore,
they have been adjusted to improve the reliability of the transmission. A timeframe has been
implemented in the receiver also to improve the reliability of the transmission. In section
5 the transmission of the implemented covert channel are tested. Testing the transmission
with 8-bit, 16-bit and 32-bit datawords with 1-bit timeframe and 0-bit timeframe produced
different results. For all transmissions, except for 8-bit, errors occurred. This means, that
the implemented covert channel is still in its raw state and can still be further improved.
However, this thesis proves, that a voltage-based covert channel between logically separated
IP-cores in FPGAs is possible and is implemented successfully.

37

A. Appendix

A.1. VHDL Code

−− RO s t a t e machine , which d e t e r m i n e s
−− how t o a c t i v a t e t h e ROs

RROsta te_proc : p r o c e s s (c l k) i s
begin

i f r i s i n g _ e d g e (c l k) then
case c u r r e n t _ s t a t e i s

when IDLE =>
i f (s w i t c h _ s = ’ 1 ’) then

−− used t o a d j u s t t h e p l a c e m e n t
−− of t h e f i r s t a c t i v a t i n g RO−i n s t a n c e
i f (s t a r t _ c o u n t e r /= w a i t _ t i m e) then

s t a r t _ c o u n t e r <= s t a r t _ c o u n t e r + 1 ;
e l s e

s t a r t _ c o u n t e r <= 0 ;
c u r r e n t _ s t a t e <= READ;

end i f ;
e l s e

c u r r e n t _ s t a t e <= IDLE ;
end i f ;

when INIT =>
i f i s _ i n i t = ’1 ’ then

c u r r e n t _ s t a t e <= READ;
e l s e

c u r r e n t _ s t a t e <= WAIT_INIT ;
end i f ;

when WAIT_INIT =>

39

A. Appendix

−− t h i s i s used t o a d j u s t t h e p l a c e m e n t
−− of t h e a c t i v a t e d RO− i n s t a n c e s

i f l a s t _ b i t = ’1 ’ then
i f l a s t _ b i t /= (da taword (w o r d _ c o u n t e r)) then

w a i t _ m a x _ c o u n t e r _ i n i t <= 2 2 ;
e l s e

w a i t _ m a x _ c o u n t e r _ i n i t <= 1 2 ;
end i f ;
e l s i f l a s t _ b i t = ’0 ’ then
i f l a s t _ b i t /= (da taword (w o r d _ c o u n t e r)) then

w a i t _ m a x _ c o u n t e r _ i n i t <= 2 ;
e l s e

w a i t _ m a x _ c o u n t e r _ i n i t <= 1 2 ;
end i f ;
e l s e

w a i t _ m a x _ c o u n t e r _ i n i t <= 1 2 ;
end i f ;

i n i t _ c o u n t e r <= i n i t _ c o u n t e r +1 ;
i f (i n i t _ c o u n t e r = w a i t _ m a x _ c o u n t e r _ i n i t) then

i n i t _ c o u n t e r <= 0 ;
i s _ i n i t <= ’ 1 ’ ;
c u r r e n t _ s t a t e <= INIT ;

e l s e
c u r r e n t _ s t a t e <= WAIT_INIT ;

end i f ;

when READ =>
i f (w o r d _ c o u n t e r /= dataword ’ l e n g t h) then

i f da taword (w o r d _ c o u n t e r) = ’1 ’ then
b i t _ s t a t e <= b " 11 " ;
w o r d _ c o u n t e r <= w o r d _ c o u n t e r + 1 ;
c u r r e n t _ s t a t e <= WAIT_READ_1 ;

e l s e
b i t _ s t a t e <= b " 00 " ;
w o r d _ c o u n t e r <= w o r d _ c o u n t e r + 1 ;
c u r r e n t _ s t a t e <= WAIT_READ_0 ;

end i f ;
e l s e

w o r d _ c o u n t e r <= 0 ;
c u r r e n t _ s t a t e <= FINISH ;

end i f ;

40

A. Appendix

when WAIT_READ_0 =>
r e a d _ c o u n t e r <= r e a d _ c o u n t e r +1;
i f (r e a d _ c o u n t e r = wa i t_max_coun t e r_0) then

r e a d _ c o u n t e r <= 0 ;
b i t _ s t a t e <= b " 10 " ;
l a s t _ b i t <= ’ 0 ’ ;
i s _ i n i t <= ’ 0 ’ ;
c u r r e n t _ s t a t e <= INIT ;

e l s e
c u r r e n t _ s t a t e <= WAIT_READ_0 ;

end i f ;

when WAIT_READ_1 =>
r e a d _ c o u n t e r <= r e a d _ c o u n t e r +1;
i f (r e a d _ c o u n t e r = wa i t_max_coun t e r_1) then

r e a d _ c o u n t e r <= 0 ;
b i t _ s t a t e <= b " 10 " ;
l a s t _ b i t <= ’ 1 ’ ;
i s _ i n i t <= ’ 0 ’ ;
c u r r e n t _ s t a t e <= INIT ;

e l s e
c u r r e n t _ s t a t e <= WAIT_READ_1 ;

end i f ;

when FINISH =>
i s _ i n i t <= ’ 0 ’ ;
b i t _ s t a t e <= b " 10 " ;
i f s w i t c h _ s = ’0 ’ then
c u r r e n t _ s t a t e <= IDLE ;
end i f ;

end case ;
end i f ;

end p r o c e s s ;
−− t h i s p r o c e s s d e c i d e s which b i t
−− i s go ing t o be s e n t w i th t h e RO a c t i v a t i o n
b i t s t a t e _ p r o c : p r o c e s s (c l k) i s
begin
i f r i s i n g _ e d g e (c l k) then
case b i t _ s t a t e i s

41

A. Appendix

when " 00 " =>
b i t _ s e n t <= " 00 " ;

when " 11 " =>
b i t _ s e n t <= " 11 " ;

when o t h e r s =>
b i t _ s e n t <= " 10 " ;

end case ;
end i f ;
end p r o c e s s ;

Listing A.1: A state machine to handle the activation process of the ROs

42

A. Appendix

−− b a s i c c o u n t e r and b l i n k i n g l e d s t o show t h e FPGA
−− i s s t i l l o p e r a t i n g a t a l l
−− a l s o e n a b l e s / d i s a b l e s t h e ROs depend ing on t h e s w i t c h
a l t e r n a t i n g : p r o c e s s (c l k)

begin
i f r i s i n g _ e d g e (c l k) then

i f o p e r a t i o n _ m o d e (0) = ’1 ’ then
b l i n k _ r e g <= not b l i n k _ r e g ;

i f c a l i b _ d o n e _ s = ’1 ’ then
e n a b l e _ r o _ s <= ’ 1 ’ ;

end i f ;
e l s e

e n a b l e _ r o _ s <= ’ 0 ’ ;
b l i n k _ r e g <= b l i n k _ r e g ;

end i f ;
end i f ;

end p r o c e s s ;

−− E n a b l i n g t h e c a l i b r a t i o n
e n a b l e _ o p e r a t i o n : p r o c e s s (c l k)

begin
i f r i s i n g _ e d g e (c l k) then

b t n _ r e g <= b t n ;
i f (b t n _ r e g (0) = ’ 1 ’) then

r s t _ c a l i b r a t i o n <= ’ 0 ’ ;
e n _ c a l i b r a t i o n <= ’ 1 ’ ;

end i f ;

end i f ;
end p r o c e s s ;

Listing A.2: Process to activate or deactivate the ROs

−− p r o c e s s t o r e a d v o l t a g e v a l u e and on ly i n t e r p r e t
−− t h e v a l u e s w i t h i n t h e t i m e f r a m e
−− and ove r / unde r t h e f i x e d b o u n d a r i e s
t d c _ v a l u e _ p r o c : p r o c e s s (c l k) i s
begin
i f r i s i n g _ e d g e (c l k) then

i f (e n a b l e _ r o _ s = ’ 1 ’) and (o p e r a t i o n _ m o d e (0) = ’ 1 ’) then
i f (c u r r e n t _ p o s i t i o n /= (da taword_s ’ l e n g t h)) then

43

A. Appendix

i f (c u r r e n t _ p o s i t i o n < 1) then
i s _ r e s u l t _ c o r r e c t <= b " 0 " ;
i s _ w o r d _ w r i t t e n <= ’ 0 ’ ;

end i f ;

i f (c u r r e n t _ p o s i t i o n > 0) then
c o u n t e r <= c o u n t e r + 1 ;

e l s e
c o u n t e r <= 0 ;

end i f ;

i f t o _ i n t e g e r (u n s i g n e d (t d c _ s)) > UPPER_BOUND or
t o _ i n t e g e r (u n s i g n e d (t d c _ s)) < LOWER_BOUND then

i f c o u n t e r < t i m e f r a m e _ s t a r t
and (c u r r e n t _ p o s i t i o n > 0) then
−− i g n o r e t h i s e v e n t

e l s e
−− u p d a t e t i m e f r a m e
i f (c u r r e n t _ p o s i t i o n > 0) then

t i m e f r a m e _ s t a r t <= (c o u n t e r + 1) / 2 ;
t ime f r ame_end <= c o u n t e r + t i m e f r a m e _ e n d _ r a n g e ;

end i f ;

i f t o _ i n t e g e r (u n s i g n e d (t d c _ s)) > UPPER_BOUND then
w o r d _ a r r a y (c u r r e n t _ p o s i t i o n) <= ’ 1 ’ ;

e l s e
w o r d _ a r r a y (c u r r e n t _ p o s i t i o n) <= ’ 0 ’ ;

end i f ;
c u r r e n t _ p o s i t i o n <= c u r r e n t _ p o s i t i o n + 1 ;
c o u n t e r <= 0 ;

end i f ;

e l s i f c o u n t e r > t ime f r ame_end then
w o r d _ a r r a y (c u r r e n t _ p o s i t i o n) <= ’ 0 ’ ;

i f t o _ i n t e g e r (u n s i g n e d (t d c _ s)) > UPPER_BOUND then
w o r d _ a r r a y (c u r r e n t _ p o s i t i o n + 1) <= ’ 1 ’ ;
c u r r e n t _ p o s i t i o n <= c u r r e n t _ p o s i t i o n + 2 ;
c o u n t e r <= 0 ;

e l s e

44

A. Appendix

w o r d _ a r r a y (c u r r e n t _ p o s i t i o n + 1) <= ’ 0 ’ ;
c u r r e n t _ p o s i t i o n <= c u r r e n t _ p o s i t i o n + 2 ;
c o u n t e r <= 0 ;

end i f ;
c u r r e n t _ p o s i t i o n <= c u r r e n t _ p o s i t i o n + 1 ;
c o u n t e r <= (c o u n t e r / 4) ;

end i f ;

e l s e −− t r a n s m i s s i o n f i n i s h e d
i f (i s _ w o r d _ w r i t t e n = ’ 0 ’) then

t r a n s m i t t e d _ w o r d <= w o r d _ a r r a y ;
i f (w o r d _ a r r a y = d a t a w o r d _ s) then

i s _ r e s u l t _ c o r r e c t <= b " 1 " ;
e l s e

i s _ r e s u l t _ c o r r e c t <= b " 0 " ;
end i f ;

i s _ w o r d _ w r i t t e n <= ’ 1 ’ ;
end i f ;
−− r e s e t t i m e f r a m e a f t e r e v e r y t r a n s m i s s i o n
t i m e f r a m e _ s t a r t <= t i m e f r a m e _ s t a r t _ d e f a u l t ;
t ime f r ame_end <= t i m e f r a m e _ e n d _ d e f a u l t ;
c o u n t e r <= 0 ;

end i f ;
e l s e

c u r r e n t _ p o s i t i o n <= 0 ;
w o r d _ a r r a y <= (o t h e r s => ’ 0 ’) ;
c o u n t e r <= 0 ;

end i f ;
end i f ;
end p r o c e s s ;

Listing A.3: This process reads the voltage values of the PDN and interpret it

−− d e t e r m i n e s t h e v a l u e o f t h e b o u n d a r i e s
−− depend ing on t h e a v e r a g e v o l t a g e v a l u e
bound_proc : p r o c e s s (c l k) i s

v a r i a b l e t d c _ a v e r a g e : i n t e g e r range 0 to 255 := 0 ;
begin
i f r i s i n g _ e d g e (c l k) then

i f (c a l i b _ d o n e _ s = ’ 1 ’) then
i f (t d c _ c o u n t e r = tdc_max) then

t d c _ a v e r a g e := t o _ i n t e g e r

45

A. Appendix

(s h i f t _ r i g h t (t o _ u n s i g n e d (tdc_sum , 1 1) , 5)) ;
LOWER_BOUND <= t d c _ a v e r a g e − t d c _ l o w e r _ r a n g e ;
UPPER_BOUND <= t d c _ a v e r a g e + t d c _ u p p e r _ r a n g e ;
t d c _ c o u n t e r <= tdc_max +1;
tdc_sum <= 0 ;

e l s i f (t d c _ c o u n t e r < tdc_max) then
t d c _ c o u n t e r <= t d c _ c o u n t e r + 1 ;
tdc_sum <= tdc_sum + t o _ i n t e g e r (u n s i g n e d (t d c _ s)) ;

end i f ;
end i f ;

end i f ;

Listing A.4: This process determines the boundaries for the decoder

−−h a n d l i n g t h e RO a c t i v a t i o n
s t a t e _ p r o c : p r o c e s s (c l k) i s
begin

i f r i s i n g _ e d g e (c l k) then
case b i t _ s e n t i s

when " 11 " =>
i f a c t i v e _ p a r t _ r e g < b " 1111 _1111 "

and e n a b l e _ r o _ s = ’1 ’ then
a c t i v e _ p a r t _ r e g <= a c t i v e _ p a r t _ r e g (6 downto 0)
& ’ 1 ’ ;

e l s e
a c t i v e _ p a r t _ r e g <= (o t h e r s => ’ 0 ’) ;

end i f ;
when " 00 " =>

i f a c t i v e _ p a r t _ r e g > b " 0000 _0000 "
and e n a b l e _ r o _ s = ’1 ’ then

a c t i v e _ p a r t _ r e g <= a c t i v e _ p a r t _ r e g (6 downto 0)
& ’ 0 ’ ;

e l s e
a c t i v e _ p a r t _ r e g <= (o t h e r s => ’ 1 ’) ;

end i f ;
when o t h e r s =>

a c t i v e _ p a r t _ r e g <= (o t h e r s => ’ 0 ’) ;
end case ;

end i f ;

46

A. Appendix

end p r o c e s s ;

Listing A.5: This process activates the ROs in a way depending on the state of the state
machine

A.2. TCL-Script

g l o b a l t r a n s m i t t e d _ w o r d _ c u r r e n t
s e t r e p e t i t i o n s 100002
s e t f i l e s t r i n g " _unknown_ "

s e t d e v i c e s t r D i g i l e n t /003017A6DE6CA
s e t t r a c e s d i r " . / t r a c e s / "

s e t b a s e d i r " C: / Use r s / Khoa / minimum_example_ tdcs_ros "

The s e c t i o n t o program t h e d e v i c e v i a V i va d o , a d j u s t some o p t i o n s
and i n t e r a c t w i th t h e hw _ i l a was l e f t o u t , s i n c e i t i s n o t
r e l e v a n t and can be done wi th t h e Vivado i n t e r f a c e , t o o .
a f t e r 10

proc l a u n c h _ a n d _ d i s p l a y _ v i o _ i l a {} {
g l o b a l i n i t
g l o b a l t r a n s m i t t e d _ w o r d _ c u r r e n t
s e t i s _ v a l u e _ c h a n g e d 0

s e t t h e da taword of VIO wi th a random number
s e t _ p r o p e r t y OUTPUT_VALUE_RADIX
u n s i g n e d [ge t_hw_probes d a t a w o r d _ s]
s e t da taword [expr { wide (r and () * (2 **8)) }]
s e t _ p r o p e r t y OUTPUT_VALUE $da taword [ge t_hw_probes d a t a w o r d _ s]

commit_hw_vio [ge t_hw_v ios hw_vio_1]

Running one t r a n s m i s s i o n
r u n _ h w _ i l a hw_i l a_1

s e t _ p r o p e r t y OUTPUT_VALUE_RADIX binary
[ge t_hw_probes o p e r a t i o n _ m o d e]

s e t _ p r o p e r t y OUTPUT_VALUE 1 [ge t_hw_probes o p e r a t i o n _ m o d e]

47

A. Appendix

commit_hw_vio [ge t_hw_v ios hw_vio_1]
w a i t _ o n _ h w _ i l a hw_i l a_1

commit_hw_vio [ge t_hw_v ios hw_vio_1]
foreach probe [ge t_hw_probes −of [g e t _ h w _ i l a s]] {

s e t _ p r o p e r t y DISPLAY_RADIX u n s i g n e d $probe
s e t _ p r o p e r t y DISPLAY_AS_ENUM f a l s e $probe }

{CELL_NAME=~" u _ i l a _ 0 " }]
Stop t r a n s m i s s i o n

s e t _ p r o p e r t y OUTPUT_VALUE 0
[ge t_hw_probes o p e r a t i o n _ m o d e]

commit_hw_vio [ge t_hw_v ios hw_vio_1]
i f { $ i n i t == 0} {

s e t t r a n s m i t t e d _ w o r d _ c u r r e n t − 1
s e t i n i t 1

}
w a i t s u n t i l t h e i n p u t s o f VIO a r e changed
whi le { $ i s _ v a l u e _ c h a n g e d == 0} {

s e t t r a n s m i t t e d _ w o r d _ n e x t
[g e t _ p r o p e r t y INPUT_VALUE [ge t_hw_probes t r a n s m i t t e d _ w o r d]]
i f { $ t r a n s m i t t e d _ w o r d _ c u r r e n t ! = $ t r a n s m i t t e d _ w o r d _ n e x t } {

s e t t r a n s m i t t e d _ w o r d _ c u r r e n t $ t r a n s m i t t e d _ w o r d _ n e x t
s e t i s _ v a l u e _ c h a n g e d 1

} e l s e {
i f { $ t r a n s m i t t e d _ w o r d _ n e x t ==

[g e t _ p r o p e r t y OUTPUT_VALUE
[ge t_hw_probes d a t a w o r d _ s]] } {
s e t t r a n s m i t t e d _ w o r d _ c u r r e n t $ t r a n s m i t t e d _ w o r d _ n e x t
s e t i s _ v a l u e _ c h a n g e d 1

}
}

}
c u r r e n t _ h w _ i l a _ d a t a [u p l o a d _ h w _ i l a _ d a t a hw_i l a_1]
d i s p l a y _ h w _ i l a _ d a t a [c u r r e n t _ h w _ i l a _ d a t a]

}

Running t r a n s m i s s i o n s r e p e a t i n g l y and w r i t e t h e r e s u l t s i n a c s v f i l e

48

A. Appendix

f o r { s e t i 0} { $ i < $ r e p e t i t i o n s } { i n c r i } {

g l o b a l i n i t
i f { $ i < 1} {

s e t i n i t 0
}

l a u n c h _ a n d _ d i s p l a y _ v i o _ i l a
[c u r r e n t _ h w _ i l a _ d a t a]

i f { $ i > 1} {
i s _ r e s u l t _ c o r r e c t]] " }

s e t f i d [open ${ b a s e d i r } / t r a c e s / R e s u l t . c s v a]

p u t s $ f i d " [g e t _ p r o p e r t y OUTPUT_VALUE
[ge t_hw_probes d a t a w o r d _ s]] ,

[g e t _ p r o p e r t y INPUT_VALUE
[ge t_hw_probes t r a n s m i t t e d _ w o r d]] "

c l o s e $ f i d

}

}

Listing A.6: This script is used to run many transmission in a row

A.3. Python-Script

from m a t p l o t l i b import p y p l o t a s p l t
import numpy as np
import s y s

b i t s p e r word s e n t
BITS = 8

def g e t _ b i t (word , b i t) :
re turn ((word >> b i t)&0x1)

s t a t f i l e = r ’C : \ Use r s \ Khoa \ Desktop \ B a c h e l o r t h e o r i e t e i l \

49

A. Appendix

T e s t e r g e b n i s s e \ t e s t \100000−8− b i t −1b i t −newtimeframe−0e r r o r w o r d . csv ’
s t a t f i l e = s y s . a rgv [1]
p d f f i l e = s t a t f i l e + ’ . pdf ’

rows = np . g e n f r o m t x t (s t a t f i l e , d e l i m i t e r = ’ , ’ , d t y p e = ’ i n t 6 4 ’) # . t r a n s p o s e ()
R e t r i e v e t h e number o f samples / rows :

e r r o r b i t s = np . z e r o s (rows . shape [0] , d t y p e = ’ i n t 6 4 ’)
e r r o r _ b i t _ a r r a y = np . z e r o s ((rows . shape [0] , BITS) , d t y p e = ’ i n t 6 4 ’)

p r i n t (e r r o r _ b i t _ a r r a y . shape)

a l l _ w o r d e r r o r s =0
a l l _ b i t e r r o r s =0
f o r i in range (0 , l e n (rows)) :

s e n t = (rows [i] [0])
r e c v = (rows [i] [1])

e r r o r s = s e n t ^ r e c v
i f (e r r o r s != 0) :

a l l _ w o r d e r r o r s += 1

b a d b i t s = 0
f o r each b i t i n t h e word
f o r b in range (0 , BITS) :

i s o l a t e one b i t 0 / 1 and add i t t o t h e b i t e r r o r c o u n t
e r r o r b i t s [i] += g e t _ b i t (e r r o r s , b)
e r r o r _ b i t _ a r r a y [i] [b] = g e t _ b i t (e r r o r s , b)

a l l _ b i t e r r o r s += e r r o r b i t s [i]

p r i n t (" Sen t : "+ s t r (s e n t)+ " , Recv : "+ s t r (r e c v) , end= ’ ’) ;
p r i n t (" , B i t E r r o r s : "+ s t r (e r r o r b i t s [i])) ;

Average b i t e r r o r s p e r a l l words
a v g _ e r r o r b i t s = np . a v e r a g e (e r r o r b i t s)
a v g _ e r r o r _ p e r _ b i t = np . a v e r a g e (e r r o r _ b i t _ a r r a y , a x i s =0)

Not t h a t i n t e r e s t i n g s t a t s , t h e y depend on how much d a t a we had
p r i n t (" T o t a l e r r o n e o u s words : "+ s t r (a l l _ w o r d e r r o r s)) ;
p r i n t (" T o t a l b i t s e r r o n e o u s : "+ s t r (a l l _ b i t e r r o r s)) ;

50

A. Appendix

p r i n t (" T o t a l b i t s s e n t : "+ s t r (l e n (rows))) ;
More i n t e r e s t i n g s t a t s a r e t h e r a t i o / f r a c t i o n s o f e r r o r s ,
o r i n which b i t s e r r o r s happen more o f t e n , e t c .
p r i n t (" Average e r r o n e o u s b i t s p e r t r a n s m i t t e d word :

"+ s t r (round (a v g _ e r r o r b i t s , 4))) ;
Average e r r o r r a t e p e r s p e c i f i c b i t o f t h e word
(t o f i n d o u t i f maybe t h e f i r s t o r l a s t b i t i s more s u s c e p t i b l e)
p r i n t (" Average e r r o r p e r b i t : "+ s t r (a v g _ e r r o r _ p e r _ b i t))

P l o t t i n g t h e r e s u l t s
ep =0.00000000000000001
yl im =(−np . max (a v g _ e r r o r _ p e r _ b i t)*0.02− ep ,
np . max (a v g _ e r r o r _ p e r _ b i t) * 1 . 0 5 + ep)

f i g = p l t . f i g u r e ()
ax = f i g . gca ()
ax . s e t _ x t i c k s (range (0 , BITS , 1))

ax . s e t _ y t i c k s (np . a r a n g e (y l im [0] , y l im [1] , a v g _ e r r o r b i t s * 0 . 0 5))
p l t . g r i d ()
p l t . p l o t (a v g _ e r r o r _ p e r _ b i t , c o l o r = ’ r e d ’ , l a b e l ="Avg . E r r o r Per B i t ")
p l t . x l im (0 , BITS−1)
p l t . y l im (y l im)

p l t . t i t l e (" E r r o r R a t e s ")
p l t . l e g e n d (l o c = ’ uppe r l e f t ’)

Save t o f i l e :
p l t . s a v e f i g (p d f f i l e)

Listing A.7: This script is used to evaluate the results of the transmissions

51

Bibliography

[1] T. Huffmire, B. Brotherton, G. Wang, T. Sherwood, R. Kastner, T. Levin, T. Nguyen, and

C. Irvine, “Moats and drawbridges: An isolation primitive for reconfigurable hardware based

systems,” in 2007 IEEE Symposium on Security and Privacy (SP. IEEE, 2007, pp. 281–295.

[2] F. Schellenberg, D. R. Gnad, A. Moradi, and M. B. Tahoori, “An inside job: Remote power

analysis attacks on fpgas,” in Design, Automation & Test in Europe Conference & Exhibition,

DATE 2018, 2018.

[3] D. R. Gnad, F. Oboril, and M. B. Tahoori, “Voltage drop-based fault attacks on fpgas using valid

bitstreams,” in Field Programmable Logic and Applications (FPL), 2017 27th International

Conference on. IEEE, 2017, pp. 1–7.

[4] “Basic fpga architecture and its applications.” [Online]. Available: https://www.edgefx.in/

fpga-architecture-applications

[5] Wikipedia contributors, “Hardware description language — Wikipedia, the free encyclopedia,”

2018, [Online; accessed 31-August-2018]. [Online]. Available: https://en.wikipedia.org/wiki/

Hardware_description_language

[6] “Ip-cores.” [Online]. Available: http://www.informatik.uni-ulm.de/ni/Lehre/SS03/

ProSemFPGA/IP-Cores.pdf

[7] “Ip core (intellectual property core).” [Online]. Available: https://whatis.techtarget.com/

definition/IP-core-intellectual-property-core

[8] S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized fpga accelerators for efficient cloud

computing,” in Cloud Computing Technology and Science (CloudCom), 2015 IEEE 7th

International Conference on. IEEE, 2015, pp. 430–435.

[9] Z. Wang and R. B. Lee, “Covert and side channels due to processor architecture,” in Computer

Security Applications Conference, 2006. ACSAC’06. 22nd Annual. IEEE, 2006, pp. 473–482.

53

https://www.edgefx.in/fpga-architecture-applications
https://www.edgefx.in/fpga-architecture-applications
https://en.wikipedia.org/wiki/Hardware_description_language
https://en.wikipedia.org/wiki/Hardware_description_language
http://www.informatik.uni-ulm.de/ni/Lehre/SS03/ProSemFPGA/IP-Cores.pdf
http://www.informatik.uni-ulm.de/ni/Lehre/SS03/ProSemFPGA/IP-Cores.pdf
https://whatis.techtarget.com/definition/IP-core-intellectual-property-core
https://whatis.techtarget.com/definition/IP-core-intellectual-property-core

Bibliography

[10] T. Iakymchuk, M. Nikodem, and K. Kępa, “Temperature-based covert channel in fpga systems,”

in Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), 2011 6th International

Workshop on. IEEE, 2011, pp. 1–7.

[11] D. R. Gnad, F. Oboril, S. Kiamehr, and M. B. Tahoori, “Analysis of transient voltage fluctuations

in fpgas,” in Field-Programmable Technology (FPT), 2016 International Conference on. IEEE,

2016, pp. 12–19.

[12] “Pynq-z1 python productivity for zynq.” [Online]. Available: https://store.digilentinc.com/

pynq-z1-python-productivity-for-zynq

[13] Wikipedia contributors, “Non-return-to-zero — Wikipedia, the free encyclopedia,” 2018,

[Online; accessed 31-August-2018]. [Online]. Available: https://en.wikipedia.org/wiki/

Non-return-to-zero

[14] “Integrated logic analyzer (ila).” [Online]. Available: https://www.xilinx.com/products/

intellectual-property/ila.html

[15] “On-chip design verification with xilinx fpgas.” [Online]. Available: https://www.eetimes.com/

document.asp?doc_id=1275831

54

https://store.digilentinc.com/pynq-z1-python-productivity-for-zynq
https://store.digilentinc.com/pynq-z1-python-productivity-for-zynq
https://en.wikipedia.org/wiki/Non-return-to-zero
https://en.wikipedia.org/wiki/Non-return-to-zero
https://www.xilinx.com/products/intellectual-property/ila.html
https://www.xilinx.com/products/intellectual-property/ila.html
https://www.eetimes.com/document.asp?doc_id=1275831
https://www.eetimes.com/document.asp?doc_id=1275831

List of Figures

2.1. Thermal Channel Communicator [10] . 7
2.2. Single ring oscillator [3], implemented using a Xilinx LUT5 FPGA component 8
2.3. TDC-Sensor [11], to sense voltage fluctuations through variations in the

speed of the buffers . 9

4.1. Floorplan of the design implemented in the Zynq ZC7020 on the PYNQ-Z1
Board . 16

4.2. A Display of HW-ILA showing the initial calibration of the TDC-Sensors.
It can be seen that tdc_s[5:0] is an average idle value of about 34 after the
calibration is finished at sample 288 . 16

4.3. This ILA display shows that the tdc_s[5:0] always falls a bit before it goes
back to its previous value, while the ROs are turned on and off 17

4.4. In this ILA display the ROs are being turned on longer than being turned off.
It shows that the value of the tdc_s[5:0] always falls with a delay after the
ROs are being turned on . 18

4.5. In this ILA display the ROs stay activated and deactivated for a longer period.
It shows that the value of the tdc_s[5:0] falls with a delay after the ROs are
being activated and rises with a delay after the ROs are being deactivated. It
also shows that the value of the minima from the tdc_s[5:0] are 24 or close . 19

4.6. In this ILA display the time where the ROs stay deactivated are longer than
the time these are activated. After the ROs are activated for a short time the
value of the tdc_s[5:0] falls, but then rises higher than the normal value . . 19

4.7. In this ILA display two methods to activate the ROs are combined. First the
ROs are being activated longer than being deactivated. This causes the value
of tdc_s[5:0] to fall under the normal value. Second the ROs are not being
activated all at once, but being activated one after another. This causes the
tdc_s[5:0] value to rise above the normal value. 20

55

List of Figures

4.8. In this ILA display the ROs are being activated depending on the dataword.
For 1 bits the ROs are being activated one after another and for 0 bits the
ROs are being activated longer than being deactivated.The tdc_s[5:0] value
shows that after activating the ROs gradually, it rises once. After activating
the ROs longer than being dactivated, the value falls, but is rising once after
the activation . 21

4.9. This ILA display shows the final solution of the RO activation.By activating
the ROs gradually, the value of the tdc_s[5:0] rises. By activating the ROs
all at once and then deactivating them gradually, the value of the tdc_s[5:0]
falls. 22

4.10. This figure shows how the VIO [15] works together with the Design Under
Test (DUT). The VIO puts test signals in the DUT, then the resulting signals
are being displayed on ILA, the VIO then gets the resulting signals from the
ILA . 24

4.11. Screenshot of a part in the csvfile of the 8-bit transmission. It shows the odd
error. 26

5.1. This plot is made by the result of 100000 16bit-transmissions using the 1-bit
timeframe and default boundaries. It has 42 wrong datawords, each with 1
erroneous bit. 28

5.2. This plot is made by the result of 100000 16bit-transmissions using the
0-bit timeframe and default boundaries. It has 2 wrong datawords with 7
erroneous bits. 28

5.3. This plot is made by the result of 100000 8bit-transmissions using the 1-
bit timeframe and default boundaries. It has 31 wrong datawords with 94
erroneous bits. 29

5.4. This plot is made by the result of 100000 8bit-transmissions using the 0-bit
timeframe and default boundaries. It has 23 wrong datawords, each with 1
erroneous bit. 30

5.5. This plot is made by the result of 100000 8bit-transmissions using the ad-
justed 1-bit timeframe and boundaries. It has no errors. 31

5.6. This plot is made by the result of 100000 8bit-transmissions using the ad-
justed 0-bit timeframe and boundaries. It has no errors. 31

56

List of Figures

5.7. This plot is made by the result of 100000 16bit-transmissions using the
adjusted 1-bit timeframe and boundaries. It has 19 wrong datawords, each
with 1 erroneous bit. 32

5.8. This plot is made by the result of 100000 16bit-transmissions using the
adjusted 0-bit timeframe and boundaries. It has 2 wrong datawords, each
with 1 erroneous bit. 33

5.9. This plot is made by the result of 100000 32bit-transmissions using the
adjusted 0-bit timeframe and boundaries. It has 1 wrong dataword and 18
erroneous bits. 33

5.10. This plot is made by the result of 100000 32bit-transmissions using the
adjusted 1-bit timeframe and boundaries. It has 101 wrong datawords and
103 erroneous bits. 34

5.11. ILA Display of a 32bit transmission with a 1bit timeframe 35
5.12. ILA Display of a 32bit transmission with a 0bit timeframe 35

57

	Contents
	Introduction
	Motivation
	Overview

	Background and Related Work
	FPGA
	HDL
	Power Distribution Network
	Ring Oscillator
	IP Cores
	Covert Channel
	Covert Channels in FPGAs
	Ring Oscillators for Fault Attack
	TDC-Sensors for Side-Channel Attack

	Methods for Voltage-based Covert Channels in FPGAs
	Overview
	Signal Coding
	Construction of Sender
	Construction of Receiver
	Combining Sender and Receiver

	Experiments and Implementation
	Overview
	Shaping Voltage in PDN
	Method-1 for Sending 1-Bits
	Method-2 for Sending 0-Bits
	Test Transmission by combining Method-1 and Method-2
	Reverse Method-1 for Sending 0-Bits
	Combined Sending and Receiving

	Higher Error Tolerance by Skipping Bits outside Timeframes
	Using VIO and TCL-Script for Testing

	Results
	Transmission with Timeframe and Boundaries
	Transmission with adjusted Timeframe and Boundaries
	Discussion
	Future work

	Conclusion
	Conclusion

	Appendix
	VHDL Code
	TCL-Script
	Python-Script

	Bibliography
	List of Figures

