
Intel® Quartus® Prime Pro Edition
User Guide
Debug Tools

Updated for Intel® Quartus® Prime Design Suite: 21.3

Online Version

Send Feedback UG-20139

ID: 683819

Version: 2021.10.13

https://www.intel.com/content/www/us/en/docs/programmable/683819/21-3/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. System Debugging Tools Overview... 6
1.1. System Debugging Tools Portfolio.. 6

1.1.1. System Debugging Tools Comparison... 6
1.1.2. Suggested Tools for Common Debugging Requirements.................................. 7
1.1.3. Debugging Ecosystem.. 8

1.2. Tools for Monitoring RTL Nodes..9
1.2.1. Resource Usage...9
1.2.2. Pin Usage... 11
1.2.3. Usability Enhancements.. 11

1.3. Stimulus-Capable Tools...11
1.3.1. In-System Sources and Probes.. 12
1.3.2. In-System Memory Content Editor..12
1.3.3. System Console...13

1.4. Virtual JTAG Interface Intel FPGA IP... 14
1.5. System-Level Debug Fabric... 14
1.6. SLD JTAG Bridge..14

1.6.1. SLD JTAG Bridge Index... 15
1.6.2. Instantiating the SLD JTAG Bridge Agent...16
1.6.3. Instantiating the SLD JTAG Bridge Host...17

1.7. Partial Reconfiguration Design Debugging..19
1.7.1. Debug Fabric for Partial Reconfiguration Designs.. 19

1.8. Preserving Signals for Debugging...20
1.8.1. Preserve for Debug Overview...20
1.8.2. Marking Signals for Debug.. 21

1.9. System Debugging Tools Overview Revision History..26

2. Design Debugging with the Signal Tap Logic Analyzer.. 28
2.1. Signal Tap Logic Analyzer Introduction..28

2.1.1. Signal Tap Hardware and Software Requirements... 30
2.2. Signal Tap Debugging Flow..31
2.3. Step 1: Add the Signal Tap Logic Analyzer to the Project... 33

2.3.1. Creating a Signal Tap Instance with the Signal Tap GUI................................. 33
2.3.2. Creating a Signal Tap Instance by HDL Instantiation..................................... 34

2.4. Step 2: Configure the Signal Tap Logic Analyzer...38
2.4.1. Preserving Signals for Monitoring and Debugging... 39
2.4.2. Preventing Changes that Require Full Recompilation..................................... 41
2.4.3. Specifying the Clock, Sample Depth, and RAM Type......................................41
2.4.4. Specifying the Buffer Acquisition Mode..42
2.4.5. Adding Signals to the Signal Tap Logic Analyzer... 44
2.4.6. Defining Trigger Conditions..50
2.4.7. Specifying Pipeline Settings...72
2.4.8. Filtering Relevant Samples.. 73

2.5. Step 3: Compile the Design and Signal Tap Instances... 80
2.5.1. Recompiling Only Signal Tap Changes... 80
2.5.2. Timing Preservation... 81
2.5.3. Performance and Resource Considerations...82

2.6. Step 4: Program the Target Hardware...83

Contents

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6.1. Ensure Compatibility Between .stp and .sof Files.. 83
2.7. Step 5: Run the Signal Tap Logic Analyzer...83

2.7.1. Changing the Post-Fit Signal Tap Target Nodes... 84
2.7.2. Runtime Reconfigurable Options...87
2.7.3. Signal Tap Status Messages...90

2.8. Step 6: Analyze Signal Tap Captured Data...90
2.8.1. Viewing Capture Data Using Segmented Buffers...91
2.8.2. Viewing Data with Different Acquisition Modes... 92
2.8.3. Creating Mnemonics for Bit Patterns... 93
2.8.4. Locating a Node in the Design... 94
2.8.5. Saving Captured Signal Tap Data... 95
2.8.6. Exporting Captured Signal Tap Data..95
2.8.7. Creating a Signal Tap List File.. 95

2.9. Other Signal Tap Debugging Flows... 96
2.9.1. Signal Tap and Simulator Integration.. 96
2.9.2. Managing Multiple Signal Tap Configurations..99
2.9.3. Debugging Partial Reconfiguration Designs with Signal Tap...........................101
2.9.4. Debugging Block-Based Designs with Signal Tap...103
2.9.5. Debugging Devices that use Configuration Bitstream Security...................... 110
2.9.6. Signal Tap Data Capture with the MATLAB MEX Function..............................110

2.10. Signal Tap Logic Analyzer Design Examples..112
2.11. Custom State-Based Triggering Flow Examples...112

2.11.1. Trigger Example 1: Custom Trigger Position... 112
2.11.2. Trigger Example 2: Trigger When triggercond1 Occurs Ten Times

between triggercond2 and triggercond3.. 113
2.12. Signal Tap File Templates...114
2.13. Running the Stand-Alone Version of Signal Tap...116
2.14. Signal Tap Scripting Support.. 116

2.14.1. Signal Tap Command-Line Options..117
2.14.2. Data Capture from the Command Line...117

2.15. Signal Tap File Version Compatibility... 118
2.16. Design Debugging with the Signal Tap Logic Analyzer Revision History.....................118

3. Quick Design Verification with Signal Probe... 122
3.1. Signal Probe Debugging Flow ..122

3.1.1. Step 1: Reserve Signal Probe Pins.. 123
3.1.2. Step 2: Assign Nodes to Signal Probe Pins... 123
3.1.3. Step 3: Connect the Signal Probe Pin to an Output Pin................................ 123
3.1.4. Step 4: Compile the Design... 124
3.1.5. (Optional) Step 5: Modify the Signal Probe Pins Assignments....................... 124
3.1.6. Step 6: Run Fitter-Only Compilation... 124
3.1.7. Step 7: Check Connection Table in Fitter Report... 125

3.2. Quick Design Verification with Signal Probe Revision History.................................... 126

4. In-System Debugging Using External Logic Analyzers.. 127
4.1. About the Intel Quartus Prime Logic Analyzer Interface... 127
4.2. Choosing a Logic Analyzer...127

4.2.1. Required Components...128
4.3. Flow for Using the LAI...129

4.3.1. Defining Parameters for the Logic Analyzer Interface...................................130
4.3.2. Mapping the LAI File Pins to Available I/O Pins... 130
4.3.3. Mapping Internal Signals to the LAI Banks...131

Contents

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.3.4. Compiling Your Intel Quartus Prime Project..131
4.3.5. Programming Your Intel-Supported Device Using the LAI............................. 132

4.4. Controlling the Active Bank During Runtime...132
4.4.1. Acquiring Data on Your Logic Analyzer.. 132

4.5. LAI Core Parameters...133
4.6. In-System Debugging Using External Logic Analyzers Revision History...................... 133

5. In-System Modification of Memory and Constants.. 135
5.1. IP Cores Supporting ISMCE... 135
5.2. Debug Flow with the In-System Memory Content Editor.. 135
5.3. Enabling Runtime Modification of Instances in the Design.. 136
5.4. Programming the Device with the In-System Memory Content Editor........................ 136
5.5. Loading Memory Instances to the ISMCE...137
5.6. Monitoring Locations in Memory... 138
5.7. Editing Memory Contents with the Hex Editor Pane... 139
5.8. Importing and Exporting Memory Files.. 141
5.9. Access Two or More Devices.. 141
5.10. Scripting Support... 141

5.10.1. The insystem_memory_edit Tcl Package.. 142
5.11. In-System Modification of Memory and Constants Revision History..........................142

6. Design Debugging Using In-System Sources and Probes.. 144
6.1. Hardware and Software Requirements.. 146
6.2. Design Flow Using the In-System Sources and Probes Editor....................................146

6.2.1. Instantiating the In-System Sources and Probes IP Core............................. 147
6.2.2. In-System Sources and Probes IP Core Parameters.....................................148

6.3. Compiling the Design..148
6.4. Running the In-System Sources and Probes Editor..148

6.4.1. In-System Sources and Probes Editor GUI... 149
6.4.2. Programming Your Device With JTAG Chain Configuration............................ 149
6.4.3. Instance Manager...149
6.4.4. In-System Sources and Probes Editor Pane..150

6.5. Tcl interface for the In-System Sources and Probes Editor..151
6.6. Design Example: Dynamic PLL Reconfiguration...154
6.7. Design Debugging Using In-System Sources and Probes Revision History.................. 156

7. Analyzing and Debugging Designs with System Console... 158
7.1. Introduction to System Console... 158

7.1.1. IP Cores that Interact with System Console... 159
7.1.2. Services Provided through Debug Agents...159
7.1.3. System Console Debugging Flow.. 160

7.2. Starting System Console... 161
7.2.1. Customizing System Console Startup.. 161

7.3. System Console GUI...162
7.3.1. System Console Views.. 163
7.3.2. Toolkit Explorer Pane.. 171
7.3.3. System Explorer Pane...171

7.4. Launching a Toolkit in System Console.. 172
7.4.1. Available System Debugging Toolkits...174
7.4.2. Creating Collections from the Toolkit Explorer.. 175
7.4.3. Filtering and Searching Interactive Instances... 176

7.5. Using System Console Services..176

Contents

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.5.1. Locating Available Services..177
7.5.2. Opening and Closing Services.. 177
7.5.3. Using the SLD Service...178
7.5.4. Using the In-System Sources and Probes Service....................................... 179
7.5.5. Using the Monitor Service..181
7.5.6. Using the Device Service...183
7.5.7. Using the Design Service...184
7.5.8. Using the Bytestream Service.. 185
7.5.9. Using the JTAG Debug Service... 186

7.6. On-Board Intel FPGA Download Cable II Support.. 187
7.7. MATLAB and Simulink* in a System Verification Flow ..187

7.7.1. Supported MATLAB API Commands...188
7.7.2. High Level Flow..188

7.8. System Console Examples and Tutorials.. 189
7.8.1. Nios II Processor Example... 189

7.9. Running System Console in Command-Line Mode... 191
7.10. Using System Console Commands.. 191
7.11. Using Toolkit Tcl Commands...192
7.12. Analyzing and Debugging Designs with the System Console Revision History............ 192

8. Intel Quartus Prime Pro Edition User Guide Debug Tools Archives..............................195

A. Intel Quartus Prime Pro Edition User Guides.. 196

Contents

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. System Debugging Tools Overview
This chapter provides a quick overview of the tools available in the Intel® Quartus®

Prime system debugging suite and discusses the criteria for selecting the best tool for
your debug requirements.

1.1. System Debugging Tools Portfolio

The Intel Quartus Prime software provides a portfolio of system debugging tools for
real-time verification of your design.

System debugging tools provide visibility by routing (or “tapping”) signals in your
design to debugging logic. The Compiler includes the debugging logic in your design
and generates programming files that you download into the FPGA or CPLD for
analysis.

Each tool in the system debugging portfolio uses a combination of available memory,
logic, and routing resources to assist in the debugging process. Because different
designs have different constraints and requirements, you can choose the tool that
matches the specific requirements for your design, such as the number of spare pins
available or the amount of logic or memory resources remaining in the physical
device.

1.1.1. System Debugging Tools Comparison

Table 1. System Debugging Tools Portfolio

Tool Description Typical Usage

System Console and
Debugging Toolkits

• Provides real-time in-system debugging
capabilities using available debugging
toolkits.

• Allows you to read from and write to
memory mapped components in a system
without a processor or additional software.

• Communicates with hardware modules in
a design through a Tcl interpreter.

• Allows you to take advantage of all the
features of the Tcl scripting language.

• Supports JTAG and TCP/IP connectivity.

• Perform system-level debugging.
• Debug or optimize signal integrity of a board

layout even before finishing the design.
• Debug external memory interfaces.
• Debug an Ethernet Intel FPGA IP interface in

real time.
• Debug a PCI Express* link at the Physical,

Data Link, and Transaction layers.
• Debug and optimize high-speed serial links in

your board design.

Signal Tap logic
analyzer

• Uses FPGA resources.
• Samples test nodes, and outputs the

information to the Intel Quartus Prime
software for display and analysis.

You have spare on-chip memory and you want
functional verification of a design running in
hardware.

Signal Probe Incrementally routes internal signals to I/O
pins while preserving results from the last
place-and-routed design.

You have spare I/O pins and you want to check
the operation of a small set of control pins using
either an external logic analyzer or an
oscilloscope.

continued...

683819 | 2021.10.13

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Tool Description Typical Usage

Logic Analyzer
Interface (LAI)

• Multiplexes a larger set of signals to a
smaller number of spare I/O pins.

• Allows you to select which signals switch
onto the I/O pins over a JTAG connection.

You have limited on-chip memory and a large set
of internal data buses to verify using an external
logic analyzer. Logic analyzer vendors, such as
Tektronics* and Agilent*, provide integration
with the tool to improve usability.

In-System Sources
and Probes

Provides an easy way to drive and sample
logic values to and from internal nodes using
the JTAG interface.

You want to prototype the FPGA design using a
front panel with virtual buttons.

In-System Memory
Content Editor

Displays and allows you to edit on-chip
memory.

You want to view and edit the contents of on-
chip memory that is not connected to a Nios® II
processor.
You can also use the tool when you do not want
to have a Nios II debug core in your system.

Virtual JTAG
Interface

Allows you to communicate with the JTAG
interface so that you can develop custom
applications.

You want to communicate with custom signals in
your design.

Refer to the following for more information about launching and using the available
debugging toolkits:

• Launching a Toolkit in System Console on page 172

• Available System Debugging Toolkits on page 174

1.1.2. Suggested Tools for Common Debugging Requirements

Table 2. Tools for Common Debugging Requirements(1)

Requirement Signal
Probe

Logic
Analyzer
Interface

(LAI)

Signal
Tap Logic
Analyzer

Description

More Data Storage N/A X — An external logic analyzer with the LAI tool allows you to
store more captured data than the Signal Tap logic analyzer,
because the external logic analyzer can provide access to a
bigger buffer.
The Signal Probe tool does not capture or store data.

Faster Debugging X X — You can use the LAI or the Signal Probe tool with external
equipment, such as oscilloscopes and mixed signal
oscilloscopes (MSOs). This ability provides access to timing
mode, which allows you to debug combined streams of
data.

Minimal Effect on
Logic Design

X X(2) X(2) The Signal Probe tool incrementally routes nodes to pins,
with no effect on the design logic.
The LAI adds minimal logic to a design, requiring fewer
device resources.
The Signal Tap logic analyzer has little effect on the design,
because the Compiler considers the debug logic as a
separate design partition.

Short Compile and
Recompile Time

X X(2) X(2) Signal Probe uses incremental routing to attach signals to
previously reserved pins. This feature allows you to quickly
recompile when you change the selection of source signals.
The Signal Tap logic analyzer and the LAI can refit their own
design partitions to decrease recompilation time.

Sophisticated
Triggering
Capability

N/A N/A X The triggering capabilities of the Signal Tap logic analyzer
are comparable to commercial logic analyzers.

continued...

1. System Debugging Tools Overview

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Requirement Signal
Probe

Logic
Analyzer
Interface

(LAI)

Signal
Tap Logic
Analyzer

Description

Low I/O Usage — — X The Signal Tap logic analyzer does not require additional
output pins.
Both the LAI and Signal Probe require I/O pin assignments.

Fast Data
Acquisition

N/A — X The Signal Tap logic analyzer can acquire data at speeds of
over 200 MHz.
Signal integrity issues limit acquisition speed for external
logic analyzers that use the LAI.

No JTAG Connection
Required

X — — Signal Probe does not require a host for debugging
purposes.
The Signal Tap logic analyzer and the LAI require an active
JTAG connection to a host running the Intel Quartus Prime
software.

No External
Equipment Required

— — X The Signal Tap logic analyzer only requires a JTAG
connection from a host running the Intel Quartus Prime
software or the stand-alone Signal Tap logic analyzer.
Signal Probe and the LAI require the use of external
debugging equipment, such as multimeters, oscilloscopes,
or logic analyzers.

Notes to Table:
1. • X indicates the recommended tools for the feature.

• — indicates that while the tool is available for that feature, that tool might not give the best results.
• N/A indicates that the feature is not applicable for the selected tool.

1.1.3. Debugging Ecosystem

The Intel Quartus Prime software allows you to use the debugging tools in tandem to
exercise and analyze the logic under test and maximize closure.

A very important distinction in the system debugging tools is how they interact with
the design. All debugging tools in the Intel Quartus Prime software allow you to read
the information from the design node, but only a subset allow you to input data at
runtime:

Table 3. Classification of System Debugging Tools

Debugging Tool Read Data
from Design

Input Values
into the
Design

Comments

Signal Tap logic analyzer, Yes No General purpose troubleshooting tools
optimized for probing signals in a register
transfer level (RTL) netlistLogic Analyzer Interface

Signal Probe

In-System Sources and Probes Yes Yes These tools allow to:
• Read data from breakpoints that you

define
• Input values into your design during

runtime

Virtual JTAG Interface

System Console

Debugging Toolkits

In-System Memory Content Editor

1. System Debugging Tools Overview

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Taken together, the set of on-chip debugging tools form a debugging ecosystem. The
set of tools can generate a stimulus to and solicit a response from the logic under test,
providing a complete solution.

Figure 1. Debugging Ecosystem at Runtime

JTAG

FPGA

Intel Quartus Prime
Software

Design Under Test

Virtual JTAG Interface
Debugging Toolkits

System Console
In-System Sources and Probes

In-System Memory Content Editor

Signal Tap
Logic Analyzer Interface

Signal Probe

1.2. Tools for Monitoring RTL Nodes

The Signal Tap logic analyzer, Signal Probe, and LAI tools are useful for probing and
debugging RTL signals at system speed. These general-purpose analysis tools enable
you to tap and analyze any routable node from the FPGA.

• In cases when the design has spare logic and memory resources, the Signal Tap
logic analyzer can providing fast functional verification of the design running on
actual hardware.

• Conversely, if logic and memory resources are tight and you require the large
sample depths associated with external logic analyzers, both the LAI and the
Signal Probe tools simplify monitoring internal design signals using external
equipment.

Related Information

• Quick Design Verification with Signal Probe on page 122

• Design Debugging with the Signal Tap Logic Analyzer on page 28

• In-System Debugging Using External Logic Analyzers on page 127

1.2.1. Resource Usage

The most important selection criteria for these three tools are the remaining resources
on the device after implementing the design and the number of spare pins.

Evaluate debugging options early on in the design planning process to ensure that you
support the appropriate options in the board, Intel Quartus Prime project, and design.
Planning early can reduce debugging time, and eliminates last minute changes to
accommodate debug methodologies.

1. System Debugging Tools Overview

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2. Resource Usage per Debugging Tool

Signal
Probe

Lo
gic

 A
na

lyz
er

 In
te

rfa
ce

Signal Tap

Lo
gic

Memory

1.2.1.1. Overhead Logic

Any debugging tool that requires a JTAG connection requires SLD infrastructure logic
for communication with the JTAG interface and arbitration between instantiated
debugging modules. This overhead logic uses around 200 logic elements (LEs), a small
fraction of the resources available in any of the supported devices. All available
debugging modules in your design share the overhead logic. Both the Signal Tap logic
analyzer and the LAI use a JTAG connection.

1.2.1.1.1. For Signal Tap Logic Analyzer

The Signal Tap logic analyzer requires both logic and memory resources. The number
of logic resources used depends on the number of signals tapped and the complexity
of the trigger logic. However, the amount of logic resources that the Signal Tap logic
analyzer uses is typically a small percentage of most designs.

A baseline configuration consisting of the SLD arbitration logic and a single node with
basic triggering logic contains approximately 300 to 400 Logic Elements (LEs). Each
additional node you add to the baseline configuration adds about 11 LEs. Compared
with logic resources, memory resources are a more important factor to consider for
your design. Memory usage can be significant and depends on how you configure your
Signal Tap logic analyzer instance to capture data and the sample depth that your
design requires for debugging. For the Signal Tap logic analyzer, there is the added
benefit of requiring no external equipment, as all of the triggering logic and storage is
on the chip.

1.2.1.1.2. For Signal Probe

The resource usage of Signal Probe is minimal. Because Signal Probe does not require
a JTAG connection, logic and memory resources are not necessary. Signal Probe only
requires resources to route internal signals to a debugging test point.

1.2.1.1.3. For Logic Analyzer Interface

The LAI requires a small amount of logic to implement the multiplexing function
between the signals under test, in addition to the SLD infrastructure logic. Because no
data samples are stored on the chip, the LAI uses no memory resources.

1. System Debugging Tools Overview

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2.2. Pin Usage

1.2.2.1. For Signal Tap Logic Analyzer

Other than the JTAG test pins, the Signal Tap logic analyzer uses no additional pins. All
data is buffered using on-chip memory and communicated to the Signal Tap logic
analyzer GUI via the JTAG test port.

1.2.2.2. For Signal Probe

The ratio of the number of pins used to the number of signals tapped for the Signal
Probe feature is one-to-one. Because this feature can consume free pins quickly, a
typical application for this feature is routing control signals to spare pins for
debugging.

1.2.2.3. For Logic Analyzer Interface

The LAI can map up to 256 signals to each debugging pin, depending on available
routing resources. The JTAG port controls the active signals mapped to the spare I/O
pins. With these characteristics, the LAI is ideal for routing data buses to a set of test
pins for analysis.

1.2.3. Usability Enhancements

The Signal Tap logic analyzer, Signal Probe, and LAI tools can be added to your
existing design with minimal effects. With the node finder, you can find signals to
route to a debugging module without making any changes to your HDL files. Signal
Probe inserts signals directly from your post-fit database. The Signal Tap logic
analyzer and LAI support inserting signals from both pre-synthesis and post-fit
netlists.

1.2.3.1. Incremental Routing

Signal Probe uses the incremental routing feature. The incremental routing feature
runs only the Fitter stage of the compilation. This leaves your compiled design
untouched, except for the newly routed node or nodes. With Signal Probe, you can
save as much as 90% compile time of a full compilation.

1.2.3.2. Automation Via Scripting

As another productivity enhancement, all tools in the on-chip debugging tool set
support scripting via the quartus_stp Tcl package. For the Signal Tap logic analyzer
and the LAI, scripting enables user-defined automation for data collection while
debugging in the lab. The System Console includes a full Tcl interpreter for scripting.

1.3. Stimulus-Capable Tools

The In-System Memory Content Editor, In-System Sources and Probes, and Virtual
JTAG interface enable you to use the JTAG interface as a general-purpose
communication port.

Though you can use all three tools to achieve the same results, there are some
considerations that make one tool easier to use in certain applications:

1. System Debugging Tools Overview

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• The In-System Sources and Probes is ideal for toggling control signals.

• The In-System Memory Content Editor is useful for inputting large sets of test
data.

• Finally, the Virtual JTAG interface is well suited for advanced users who want to
develop custom JTAG solutions.

System Console provides system-level debugging at a transaction level, such as with
Avalon®-MM slave or Avalon-ST interfaces. You can communicate to a chip through
JTAG and TCP/IP protocols. System Console uses a Tcl interpreter to communicate
with hardware modules that you instantiate into your design.

1.3.1. In-System Sources and Probes

In-System Sources and Probes allow you to read and write to a design by accessing
JTAG resources.

You instantiate an Intel FPGA IP into your HDL code. This Intel FPGA IP core contains
source ports and probe ports that you connect to signals in your design, and abstracts
the JTAG interface's transaction details.

In addition, In-System Sources and Probes provide a GUI that displays source and
probe ports by instance, and allows you to read from probe ports and drive to source
ports. These features make this tool ideal for toggling a set of control signals during
the debugging process.

Related Information

Design Debugging Using In-System Sources and Probes on page 144

1.3.1.1. Push Button Functionality

During the development phase of a project, you can debug your design using the In-
System Sources and Probes GUI instead of push buttons and LEDs. Furthermore, In-
System Sources and Probes supports a set of scripting commands for reading and
writing using the Signal Tap logic analyzer. You can also build your own Tk graphical
interfaces using the Toolkit API. This feature is ideal for building a virtual front panel
during the prototyping phase of the design.

Related Information

Signal Tap Scripting Support on page 116

1.3.2. In-System Memory Content Editor

The In-System Memory Content Editor allows you to quickly view and modify memory
content either through a GUI interface or through Tcl scripting commands. The In-
System Memory Content Editor works by turning single-port RAM blocks into dual-port
RAM blocks. One port is connected to your clock domain and data signals, and the
other port is connected to the JTAG clock and data signals for editing or viewing.

Related Information

In-System Modification of Memory and Constants on page 135

1. System Debugging Tools Overview

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.2.1. Generate Test Vectors

Because you can modify a large set of data easily, a useful application for the
In-System Memory Content Editor is to generate test vectors for your design. For
example, you can instantiate a free memory block, connect the output ports to the
logic under test (using the same clock as your logic under test on the system side),
and create the glue logic for the address generation and control of the memory. At
runtime, you can modify the contents of the memory using either a script or the
In-System Memory Content Editor GUI and perform a burst transaction of the data
contents in the modified RAM block synchronous to the logic being tested.

1.3.3. System Console

System Console is a framework that you can launch from the Intel Quartus Prime
software to start services for performing various debugging tasks. System Console
provides you with Tcl scripts and a GUI to access the Platform Designer system
integration tool to perform low-level hardware debugging of your design, as well as
identify a module by its path, and open and close a connection to a Platform Designer
module. You can access your design at a system level for purposes of loading,
unloading, and transferring designs to multiple devices. Also, System Console
supports the Tk toolkit for building graphical interfaces.

Related Information

Analyzing and Debugging Designs with System Console on page 158

1.3.3.1. Test Signal Integrity

System Console also allows you to access commands that allow you to control how
you generate test patterns, as well as verify the accuracy of data generated by test
patterns. You can use JTAG debug commands in System Console to verify the
functionality and signal integrity of your JTAG chain. You can test clock and reset
signals.

1.3.3.2. Board Bring-Up and Verification

You can use System Console to access programmable logic devices on your
development board, perform board bring-up, and perform verification. You can also
access software running on a Nios II or Intel FPGA SoC processor, as well as access
modules that produce or consume a stream of bytes.

1.3.3.3. Debug with Available Toolkits

System Console provides the hardware debugging infrastructure to run the debugging
toolkits that you can enable by the use of debug-enabled Intel FPGA IP. The
debugging toolkits can help you to debug external memory interfaces, Ethernet
interfaces, PCI Express links, Serial Lite IV links, and high-speed serial links by
providing real-time monitoring and debugging of the design running on a board.

Refer to the following for more information about launching and using the available
debugging toolkits:

• Launching a Toolkit in System Console on page 172

• Available System Debugging Toolkits on page 174

1. System Debugging Tools Overview

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4. Virtual JTAG Interface Intel FPGA IP

The Virtual JTAG Interface Intel FPGA IP provides the finest level of granularity for
manipulating the JTAG resource. This Intel FPGA IP allows you to build your own JTAG
scan chain by exposing all of the JTAG control signals and configuring your JTAG
Instruction Registers (IRs) and JTAG Data Registers (DRs). During runtime, you
control the IR/DR chain through a Tcl API, or with System Console. This feature is
meant for users who have a thorough understanding of the JTAG interface and want
precise control over the number and type of resources used.

Related Information

• Virtual JTAG (altera_virtual_jtag) IP Core User Guide

• Virtual JTAG Interface (VJI) Intel FPGA IP
In Intel Quartus Prime Help

1.5. System-Level Debug Fabric

During compilation, the Intel Quartus Prime generates the JTAG Hub to allow multiple
instances of debugging tools in a design.

Most Intel FPGA on-chip debugging tools use the JTAG port to control and read-back
data from debugging logic and signals under test. The JTAG Hub manages the sharing
of JTAG resources.

Note: For System Console, you explicitly insert debug IP cores into the design to enable
debugging.

The JTAG Hub appears in the project's design hierarchy as a partition named
auto_fab_<number>.

1.6. SLD JTAG Bridge

The SLD JTAG Bridge extends the debug fabric across partitions, allowing a higher-
level partition (static region or root partition) to access debug signals in a lower-level
partition (partial reconfiguration region or core partition).

This bridge consists of two IP components:

• SLD JTAG Bridge Agent Intel FPGA IP—Resides in the higher-level partition.

Extends the JTAG debug fabric from a higher-level partition to a lower-lever
partition containing the SLD JTAG Bridge Host IP. You instantiate the SLD JTAG
Bridge Agent IP in the higher-level partition.

• SLD JTAG Bridge Host Intel FPGA IP—resides in the lower-level partition.
Connects to the PR JTAG hub on one end, and to the SLD JTAG Bridge Agent on
the higher-level partition.

Connects the JTAG debug fabric in a lower-level to a higher-level partition
containing the SLD JTAG Bridge Agent IP. You instantiate the SLD JTAG Bridge
Host IP in the lower-level partition.

1. System Debugging Tools Overview

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

14

https://www.intel.com/content/www/us/en/programmable/documentation/bhc1411109490717.html#bhc1411109292871
http://quartushelp.altera.com/current/#hdl/mega/mega_file_sld_virtual_jtag.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3. Signals in a SLD JTAG Bridge

SLD JTAG Bridge Agent

Higher-level partition Lower-level partition

SLD JTAG Bridge Host

ena

tdo

vir_tdi

tdi

tms

tck SLD HOST INTERFACE
SLD HOST INTERFACE

SLD AGENT INTERFACE

Manual Instantiation Automatic InstantiationAutomatic Instantiation

Debug Logic
HUB

auto_fab_0
HUB

auto_fab_n

For each PR region or reserved core partition you debug, you must instantiate one SLD
JTAG Bridge Agent in the higher-level partition and one SLD JTAG Bridge Host in the
lower-level partition.

1.6.1. SLD JTAG Bridge Index

The SLD JTAG Bridge Index uniquely identifies instances of the SLD JTAG Bridge
present in a design. You can find information regarding the Bridge Index in the
synthesis report.

The Intel Quartus Prime software supports multiple instances of the SLD JTAG Bridge
in designs. The Compiler assigns an index number to distinguish each instance. The
bridge index for the root partition is always None.

When configuring the Signal Tap logic analyzer for the root partition, set the Bridge
Index value to None in the JTAG Chain Configuration window.

Figure 4. JTAG Chain Configuration Bridge Index

1. System Debugging Tools Overview

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5. Design with Multiple SLD JTAG Bridges

SLD JTAG
Bridge Agent

Bridge
Index 1

SLD JTAG
Bridge Host

SLD JTAG
Bridge Agent

SLD JTAG
Bridge Agent

Bridge
Index 0

SLD JTAG
Bridge Host

SLD JTAG
Bridge Agent

SLD JTAG
Bridge Agent

Bridge
Index 0-0

Signal
Tap

Bridge
None

Automatic Signal Tap Connections

User Made Connections

Signal
Tap

SLD JTAG
Bridge Host

Bridge
Index 0-1 Signal

Tap

SLD JTAG
Bridge Host

Signal
Tap

Bridge
Index 1-0 Signal

Tap

SLD JTAG
Bridge Host

Bridge Index Information in the Compilation Report

Following design synthesis, the Compilation Report lists the index numbers for the SLD
JTAG Bridge Agents in the design. Open the Synthesis ➤ In-System Debugging ➤
JTAG Bridge Instance Agent Information report for details about how the bridge
indexes are enumerated. The reports shows the hierarchy path and the associated
index.

In the synthesis report (<base revision>.syn.rpt), this information appears in
the table JTAG Bridge Agent Instance Information.

Figure 6. JTAG Bridge Agent Instance Information

1.6.2. Instantiating the SLD JTAG Bridge Agent

To generate and instantiate the SLD JTAG Bridge Agent Intel FPGA IP:

1. On the IP Catalog (Tools ➤ IP Catalog), type SLD JTAG Bridge Agent.

1. System Debugging Tools Overview

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7. Find in IP Catalog

2. Double click SLD JTAG Bridge Agent Intel FPGA IP.

3. In the Create IP Variant dialog box, type a file name, and then click Create.

Figure 8. Create IP Variant Dialog Box

The IP Parameter Editor Pro window shows the IP parameters. In most cases,
you do not need to change the default values.

Figure 9. SLD JTAG Bridge Agent Intel FPGA IP Parameters

4. Click Generate HDL.

5. When the generation completes successfully, click Close.

6. If you want an instantiation template, click Generate ➤ Show Instantiation
Template in the IP Parameter Editor Pro.

1.6.3. Instantiating the SLD JTAG Bridge Host

To generate and instantiate the SLD JTAG Bridge Host Intel FPGA IP:

1. On the IP Catalog (Tools ➤ IP Catalog), type SLD JTAG Bridge Host.

1. System Debugging Tools Overview

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10. Find in IP Catalog

2. Double click SLD JTAG Bridge Host Intel FPGA IP.

3. In the Create IP Variant dialog box, type a file name, and then click Create.

Figure 11. Create IP Variant Dialog Box

The IP Parameter Editor Pro window shows the IP parameters. In most cases,
you do not need to change the default values.

Figure 12. SLD JTAG Bridge Host Intel FPGA IP Parameters

4. Click Generate HDL.

5. When the generation completes successfully, click Close.

6. If you want an instantiation template, click Generate ➤ Show Instantiation
Template in the IP Parameter Editor Pro.

1. System Debugging Tools Overview

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.7. Partial Reconfiguration Design Debugging

The following Intel FPGA IP cores support system-level debugging in the static region
of a PR design:

• In-System Memory Content Editor

• In-System Sources and Probes Editor

• Virtual JTAG

• Nios II JTAG Debug Module

• Signal Tap Logic Analyzer

In addition, the Signal Tap logic analyzer allows you to debug the static or partial
reconfiguration (PR) regions of the design. If you only want to debug the static region,
you can use the In-System Sources and Probes Editor, In-System Memory Content
Editor, or System Console with a JTAG Avalon bridge.

Related Information

Debugging Partial Reconfiguration Designs with Signal Tap on page 101

1.7.1. Debug Fabric for Partial Reconfiguration Designs

You must prepare the design for PR debug during the early planning stage, to ensure
that you can debug the static as well as PR region.

On designs with Partial Reconfiguration, the Compiler generates centralized debug
managers—or hubs—for each region (static and PR) that contains system level debug
agents. Each hub handles the debug agents in its partition. In the design hierarchy,
the hub corresponding to the static region is auto_fab_0.

To connect the hubs on parent and child partitions, you must instantiate one SLD JTAG
Bridge for each PR region that you want to debug.

Related Information

• PR Design Setup for Signal Tap Debug on page 102

• Debugging Partial Reconfiguration Designs with Signal Tap on page 101

1.7.1.1. Generation of PR Debug Infrastructure

During compilation, the synthesis engine performs the following functions:

• Generates a main JTAG hub in the static region.

• If the static region contains Signal Tap instances, connects those instances to the
main JTAG hub.

• Detects bridge agent and bridge host instances.

• Connects the SLD JTAG bridge agent instances to the main JTAG hub.

• For each bridge host instance in a PR region that contains a Signal Tap instance:

— Generates a PR JTAG hub in the PR region.

— Connects all Signal Tap instances in the PR region to the PR JTAG hub.

— Detects instance of the SLD JTAG bridge host.

— Connects the PR JTAG hub to the JTAG bridge host.

1. System Debugging Tools Overview

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.8. Preserving Signals for Debugging

The Intel Quartus Prime Pro Edition software allows you to mark and preserve specific
signals through the compilation process, which enables visibility of any node within
the available system debugging tools.

To ensure that specific nodes in your RTL are available for debugging after the
Compiler's synthesis and place-and-route stages, you can apply the
preserve_for_debug attribute to the signals of interest in your RTL, and also apply
the Enable preserve for debug assignments project-level .qsf assignment.

This section refers to the following terms to explain use of the preserve for debug
feature:

Table 4. Debug Signal Preservation Terminology

Term Description

node A signal name present in your design RTL and possibly in the compilation netlist for the
current project. Typically, the node name refers to the output of a logical unit, such as
gate, register, LUT, embedded memory, DSP, or others.
The Intel Quartus Prime GUI can display this node name in various locations, such as the
Node Finder, when debugging the signals in your design. You can search for this node
name to apply constraints and use in debugging operations.

hpath The Intel Quartus Prime-style hierarchical path, with instance names separated by "|",
for example:foo|boo|node

1.8.1. Preserve for Debug Overview

The preserve for debug feature allows you to designate nodes in your design for full
debugging visibility. In this context, full visibility means that you can ensure that the
node name remains in the post-fit netlist generated by Place and Route, with the same
name and functionality the design files define.

After you apply preserve for debug, you can easily access these nodes through the
Node Finder filters available in the Intel Quartus Prime debugging tools.

Typically, you lose some visibility into the design when you debug using a post-fit
netlist. This loss occurs because in the post-fit netlist, the design is already mapped to
the device architecture, optimized, and retimed. The Place and Route stage often
changes or removes the original signal names. Furthermore, there can be slight
changes in the behavior in the post-fit netlist because of inverter push back, or
because the visible signal shows only partial behavior due to logic duplication.

Preserve for Debug Use Cases

Preserve for debug is primarily for debugging purposes, and is particularly useful in
the Signal Tap debugging flow, as Preserving Signals for Monitoring and Debugging on
page 39 describes.

In addition, use of preserve for debug can also be helpful in any of the available
system debugging tools, or within any instrumentation logic that you use in your
design.

1. System Debugging Tools Overview

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Preserve for Debug Hardware Implementation

Applying the preserve for debug feature has the following effects on hardware
implementation:

• Prevents the Compiler from optimizing the specified node.

• Results in LCELL module instantiation for the specified node, impacting the overall
timing on the node path.

Application of preserve for debug is the hardware equivalent of using all of the
following HDL pragmas on the specified node:

Table 5. Combined Attributes

HDL Pragma Compiler Setting Description

preserve PRESERVE_REGISTER Prevents the Compiler from optimizing away or retiming a register.

keep HDL only Prevents the Compiler from minimizing or removing a particular
signal net during combinational logic optimization.

noprune HDL only Prevents the Compiler from removing or optimizing a fan-out free
register.

dont_merge HDL only Prevents the Compiler from merging a register with a duplicate
register.

dont_replicate HDL only Prevents the Compiler from merging a register with a duplicate
register.

1.8.2. Marking Signals for Debug

You can mark (designate) a node for preservation by use of an RTL pragma in your
design file, or by specifying an assignment in the project revision .qsf.

You can enable or disable preserve for debug at the entity level or globally, so there is
no need to individually disable marked signals when ready to compile a production
stage design.

Figure 13. Preserve for Debug Flow

2. Implement Preserve Assignments

Preserve for Debug Flow

1. Enable Preserve for Debug

3. Locate and Report Preserved Nodes

Design
Synthesis

1. System Debugging Tools Overview

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Step 1: Enabling Preserve for Debug on page 22

• Step 2: Implement Preserve for Debug Assignments on page 23

• Step 3: Locate and Report Preserve for Debug Nodes on page 24

1.8.2.1. Step 1: Enabling Preserve for Debug

To ensure that the Compiler correctly processes the signals that you mark for
preservation, and that the Intel Quartus Prime software Node Finders and filters
correctly display these names, you must first turn on the Enable preserve for debug
assignments setting in the GUI or project revision .qsf, as the following methods
describe.

Note: The instance-level preserve for debug assignment takes precedence over the global
preserve for debug assignment if the two assignments are in opposition to each other
(that is, one assignment type is set to On, the other assignment type is set to Off).

Enabling Preserve for Debug In Project Settings on page 22

Enabling Preserve for Debug at Instance Level on page 22

1.8.2.1.1. Enabling Preserve for Debug In Project Settings

To enable preserve for debug in the project settings:

1. In the Intel Quartus Prime software, click Assignments ➤ Settings ➤ Signal
Tap Logic Analyzer.

2. On the Signal Tap Logic Analyzer settings page, turn on the Enable preserve
for debug assignments option. Preserve for debug enables project-wide.

Figure 14. Signal Tap Logic Analyzer Settings

As an alternative to the GUI setting, you can enable or disable project-wide preserve
for debug by adding or modifying the following assignment in the project
revision .qsf:

set_global_assignment -name PRESERVE_FOR_DEBUG_ENABLE <ON|OFF>

1.8.2.1.2. Enabling Preserve for Debug at Instance Level

You can enable preserve for debug in certain design blocks, and leave the feature
disabled in other design blocks.

1. System Debugging Tools Overview

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To enable the assignment at the instance level, you must specify the instance name to
enable or disable for preserve for debug, as the following assignment shows:

set_instance_assignment -name PRESERVE_FOR_DEBUG_ENABLE ON -to \
 <instance hpath>

1.8.2.2. Step 2: Implement Preserve for Debug Assignments

Implement preserve for debug assignments through HDL pragmas in the design files
(recommended), or by specifying assignments in the the Assignment Editor or
project .qsf file directly. The following topics provide more details:

HDL Implementation on page 23

Intel Quartus Prime Settings Implementation on page 23

1.8.2.2.1. HDL Implementation

The recommended method of preserving nodes for debug is to add HDL pragmas or
attributes to the design files.

Table 6 on page 23 defines the preserve for debug pragma and .qsf assignment
setting.

Table 6. Preserve for Debug Pragma

Term Equivalent (.qsf)
Setting

Description

preserve_for_debug PRESERVE_FOR_DEBUG Prevents the Fitter from optimizing away a register or combinational
signal. The pragma also prevents any retiming, merging, and
duplication optimization. This optimization prevention applies when
the setting, PRESERVE_FOR_DEBUG_ENABLE is ON.

Add HDL pragmas to Verilog HDL design files in the following way:

(* preserve_for_debug *) reg my_reg;

Add HDL attributes to VHDL design files in the following way:

signal keep_wire : std_logic;
attribute keep: boolean;
attribute keep of keep_wire: signal is true;

1.8.2.2.2. Intel Quartus Prime Settings Implementation

As an alternative to HDL pragmas, you can specify the following assignment to apply
the Preserve for Debug assignment through the .qsf settings file directly, or with
Assignment Editor.

set_instance_assignment -name PRESERVE_FOR_DEBUG ON -to \
 <node hpath>

Note: This assignment supports the use of wildcards (*).

1. System Debugging Tools Overview

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Specifying Preserve Signal for Debug in the Assignment Editor

If you prefer to specify assignments in the Intel Quartus Prime software GUI, rather
than in the .qsf directly, you can specify the the Preserve signal for debug
assignment in Assignment Editor (Assignments menu).

Figure 15. Specifying the Preserve Signal for Debug in the Assignment Editor

1.8.2.3. Step 3: Locate and Report Preserve for Debug Nodes

After running design synthesis, you can locate preserve for debug nodes using the
Node Finder in the system debugging tools. In addition, you can view data about the
preserve for debug nodes in the Compilation Report. The following topics describe
locating and reporting on preserve for debug nodes:

Locating Preserve for Debug Nodes on page 24

Reporting Preserve for Debug Nodes on page 25

1.8.2.3.1. Locating Preserve for Debug Nodes

The Node Finder includes the following filters that simplify the process of locating the
preserve for debug nodes in your project database:

• Signal Tap: pre-synthesis preserved for debug filter—shows preserved nodes
from the pre-synthesis netlist that generates during Analysis & Elaboration.

• Signal Tap: post-fitting preserved for debug filter—shows preserved nodes
from the post-fit netlist.

Figure 16. Node Finder with Preserve for Debug Filter

1. System Debugging Tools Overview

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can click the Customize button to view the Node Finder search filter settings.

Figure 17. Node Finder Search Filter Settings

1.8.2.3.2. Reporting Preserve for Debug Nodes

You can view data about preserve for debug nodes in the Compilation Report
Preserve for Debug folder following Analysis & Synthesis.

The Preserve for Debug Assignments for Partition report is located in Tools ➤
Compilation Report ➤ Synthesis ➤ Partition <name> ➤ Preserve for Debug.

1. System Debugging Tools Overview

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18. Preserve for Debug Assignments for Partition Report

1.9. System Debugging Tools Overview Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2021.10.04 21.3 • Added new Preserving Signals for Debugging section.
• Removed obsolete Remote Debugging topic. This feature is not

supported in the Intel Quartus Prime Pro Edition software.
• Removed obsolete Remote Debugging chapter 8. This feature is not

supported in the Intel Quartus Prime Pro Edition software.

2020.09.28 20.3 • Revised "System Debugging Tools Comparison" to reflect replacement
of Transceiver Toolkit with the available debugging toolkits.

• Revised "Debugging Ecosystem" to reflect replacement of Transceiver
Toolkit with the available debugging toolkits.

2019.09.30 19.3 • Clarified meaning of PR and static regions in "Partial Reconfiguration
Design Debugging" topic.

• Removed references to Application Notes 693.

2018.09.24 18.1 • Added figures about SLD JTAG Bridge.
• Added information about block-based design.

2018.05.07 18.0 • Moved here information about debug fabric on PR designs from the
Design Debugging with the Signal Tap Logic Analyzer chapter.

2017.05.08 17.0 • Combined Altera JTAG Interface and Required Arbitration Logic topics
into a new updated topic named System-Level Debugging
Infrastructure.

• Added topic: Debug the Partial Reconfiguration Design with System
Level Debugging Tools.

2016.10.31 16.1 • Implemented Intel rebranding.

2015.11.02 15.1 Changed instances of Quartus II to Intel Quartus Prime.

June 2014 14.0 Added information that System Console supports the Tk toolkit.

November 2013 13.1 Dita conversion. Added link to Remote Debugging over TCP/IP for Altera
SoC Application Note.

June 2012 12.0 Maintenance release.

continued...

1. System Debugging Tools Overview

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

November 2011 10.0 Maintenance release. Changed to new document template.

December 2010 10.0 Maintenance release. Changed to new document template.

July 2010 10.0 Initial release

1. System Debugging Tools Overview

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Design Debugging with the Signal Tap Logic Analyzer

2.1. Signal Tap Logic Analyzer Introduction

The Signal Tap logic analyzer, available in the Intel Quartus Prime software, captures
and displays the real-time signal behavior in an Intel FPGA design. Use the Signal Tap
logic analyzer to probe and debug the behavior of internal signals during normal
device operation, without requiring extra I/O pins or external lab equipment.

By default, the Signal Tap logic analyzer captures data continuously from the signals
you specify while the logic analyzer is running. To capture and store only specific
signal data, you specify conditions that trigger the start or stop of data capture. A
trigger activates when the trigger conditions are met, stopping analysis and displaying
the data. You can save the captured data in device memory for later analysis, and
filter data that is not relevant.

Signal Tap Logic Analyzer Instance

You enable the logic analyzer functionality by defining one or more instances of the
Signal Tap logic analyzer in your project. You can define the properties of the Signal
Tap instance in the Signal Tap logic analyzer GUI, or by HDL instantiation of the Signal
Tap Logic Analyzer Intel FPGA IP. After design compilation, you configure the target
device with your design (including any Signal Tap instances), which enables data
capture and communication with the Signal Tap logic analyzer GUI over a JTAG
connection.

Figure 19. Signal Tap Logic Analyzer Block Diagram

Design Logic

1 2 30

1 2 30

Signal Tap
Instances

Intel FPGA
Programming Cable

Signal Tap Logic Analyzer GUI

Buffers (Device Memory)

FPGA Device

JTAG
Hub

683819 | 2021.10.13

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Signal Tap Logic Analyzer GUI

The Signal Tap logic analyzer GUI helps you to rapidly define and modify Signal Tap
signal configuration and JTAG connection settings, displays the captured signals during
analysis, starts and stops analysis, and displays and records signal data. When you
configure a Signal Tap instance in the GUI, Signal Tap preserves the instance settings
in a Signal Tap Logic Analyzer file (.stp) for reuse.

Figure 20. Signal Tap Logic Analyzer GUI

Signal Configuration

Signal Tap Instances JTAG Connection Setup

Trigger Conditions

Signal Tap Logic Analyzer and Simulator Integration

You can integrate the Signal Tap logic analyzer with your supported simulator
environment. Signal Tap can readily generate a list of "simulator-aware" nodes to tap
for any design hierarchy. Tapping this set of nodes then provides full visibility into the
entire design hierarchy for direct observation of all internal signal states in your RTL
simulator.

Signal Tap also supports automatic RTL simulation testbench creation, allowing you to
export acquired Signal Tap hardware data directly into your RTL simulator and observe
signals beyond those that you specify for tapping in Signal Tap. You can produce
simulation events using the live data traffic to replicate in your simulator.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Tap Logic Analyzer Capabilities

The Signal Tap logic analyzer supports a high number of channels, a large sample
depth, fast clock speeds, and other features described in the Key Signal Tap Logic
Analyzer Capabilities table.

Table 7. Key Signal Tap Logic Analyzer Capabilities

Capability Benefit

Multiple logic analyzers in a single
device, or in multiple devices in a
single chain

Capture data from multiple clock domains and from multiple devices at the same
time.

Up to 10 trigger conditions for each
analyzer instance

Send complex data capture commands to the logic analyzer for greater accuracy
and problem isolation.

Power-up trigger Capture signal data for triggers that occur after device programming, but before
manually starting the logic analyzer.

Custom trigger HDL object Define a custom trigger in Verilog HDL or VHDL and tap specific instances of
modules across the design hierarchy, without manual routing of all the necessary
connections.

State-based triggering flow Organize triggering conditions to precisely define data capture.

Flexible buffer acquisition modes Precise control of data written into the acquisition buffer. Discard data samples
that are not relevant to the debugging of your design.

MATLAB* integration with MEX
function

Collect Signal Tap capture data into a MATLAB integer matrix.

RTL simulator integration Easily create a set of nodes to tap for the design hierarchy, and observe all
internal signal states in your RTL simulator. Automatic testbench creation allows
you to inject acquired Signal Tap data directly into your RTL simulator.

Up to 4,096 channels per logic
analyzer instance

Samples many signals and wide bus structures.

Up to 128K samples per instance Captures a large sample set for each channel.

Fast clock frequencies Synchronous sampling of data nodes using the same clock tree driving the logic
under test.

Compatible with other debugging
utilities

Use the Signal Tap logic analyzer in tandem with any JTAG-based on-chip
debugging tool, such as an In-System Memory Content editor, to change signal
values in real-time.

Floating-Point Display Format • Single-precision floating-point format IEEE754 Single (32-bit).
• Double-precision floating-point format IEEE754 Double (64-bit).

2.1.1. Signal Tap Hardware and Software Requirements

All editions of the Intel Quartus Prime design software include the Signal Tap logic
analyzer GUI and Signal Tap Logic Analyzer Intel FPGA IP. The Signal Tap logic
analyzer is also available as a stand-alone application.

During data acquisition, the memory blocks in the FPGA device store the captured
data, and then transfer the data to the Signal Tap logic analyzer over a JTAG
communication cable, such as Intel FPGA Ethernet Cable or Intel FPGA Download
Cable.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Signal Tap logic analyzer requires the following hardware and software to perform
logic analysis:

• The Signal Tap logic analyzer included with the Intel Quartus Prime software, or
the Signal Tap logic analyzer standalone software and standalone Programmer
software.

• An Intel FPGA download or communications cable.

• An Intel development kit, or your own design board with a JTAG connection to the
device under test.

Related Information

Running the Stand-Alone Version of Signal Tap on page 116

2.2. Signal Tap Debugging Flow

To use the Signal Tap logic analyzer to debug your design, you compile your design
that includes one or more Signal Tap instances that you define, configure the target
device, and then run the logic analyzer to capture and analyze signal data.

Figure 21. Signal Tap Debugging Flow

Debugging Complete

Yes

NoFunctionality
Satisfied or Bug

Fixed?

Add Signal Tap
Instance(s) to Design

Configure Signal Tap and
Define Trigger Conditions

Program the Target
Device or Devices

Analyze Signal Tap
Captured Data

Run Signal Tap
Logic Analyzer GUI

Adjust Options,
Triggers, or Both

Recompilation
Necessary?

Yes

NoCompile the Design
Including Signal Tap

No

1

112

116

113

114

115

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following steps describe the Signal Tap debugging flow in detail:

• Step 1: Add the Signal Tap Logic Analyzer to the Project on page 33

• Step 2: Configure the Signal Tap Logic Analyzer on page 38

• Step 3: Compile the Design and Signal Tap Instances on page 80

• Step 4: Program the Target Hardware on page 83

• Step 5: Run the Signal Tap Logic Analyzer on page 83

• Step 6: Analyze Signal Tap Captured Data on page 90

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3. Step 1: Add the Signal Tap Logic Analyzer to the Project

To debug a design using the Signal Tap logic analyzer, you must first define one or
more Signal Tap instances and add them to your project. You then compile the Signal
Tap instances, along with your design. You can define a Signal Tap instance in the
Signal Tap logic analyzer GUI or by HDL instantiation.

To help you get started quickly, the Signal Tap logic analyzer GUI includes
preconfigured templates for various trigger conditions and applications. You can then
modify the settings the template applies and adjust trigger conditions in the Signal
Tap logic analyzer GUI.

Alternatively, you can define a Signal Tap instance by parameterizing an instance of
the Signal Tap Logic Analyzer Intel FPGA IP, and then instantiating the Signal Tap
entity or module in an HDL design file.

If you want to monitor multiple clock domains simultaneously, you can add additional
instances of the logic analyzer to your design, limited only by the available resources
in your device.

2.3.1. Creating a Signal Tap Instance with the Signal Tap GUI

When you define one or more Signal Tap instances in the GUI, Signal Tap stores the
trigger and signal configuration settings in a Signal Tap Logic Analyzer File (.stp).
You can open a .stp to reload that Signal Tap configuration.

1. Open a project and run Analysis & Synthesis on the Compilation Dashboard.

2. To create a Signal Tap instance with the Signal Tap logic analyzer GUI, perform
one of the following:

• Click Tools ➤ Signal Tap Logic Analyzer.

• Click File ➤ New ➤ Signal Tap Logic Analyzer File.

Figure 22. Signal Tap file Templates

3. Select a Signal Tap file template. The Preview describes the setup and Signal
Configuration the template applies. Refer to Signal Tap File Templates on page
114.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Click Create. The Signal Tap logic analyzer GUI opens with the template options
preset for the Signal Tap instance.

5. Under Signal Configuration, specify the acquisition Clock and optionally modify
other settings, as Step 2: Configure the Signal Tap Logic Analyzer on page 38
describes.

6. When you save or close the Signal Tap instance, click Yes when prompted to add
the Signal Tap instance to the project.

2.3.1.1. Manging Signal Tap Instances

You can manage the properties of different Signal Tap instances in the Instance
Manager pane. You can enable or disable one or more instances to specify whether
your project includes the instance the next time you run compilation. If you enable or
disable instances, you must recompile the design to implement the changes.

The Instance Manager toolbar allows you to Run Analysis and Stop Analysis, or
start Autorun Analysis, which starts the Signal Tap logic analyzer in a repetitive
acquisition mode, providing continuous display update.

Figure 23. Enable and Disable Signal Tap Instances in Instance Manager

2.3.2. Creating a Signal Tap Instance by HDL Instantiation

You can create a Signal Tap Instance by HDL instantiation, rather than using the
Signal Tap logic analyzer GUI. When you use HDL instantiation, you first parameterize
and instantiate the Signal Tap Logic Analyzer Intel FPGA IP in your RTL. Next, you
compile the design and IP, and run a Signal Tap analysis using the generated .stp
file. Follow these steps to create a Signal Tap instance by HDL instantiation:

Figure 24. Signal Tap Logic Analyzer Intel FPGA IP

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. From the Intel Quartus Prime IP Catalog (View ➤ IP Catalog), locate and
double-click the Signal Tap Logic Analyzer Intel FPGA IP.

2. In the New IP Variant dialog box, specify the File Name for your Signal Tap
instance, and then click Create. The IP parameter editor displays the available
parameter settings for the Signal Tap instance.

3. In the parameter editor, specify the Data, Segmented Acquisition, Storage
Qualifier, Trigger, and Pipelining parameters, as Signal Tap Intel FPGA IP
Parameters on page 36 describes.

4. Click Generate HDL. The parameter editor generates the HDL implementation of
the Signal Tap instance according your specifications.

Figure 25. IP Parameter Editor

5. To instantiate the Signal Tap instance in your RTL, click Generate ➤ Show
Instantiation Template in the parameter editor. Copy the Instantiation
Template contents into your RTL.

Figure 26. Signal Tap Logic Analyzer Intel FPGA IP Instantiation Template

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Run at least the Analysis & Synthesis stage of the Compiler to synthesize the RTL
(including Signal Tap instance) by clicking Processing ➤ Start ➤ Start Analysis
& Synthesis. Alternatively, you can run full compilation and the Assembler at this
point if ready.

7. When the Compiler completes, click Create/Update ➤ Create Signal Tap File
from Design Instance to create a .stp file for analysis in the Signal Tap logic
analyzer GUI.

Figure 27. Create Signal Tap File from Design Instances Dialog Box

Note: If your project contains partial reconfiguration partitions, the PR partitions
display in a tree view. Select a partition from the view, and click Create
Signal Tap file. The resulting .stp file that generates contains all HDL
instances in the corresponding PR partition. The resulting .stp file does not
include the instances in any nested partial reconfiguration partition.

8. To analyze the Signal Tap instance, click File ➤ Open and select the .stp file.
The Signal Tap instance opens in the Signal Tap logic analyzer GUI for analysis. All
the fields are read-only, except runtime-configurable trigger conditions.

9. Modify any runtime-configurable trigger conditions, as Runtime Reconfigurable
Options on page 87 describes.

2.3.2.1. Signal Tap Intel FPGA IP Parameters

The Signal Tap Intel FPGA IP has the following parameters:

Table 8. Signal Tap Intel FPGA IP Parameters

Parameter Groups Parameter Descriptions

Data • Data Input Port Width—from 1 to 4096. Default is 1.
• Sample Depth—number of samples to collect from 0-128K. Default is 128.
• RAM type—memory type for sample collection and storage. The Auto

(default), M20K/M10K/M9K, MLAB/LUTRAM, and M144K options are
available.

Segmented Acquisition Specifies options for organizing the captured data buffer:

continued...

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Groups Parameter Descriptions

• Segmented—the memory space is split into separate buffers. Each buffer acts
as a separate FIFO with its own set of trigger conditions, and behaves as a non-
segmented buffer. Only a single buffer is active during an acquisition. Default is
off.

• Number of Segments—specifies the number of segments in each memory
space. Default is 2.

• Samples per Segments—the number of samples Signal Tap captures per
segment. Default is 64.

Storage Qualifier Specifies the Continuous or Input Port method, and whether to Record data
discontinuities.

Trigger • Trigger Input Port Width—from 1 to 4096. Default is 1.
• Trigger Conditions—number of trigger conditions or levels you are

implementing 1-10. Default is 1.
• Trigger In—enables and creates a port for the Trigger In.
• Trigger Out—enables and creates a port for the Trigger Out.

Pipelining The Pipeline Factor specifies the levels of pipelining added for potential fMAX
improvement from 0 to 5. Default is 0.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4. Step 2: Configure the Signal Tap Logic Analyzer

You must configure the Signal Tap logic analyzer before you can capture and analyze
data. You can configure instances of the Signal Tap logic analyzer by specifying options
in the Signal Tap Signal Configuration pane.

When you use the available Signal Tap templates to create a new Signal Tap instance,
the template specifies many of the initial option values automatically.

Figure 28. Signal Tap Logic Analyzer Signal Configuration Pane

Signal Configuration Pane

Basic configuration of the Signal Tap logic analyzer includes specifying values for the
following options:

• Preserving Signals for Monitoring and Debugging on page 39

• Specifying the Clock, Sample Depth, and RAM Type on page 41

• Specifying the Buffer Acquisition Mode on page 42

• Adding Signals to the Signal Tap Logic Analyzer on page 44

• Defining Trigger Conditions on page 50

• Specifying Pipeline Settings on page 72

• Filtering Relevant Samples on page 73

• Managing Multiple Signal Tap Configurations on page 99

Related Information

Preventing Changes that Require Full Recompilation on page 41

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.1. Preserving Signals for Monitoring and Debugging

The Compiler optimizes the RTL signals during synthesis and place-and-route. Unless
preserved, the signal names in your RTL may not exist in the post-fit netlist after
signal optimizations. For example, the compilation process can merge duplicate
registers, or add tildes (~) to net names that fan-out from a node.

To ensure that specific nodes in your RTL are available for Signal Tap debugging after
synthesis and place-and-route, you can apply the preserve_for_debug attribute to
the signals of interest in your RTL, and also specify the Enable preserve for debug
assignments project .qsf setting. Refer to .qsf syntax in Table 9 on page 40.

When you preserve signals using this technique, the Compiler generates the Preserve
for Debug Assignments report following synthesis that shows the status and name of
all nodes with the preserve_for_debug attribute in your RTL.

Follow these steps to preserve signals for monitoring and debugging:

1. In your design RTL, mark signals that you want to preserve with the
preserve_for_debug attribute:

Figure 29. preserve_for_debug Attribute

2. Open the project containing Signal Tap in the Intel Quartus Prime software and
perform one of the following:

• To enable preservation and reporting for specific instances, click Assignments
➤ Assignment Editor, and then specify the Enable preserve for debug
assignments assignment To any instance of interest.

Or

• To enable preservation and reporting project-wide, in Assignments ➤
Settings ➤ Signal Tap Logic Analyzer, turn on Enable preserve for
debug assignments.(1)

3. To synthesize the design, on the Compilation Dashboard, click Analysis &
Synthesis. The Compilation Report appears when synthesis is complete.

4. To view the results of signal preservation, open the Preserve for Debug
Assignments report located in the Synthesis ➤ Partition <name> ➤ Preserve
for Debug report folder.

(1) The global project setting has a more limited impact and does not preserve signals that would
otherwise be optimized away in their local context.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 30. Preserve for Debug Assignments Report

5. Run full compilation to perform place and route of the design and Signal Tap
instance, as Step 3: Compile the Design and Signal Tap Instances on page 80
describes. The debug signals that you preserve in step 2 persist through the Fitter
into the finalized compilation database.

6. Optionally, make some incremental changes to the Signal Tap configuration
without running full recompilation, as Changing the Post-Fit Signal Tap Target
Nodes on page 84 describes.

Table 9. Debug Signal Preservation Methods

Method Description Example

preserve_for_debug_en
able

Set this assignment to On to preserve any
nodes or hierarchies marked with
preserve_for_debug. If set to Off or not
used, any preserve_for_debug assignments
are ignored. Use this as a quick way to disable
all debug node preservation when optimizing a
completed design. The Compiler reports these
nodes in the Preserve for Debug Assignments
report following compilation.

set_instance_assignment -name
PRESERVE_FOR_DEBUG_ENABLE ON

preserve_for_debug

(Enable preserve for
debug assignments in
the Assignment Editor)

Instance-specific .qsf assignment that
overrides the global assignment and enables
preservation of all types of nodes through
synthesis post-synthesis or post-fit debugging
purposes. When On, this assignment enables
preservation for the hierarchy that you specify.
You can enable or disable this with the
Preserve signal for debug assignment in the
Assignment Editor. The Compiler reports these
nodes in the Preserve for Debug Assignments
report following compilation.

set_instance_assignment -name
PRESERVE_FOR_DEBUG ON -to <node
hpath>

Note: For more information about preserving signals, refer to Preserving Registers During
Synthesis, in the Intel Hyperflex™ Architecture High-Performance Design Handbook
and Preserving a System Module, Interface, or Port for Debugging in the Intel Quartus
Prime Pro Edition User Guide: Platform Designer.

Related Information

• Intel Hyperflex Architecture High-Performance Design Handbook

• Changing the Post-Fit Signal Tap Target Nodes on page 84

• Preserving Signals for Debugging on page 20

• Preserving a System Module, Interface, or Port for Debugging, Intel Quartus Prime
Pro Edition User Guide: Platform Designer

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

40

https://www.intel.com/content/www/us/en/programmable/documentation/jbr1444752564689.html#mta1458937942734
https://www.intel.com/content/www/us/en/programmable/documentation/zcn1513987282935.html#qxr1625161299740
https://www.intel.com/content/www/us/en/programmable/documentation/zcn1513987282935.html#qxr1625161299740
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.2. Preventing Changes that Require Full Recompilation

Making some types of changes to the Signal Tap configuration require full
recompilation to implement. If you want to ensure that you make no changes to the
Signal Tap configuration that require full recompilation, select Allow trigger
condition changes only for the Lock mode. Alternatively, you can enable Allow all
changes, including those changes that require full compilation or recompilation to
implement.

Figure 31. Allow Trigger Conditions Change Only

Related Information

Recompiling Only Signal Tap Changes on page 80

2.4.3. Specifying the Clock, Sample Depth, and RAM Type

You must specify options for the acquisition clock, sample depth, and data storage on
the Signal Configuration pane before using Signal Tap.

Note: The Signal Tap file templates automatically specify appropriate initial values for some
of these options.

Figure 32. Clock, Sample Depth, and Data Storage Options

Storage RAM Type

Buffer Acquisition Mode

Number of SamplesAcquisition Clock

Search Signals

Specifying the Acquisition Clock

Signal Tap samples data on each positive (rising) edge of the acquisition clock.
Therefore, Signal Tap requires a clock signal from your design to control the logic
analyzer data acquisition. For best data acquisition, specify a global, non-gated clock
that is synchronous to the signals under test. Refer to the Timing Analysis section of
the Compilation Report for the maximum frequency of the logic analyzer clock.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To specify the acquisition clock signal, enter a signal name from your design for
the Clock setting in Single Configuration.

Note: Consider the following when specifying the acquisition clock:

• If you do not assign an acquisition clock, Signal Tap automatically creates clock
pin auto_stp_external_clk. You must then make a pin assignment to this
signal, and ensure that a clock signal in your design drives the acquisition clock.

• Using a transceiver recovered clock as the acquisition clock can cause incorrect or
unexpected behavior, particularly when the transceiver recovered clock is the
acquisition clock with the power-up trigger feature.

• Specifying a gated acquisition clock can result in unexpected data that does not
accurately reflect the behavior of your design.

• Signal Tap does not support sampling on the negative (falling) clock edge.

Specifying Sample Depth

The sample depth determines the number of samples the logic analyzer captures and
stores in the data buffer, for each signal. In cases with limited device memory
resources, you can reduce the sample depth to reduce resource usage.

• To specify the sample depth, select the number of samples from the Sample
depth list under Single Configuration. Available sample depth range is from
0 to 128K.

Specifying the RAM Type

You can specify the RAM type and buffer acquisition mode for storage of Signal Tap
logic analyzer acquisition data. When you allocate the Signal Tap logic analyzer buffer
to a particular RAM block, the entire RAM block becomes a dedicated resource for the
logic analyzer.

• To specify the RAM type, select a Ram type under Single Configuration.
Available settings are Auto, MLAB, or M20K RAM.

Use RAM selection to preserve a specific memory block for your design, and allocate
another portion of memory for Signal Tap data acquisition. For example, if your design
has an application that requires a large block of memory resources, such as a large
instruction or data cache, use MLAB blocks for data acquisition and leave M20k blocks
for your design.

Related Information

• Adding Nios II Processor Signals with a Plug-In on page 49

• Managing Device I/O Pins, Intel Quartus Prime Pro Edition User Guide: Design
Constraints

2.4.4. Specifying the Buffer Acquisition Mode

You can specify how Signal Tap organizes the data capture buffer to potentially reduce
the amount of memory that Signal Tap requires for data acquisition.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

42

https://www.intel.com/content/www/us/en/programmable/documentation/iqe1513988936192.html#mwh1410471036713
https://www.intel.com/content/www/us/en/programmable/documentation/iqe1513988936192.html#mwh1410471036713
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Signal Tap logic analyzer supports either a non-segmented (or circular) buffer and
a segmented buffer.

• Non-segmented buffer—the Signal Tap logic analyzer treats the entire memory
space as a single FIFO, continuously filling the buffer until the logic analyzer
reaches the trigger conditions that you specify.

• Segmented buffer—the memory space is split into separate buffers. Each buffer
acts as a separate FIFO with its own set of trigger conditions, and behaves as a
non-segmented buffer. Only a single buffer is active during an acquisition. The
Signal Tap logic analyzer advances to the next segment after the trigger condition
or conditions for the active segment has been reached.

When using a non-segmented buffer, you can use the storage qualification feature to
determine which samples are written into the acquisition buffer. Both the segmented
buffers and the non-segmented buffer with the storage qualification feature help you
maximize the use of the available memory space.

Figure 33. Buffer Type Comparison in the Signal Tap Logic Analyzer
The figure illustrates the differences between the two buffer types.

Newly
Captured
Data

Oldest Data
 Removed

Post-Trigger Pre-Trigger Center Trigger

1 1

All
Trigger Level

Segment 1 Segment 2 Segment 3 Segment 4

Segment
Trigger Level

1 1 ... 0 1 1 0 ... 0 1 1 1 ... 0 1 1 0 ... 0 1

0 0 1 0 0 1 0 1

Segment
Trigger Level

Segment
Trigger Level

1

(b) Segmented Buffer

(a) Circular Buffer

Both non-segmented and segmented buffers can use a preset trigger position (Pre-
Trigger, Center Trigger, Post-Trigger). Alternatively, you can define a custom trigger
position using the State-Based Triggering tab, as Specify Trigger Position on page
58 describes.

2.4.4.1. Non-Segmented Buffer

The non-segmented buffer is the default buffer type in the Signal Tap logic analyzer.

At runtime, the logic analyzer stores data in the buffer until the buffer fills up. From
that point on, new data overwrites the oldest data, until a specific trigger event
occurs. The amount of data the buffer captures after the trigger event depends on the
Trigger position setting:

• To capture more data from before the trigger occurs, select Post trigger position
from the list.

• To capture all data from after the trigger occurs, select Pre trigger position.

• To center the trigger position in the data, select Center trigger position.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Alternatively, use the custom State-based triggering flow to define a custom trigger
position within the capture buffer.

2.4.4.2. Segmented Buffer

In a segmented buffer, the acquisition memory is split into segments of even size, and
you define a set of trigger conditions for all segments. Each segment acts as a non-
segmented buffer. A segmented buffer allows you to debug systems that contain
relatively infrequent recurring events.

If you want to have separate trigger conditions for each of the buffer segments, you
must use the state-based trigger flow. The figure shows an example of a segmented
buffer system.

Figure 34. System that Generates Recurring Events
In the following example, to ensure that the correct data is written to the SRAM controller, monitor the RDATA
port whenever the address H'0F0F0F0F is sent into the RADDR port.

QDR SRAM
Controller

WADDR[17..0]
RADDR[17..0]
WDATA[35..0]
RDATA[35..0]

CMD[1..0]

INCLK

A[17..0]
Q[17..0]
D[17..0]
BWSn[1..0]
RPSn
WPSn

K, Kn

QDR
SRAM

Reference Design Top-Level File

Intel FPGA Device

Pipeline
Registers

(Optional)

K_FB_OUT
K_FB_IN

C, Cn

SRAM Interface Signals

The buffer acquisition feature allows you to monitor multiple read transactions from
the SRAM device without running the Signal Tap logic analyzer again. You can split the
memory to capture the same event multiple times, without wasting allocated memory.
The buffer captures as many cycles as the number of segments you define under the
Data settings in the Signal Configuration pane.

To enable and configure buffer acquisition, select Segmented in the Signal Tap logic
analyzer Editor and choose the number of segments to use. In the example in the
figure, selecting 64-sample segments allows you to capture 64 read cycles.

Related Information

Viewing Capture Data Using Segmented Buffers on page 91

2.4.5. Adding Signals to the Signal Tap Logic Analyzer

You add the signals that you want to monitor to the node list in the Signal Tap logic
analyzer. You can then select a signals in the node list to define the triggers for the
signal.

Adding Pre-Synthesis Signals

You can add expected signals to Signal Tap for monitoring without running synthesis.
Pre-synthesis signal names are those names present after Analysis & Elaboration, but
before any synthesis optimizations. When you add pre-synthesis signals to Signal Tap

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

for monitoring, you must make all connections to the Signal Tap logic analyzer before
running synthesis. The Compiler then automatically allocates the logic and routing
resources to make these connections. For signals driving to and from IOEs, pre-
synthesis signal names coincide with the pin's signal names.

Refer to Adding Pre-Synthesis or Post-Fit Nodes on page 45.

Adding Simulator-Aware Signals

You can easily generate a list of simulator-aware, pre-synthesis signals to tap for an
entire design hierarchy, and then observe all internal signal states in your RTL
simulator. This set of simulator-aware nodes can provide full visibility into other
untapped nodes in the design hierarchy. You can then export captured Signal Tap
signal data data directly into your RTL simulator to observe signal states beyond
Signal Tap observability.

Refer to Adding Simulator-Aware Signal Tap Nodes on page 47.

Adding Post-Fit Signals

You can add post-fit signals to Signal Tap for monitoring. Post-fit signal names are
those names present in the netlist after physical synthesis optimizations and place-
and-route. When you add post-fit signals to Signal Tap for monitoring, you are
connecting to actual atoms in the post-fit netlist. You can only monitor signals that
exist in the post-fit netlist, and existing routing resources must be available.

In the case of post-fit output signals, monitor the COMBOUT or REGOUT signal that
drives the IOE block. For post-fit input signals, signals driving into the core logic
coincide with the pin's signal name.

Note: Because NOT-gate push back applies to any register that you monitor, the signal from
the atom may be inverted. You can verify the inversion by locating to the signal with
the Locate Node ➤ Locate in Resource Property Editor or the Locate Node ➤
Locate in Technology Map Viewer commands. You can also view post-fit node
names in the Resource Property Editor.

Related Information

Signal Tap and Simulator Integration on page 96

2.4.5.1. Adding Pre-Synthesis or Post-Fit Nodes

To add one or more pre-synthesis or post-fit signals to the Signal Tap Node list for
monitoring:

1. Click either of the following commands to generate the pre-synthesis or post-fit
design netlist:

• Processing ➤ Start ➤ Start Analysis & Elaboration (generates pre-
synthesis netlist)

• Processing ➤ Start ➤ Start Fitter (generates post-fit netlist)

2. In the Signal Tap logic analyzer, Click Edit ➤ Add Nodes. The Node Finder
appears, allowing you to find and add the signals in your design. The following
Filter options are available for finding the nodes you want:

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Signal Tap: pre-synthesis—finds signal names present after design
elaboration, but before any synthesis optimizations are done. Signal Tap:
pre-synthesis preserved for debug finds presynthesis signals that you
mark with the preserve_for_debug pragma, as Preserving Signals for
Monitoring and Debugging on page 39 describes.

• Signal Tap: post-fitting—finds signal names present after physical synthesis
optimizations and place-and-route. Signal Tap: post-fitting preserved for
debug finds post-fit signals that you mark with the preserve_for_debug
pragma.

3. In the Node Finder, select one or more nodes that you want to add, and then click
the Copy all to Selected Nodes list button.

4. Click Insert. The nodes are added to the Setup tab signal list in the Signal Tap
logic analyzer GUI.

5. Specify how the logic analyzer uses the signal by enabling or disabling the Data
Enable, Trigger Enable, or Storage Enable option for the signal:

• Trigger Enable—disabling prevents a signal from triggering the analysis,
while still showing the signal's captured data.

• Data Enable—disabling prevent capture of data, while still allowing the signal
to trigger.

Figure 35. Signal Tap Node List Options for Data Enable and Trigger Enable

6. Define trigger conditions for the Signal Tap nodes, as Defining Trigger Conditions
on page 50 describes.

The number of channels available in the Signal Tap window waveform display is
directly proportional to the number of logic elements (LEs) or adaptive logic modules
(ALMs) in the device. Therefore, there is a physical restriction on the number of
channels that are available for monitoring. Signals shown in blue text are post-fit node
names. Signals shown in black text are pre-synthesis node names.

After successful Analysis and Elaboration, invalid signals appear in red. Unless you are
certain that these signals are valid, remove them from the .stp file for correct
operation. The Signal Tap Status Indicator also indicates if an invalid node name exists
in the .stp file.

You can monitor signals only if a routing resource (row or column interconnects) exists
to route the connection to the Signal Tap instance. For example, you cannot monitor
signals that exist in the I/O element (IOE), because there are no direct routing
resources from the signal in an IOE to a core logic element. For input pins, you can
monitor the signal that is driving a logic array block (LAB) from an IOE, or, for output
pins, you can monitor the signal from the LAB that is driving an IOE.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The Intel Quartus Prime Pro Edition software uses only the instance name, and not the
entity name, in the form of:

a|b|c

not a_entity:a|b_entity:b|c_entity:c

2.4.5.2. Adding Simulator-Aware Signal Tap Nodes

Note: This version of the Signal Tap simulator integration feature is a beta release. The
following known limitations apply to this beta release:

• Supports only Verilog HDL simulation.

• Supports testbench generation only within the current project directory.

To automatically generate and add a list of simulator-aware signals to the Signal Tap
Node list for Signal Tap and simulator monitoring, follow these steps:

1. To generate the pre-synthesis design netlist, click Processing ➤ Start ➤ Start
Analysis & Elaboration.

2. In the Signal Tap logic analyzer, click Edit ➤ Add Simulator Aware Nodes. The
Simulator Aware Node Finder opens, allowing you to specify the following
options to find and add the minimum set of nodes to tap to for full visibility into
the selected hierarchy's cone of logic:

a. Click the Select Hierarchies button, select one or more design hierarchies
that you want to tap, and then click OK. The clock domains in the hierarchy
appear in the Clock Domains list.

b. Under Clock Domains, enable only the domains of interest. If you select
multiple clock domains, Signal Tap creates an instance for each domain.

c. Click the Search button. All nodes required to provide full visibility into the
selected hierarchy automatically appear enabled in the Total nodes to tap
list. Disabling any of the simulator-aware nodes may reduce simulation
visibility.

d. Click the Insert button. The enabled signals in the Total nodes to tap list
are copied to the Signal Tap Node list, and the acquisition clock updates
according to the simulator-aware signal data. Refer to Add Simulator-Aware
Node Finder Settings on page 49.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 36. Simulator Aware Node Finder

Select Hierarchy
 to Tap

Disable clocks

Finds Simulator-
 Aware Nodes

Simulator-Aware
Nodes Found

Add Nodes To
Signal Tap

Figure 37. Simulator-Aware Nodes Copied to Signal Tap Window

3. Modify trigger conditions for the Signal Tap nodes, as Defining Trigger Conditions
on page 50 describes.

4. Compile the design and Signal Tap instance, Step 3: Compile the Design and
Signal Tap Instances on page 80 describes.

5. Program the target hardware, as Step 4: Program the Target Hardware on page
83 describes.

6. Run the Signal Tap logic analyzer, as Step 5: Run the Signal Tap Logic Analyzer on
page 83 describes.

7. Generate a simulation testbench from Signal Tap capture data, as Generating a
Simulation Testbench from Signal Tap Data on page 96 describes.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.5.2.1. Add Simulator-Aware Node Finder Settings

The following options are available for searching and adding simulator aware nodes to
Signal Tap for the purpose of generating an RTL simulation testbench from Signal Tap
data. The default values derive from Signal Tap signal data and are set correctly for
most scenarios.

Table 10. Add Simulator Aware Node Finder Settings (Signal Tap Logic Analyzer)

Name Description

Select Hierarchies Specifies the design hierarchy from which to extract simulator-aware nodes.
Select one or more design hierarchies that you want to tap. The clock domains of
the hierarchy appear in the Clock Domains list. Only nodes from the hierarchy
you specify are added.

Clock Domains Specifies the clock domains to include in the simulator-aware node finder. Turn
on only the domains that you want to include.

Search button Starts the search for simulator-aware nodes according to the specifications in
this dialog box. Search results appear in the Total nodes to tap list.

Total nodes to tap Displays the results of the simulator-aware node name search, showing all of the
names in the hierarchy enabled by default. Turn the node names on to include or
off to exclude from the list of nodes added to Signal Tap. Disabling any of the
simulator-aware nodes may reduce simulation visibility.

Insert Button Copies the enabled signals in the Total nodes to tap list to the Signal Tap Node
list, and the acquisition clock updates according to the simulator-aware signal
data.

2.4.5.3. Adding Nios II Processor Signals with a Plug-In

You can use a plug-in to automatically add relevant signals for the Nios II processor
for monitoring, rather than adding the signals manually with the Node Finder. The
plug-in provides preset mnemonic tables for trigger creation and viewing, as well as
the ability to disassemble code in captured data.

Note: This feature does not yet support the Nios V embedded processor.

The Nios II plug-in creates one mnemonic table in the Setup tab and two tables in the
Data tab:

• Nios II Instruction (Setup tab)—capture all the required signals for triggering
on a selected instruction address.

• Nios II Instance Address (Data tab)—display address of executed instructions
in hexadecimal format or as a programming symbol name if defined in an optional
Executable and Linking Format (.elf) file.

• Nios II Disassembly (Data tab)—display disassembled code from the
corresponding address.

To add Nios II IP signals to the logic analyzer using a plug-in, perform the following
steps after running Analysis and Elaboration on your design:

1. In the Signal Tap logic analyzer, right-click the node list, and then click Add
Nodes with Plug-In ➤ Nios II.

2. Select the IP that contains the signals you want to monitor with the plug-in, and
click OK.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

— If all the signals in the plug-in are available, a dialog box might appear,
depending on the plug-in, where you can specify options for the plug-in.

3. With the Nios II plug-in, you can optionally select an .elf containing program
symbols from your Nios II Integrated Development Environment (IDE) software
design. Specify options for the selected plug-in, and click OK.

2.4.5.4. Signals Unavailable for Signal Tap Debugging

Some post-fit signals in your design are unavailable for Signal Tap debugging. The
Node Finder's Signal Tap: post-fitting filter does not return nodes that are
unavailable for Signal Tap debugging.

The following signal types are unavailable for Signal Tap debugging:

• Post-fit output pins—You cannot monitor a post-fit output or bidirectional pin
directly. To make an output signal visible, monitor the register or buffer that drives
the output pin.

• Carry chain signals—You cannot monitor the carry out (cout0 or cout1) signal
of a logic element. Due to architectural restrictions, the carry out signal can only
feed the carry in of another LE.

• JTAG signals—You cannot monitor the JTAG control (TCK, TDI, TDO, or TMS)
signals.

• LVDS—You cannot monitor the data output from a serializer/deserializer
(SERDES) block.

• DQ, DQS signals—You cannot directly monitor the DQ or DQS signals in a DDR or
DDRII design.

2.4.6. Defining Trigger Conditions

By default, the Signal Tap logic analyzer captures data continuously from the signals
you specify while the logic analyzer is running. To capture and store only specific
signal data, you can specify conditions that trigger the start or stop of data capture. A
trigger activates—that is, the logic analyzer stops and displays the data—when the
signals you specify reach the trigger conditions that you define.

The Signal Tap logic analyzer allows you to define trigger conditions that range from
very simple, such as the rising edge of a single signal, to very complex, involving
groups of signals, extra logic, and multiple conditions. Additionally, you can specify
Power-Up Triggers to capture data from trigger events occurring immediately after the
device enters user-mode after configuration.

2.4.6.1. Basic Trigger Conditions

If you select the Basic AND or Basic OR trigger type, you must specify the trigger
pattern for each signal that you add.

To specify the trigger pattern, right-click the Trigger Conditions column and click
Don’t Care, Low, High, Falling Edge , Rising Edge, or Either Edge.

For buses, type a pattern in binary, or right-click and select Insert Value to enter the
pattern in other number formats. Note that you can enter X to specify a set of “don’t
care” values in either your hexadecimal or your binary string. For signals in the .stp
file that have an associated mnemonic table, you can right-click and select an entry
from the table to specify pre-defined conditions for the trigger.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When you add signals through plug-ins, you can create basic triggers using predefined
mnemonic table entries. For example, with the Nios II plug-in, if you specify an .elf
file from your Nios II IDE design, you can type the name of a function from your Nios
II code. The logic analyzer triggers when the Nios II instruction address matches the
address of the code function name that you specify.

Data capture stops and the logic analyzer stores the data in the buffer when the
logical AND of all the signals for a given trigger condition evaluates to TRUE.

2.4.6.2. Nested Trigger Conditions

When you specify a set of signals as a nested group (group of groups) with the Basic
OR trigger type, the logic analyzer generates an advanced trigger condition. This
condition sorts signals within groups to minimize the need to recompile your design. If
you always retain the parent-child relationship of nodes, the advanced trigger
condition does not change. You can modify the sibling relationships of nodes, without
requiring recompilation.

The evaluation precedence of a nested trigger condition starts at the bottom-level with
the leaf-groups. The logic analyzer uses the resulting logic value to compute the
parent group’s logic value. If you manually set the value of a group, the logic value of
the group's members doesn't influence the result of the group trigger.

To create a nested trigger condition:

1. Select Basic OR under Trigger Conditions.

2. In the Setup tab, select several nodes. Include groups in your selection.

3. Right-click the Setup tab and select Group.

4. Select the nested group and right-click to set a group trigger condition that applies
the reduction AND, OR, NAND, NOR, XOR, XNOR, or logical TRUE or FALSE.

Note: You can only select OR and AND group trigger conditions for bottom-level
groups (groups with no groups as children).

Figure 38. Applying Trigger Condition to Nested Group

2.4.6.3. Comparison Trigger Conditions

The Comparison trigger allows you to compare multiple grouped bits of a bus to an
expected integer value by specifying simple comparison conditions on the bus node.
The Comparison trigger preserves all the trigger conditions that the Basic OR trigger

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

includes. You can use the Comparison trigger in combination with other triggers. You
can also switch between Basic OR trigger and Comparison trigger at run-time,
without the need for recompilation.

Signal Tap logic analyzer supports the following types of Comparison trigger
conditions:

• Single-value comparison—compares a bus node’s value to a numeric value that
you specify. Use one of these operands for comparison: >, >=, ==, <=, <.
Returns 1 when the bus node matches the specified numeric value.

• Interval check—verifies whether a bus node’s value confines to an interval that
you define. Returns 1 when the bus node's value lies within the specified bounded
interval.

Follow these rules when using the Comparison trigger condition:

• Apply the Comparison trigger only to bus nodes consisting of leaf nodes.

• Do not form sub-groups within a bus node.

• Do not enable or disable individual trigger nodes within a bus node.

• Do not specify comparison values (in case of single-value comparison) or
boundary values (in case of interval check) exceeding the selected node’s bus-
width.

2.4.6.3.1. Specifying the Comparison Trigger Conditions

Follow these steps to specify the Comparison trigger conditions:

1. From the Setup tab, select Comparison under Trigger Conditions.

2. Right-click the node in the trigger editor, and select Compare.

3. Select the Comparison type from the Compare window.

— If you choose Single-value comparison as your comparison type, specify
the operand and value.

— If you choose Interval check as your comparison type, provide the lower and
upper bound values for the interval.

Figure 39. Selecting the Comparison Trigger Condition

Select Comparison Right-click node
and select Compare

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can also specify if you want to include or exclude the boundary values.

Figure 40. Specifying the Comparison Values

Compares the Bus Node’s Value to
a Specific Numeric Value

Verifies Bus Node’s Value
Confines to a Specified Bounded Interval

Specify Inclusion or Exclusion
 of Boundary Values

4. Click OK. The trigger editor displays the resulting comparison expression in the
group node condition text box.

Figure 41. Resulting Comparison Condition in Text Box

Displays Resulting
Comparison Expression

2.4.6.4. Advanced Trigger Conditions

To capture data for a given combination of conditions, build an advanced trigger. The
Signal Tap logic analyzer provides the Advanced Trigger tab, which helps you build a
complex trigger expression using a GUI. Open the Advanced Trigger tab by selecting
Advanced in the Trigger Conditions list.

Figure 42. Accessing the Advanced Trigger Condition Tab

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 43. Advanced Trigger Condition Tab

Node List Pane

Object Library Pane

Advanced Trigger Condition Editor Window

To build a complex trigger condition in an expression tree, drag-and-drop operators
from the Object Library pane and the Node List pane into the Advanced Trigger
Configuration Editor window.

To configure the operators’ settings, double-click or right-click the operators that you
placed and click Properties.

Table 11. Advanced Triggering Operators

Category Name

Signal Detection Edge and Level Detector

Input Objects Bit
Bit Value
Bus
Bus Value

Comparison Less Than
Less Than or Equal To
Equality
Inequality
Greater Than or Equal To
Greater Than

Bitwise Bitwise Complement
Bitwise AND
Bitwise OR
Bitwise XOR

Logical Logical NOT
Logical AND
Logical OR
Logical XOR

Reduction Reduction AND
Reduction OR

continued...

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Category Name

Reduction XOR

Shift Left Shift
Right Shift

Custom Trigger HDL

Adding many objects to the Advanced Trigger Condition Editor can make the work
space cluttered and difficult to read. To keep objects organized while you build your
advanced trigger condition, use the shortcut menu and select Arrange All Objects.
Alternatively, use the Zoom-Out command to fit more objects into the Advanced
Trigger Condition Editor window.

2.4.6.4.1. Examples of Advanced Triggering Expressions

The following examples show how to use advanced triggering:

Figure 44. Bus outa Is Greater Than or Equal to Bus outb
Trigger when bus outa is greater than or equal to outb.

Figure 45. Enable Signal Has a Rising Edge
Trigger when bus outa is greater than or equal to bus outb, and when the enable signal has a rising edge.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 46. Bitwise AND Operation
Trigger when bus outa is greater than or equal to bus outb, or when the enable signal has a rising edge. Or,
when a bitwise AND operation has been performed between bus outc and bus outd, and all bits of the result
of that operation are equal to 1.

2.4.6.5. Custom Trigger HDL Object

The Signal Tap logic analyzer supports use of your own HDL module to define a
custom trigger condition. You can use the Custom Trigger HDL object to simulate your
triggering logic and ensure that the logic itself is not faulty. Additionally, you can
monitor instances of modules anywhere in the hierarchy of your design, without
having to manually route all the necessary connections.

The Custom Trigger HDL object appears in the Object Library pane of the
Advanced Trigger editor.

Figure 47. Object Library

Custom Trigger HDL Object

2.4.6.5.1. Using the Custom Trigger HDL Object

To define a custom trigger flow:

1. Select the trigger you want to edit.

2. Open the Advanced Trigger tab by selecting Advanced in the Trigger
Conditions list.

3. Add to your project the Verilog HDL or VHDL source file that contains the trigger
module using the Project Navigator.

4. Implement the inputs and outputs that your Custom Trigger HDL module requires.

5. Drag in your Custom Trigger HDL object and connect the object’s data input bus
and result output bit to the final trigger result.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 48. Custom Trigger HDL Object

6. Right-click your Custom Trigger HDL object and configure the object’s
properties.

Figure 49. Configure Object Properties

7. Compile your design.

8. Acquire data with Signal Tap using your custom Trigger HDL object.

Example 1. Verilog HDL Triggers

The following trigger uses configuration bitstream:

module test_trigger
 (
 input acq_clk, reset,
 input[3:0] data_in,
 input[1:0] pattern_in,
 output reg trigger_out
);
 always @(pattern_in) begin
 case (pattern_in)
 2'b00:
 trigger_out = &data_in;
 2'b01:
 trigger_out = |data_in;
 2'b10:
 trigger_out = 1'b0;
 2'b11:
 trigger_out = 1'b1;

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 endcase
 end
endmodule

This trigger does not have configuration bitstream:

module test_trigger_no_bs
 (
 input acq_clk, reset,
 input[3:0] data_in,
 output reg trigger_out
);
 assign trigger_out = &data_in;
endmodule

2.4.6.5.2. Required Inputs and Outputs of Custom Trigger HDL Module

Table 12. Custom Trigger HDL Module Required Inputs and Outputs

Name Description Input/Output Required/ Optional

acq_clk Acquisition clock that Signal Tap uses Input Required

reset Reset that Signal Tap uses when restarting a
capture.

Input Required

data_in • Data input you connect in the Advanced
Trigger editor.

• Data your module uses to trigger.

Input Required

pattern_in • Module’s input for the configuration bitstream
property.

• Runtime configurable property that you can
set from Signal Tap GUI to change the
behavior of your trigger logic.

Input Optional

trigger_out Output signal of your module that asserts when
trigger conditions met.

Output Required

2.4.6.5.3. Custom Trigger HDL Module Properties

Table 13. Custom Trigger HDL Module Properties

Property Description

Custom HDL Module Name Module name of the triggering logic.

Configuration Bitstream • Allows to create trigger logic that you can configure at runtime, based upon
the value of the configuration bitstream.

• The Signal Tap logic analyzer reads the configuration bitstream property as
binary, therefore the bitstream must contain only the characters 1 and 0.

• The bit-width (number of 1s and 0s) must match the pattern_in bit width.
• A blank configuration bitstream implies that the module does not have a

pattern_in input.

Pipeline Specifies the number of pipeline stages in the triggering logic.
For example, if after receiving a triggering input the LA needs three clock cycles
to assert the trigger output, you can denote a pipeline value of three.

2.4.6.6. Specify Trigger Position

You can specify the amount of data the logic analyzer acquires before and after a
trigger event. Positions for Runtime and Power-Up triggers are separate.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Signal Tap logic analyzer offers three pre-defined ratios of pre-trigger data to
post-trigger data:

• Pre—saves signal activity that occurred after the trigger (12% pre-trigger, 88%
post-trigger).

• Center—saves 50% pre-trigger and 50% post-trigger data.

• Post—saves signal activity that occurred before the trigger (88% pre-trigger, 12%
post-trigger).

These pre-defined ratios apply to both non-segmented buffers and each segment of a
buffer.

2.4.6.6.1. Post-fill Count

In a custom state-based triggering flow with the segment_trigger and trigger
buffer control actions, you can use the post-fill_count argument to specify a
custom trigger position.

• If you do not use the post-fill_count argument, the trigger position for the
affected buffer defaults to the trigger position you specified in the Setup tab.

• In the trigger buffer control action (for non-segmented buffers), post-
fill_count specifies the number of samples to capture before stopping data
acquisition.

• In the segment_trigger buffer control action (for segmented buffer), post-
fill_count specifies a data segment.

Note: In the case of segment_trigger, acquisition of the current buffer stops immediately
if a subsequent triggering action is issued in the next state, regardless of the current
buffer's post-fill count. The logic analyzer discards the remaining unfilled post-count
acquisitions in the current buffer, and displays them as grayed-out samples in the data
window.

When the Signal Tap data window displays the captured data, the trigger position
appears as the number of post-count samples from the end of the acquisition segment
or buffer.

Sample Number of Trigger Position = (N – Post-Fill Count)

In this case, N is the sample depth of either the acquisition segment or non-
segmented buffer.

Related Information

Buffer Control Actions on page 70

2.4.6.7. Power-Up Triggers

Power-Up Triggers capture events that occur during device initialization, immediately
after you power or reset the FPGA.

The typical use of Signal Tap logic analyzer is triggering events that occur during
normal device operation. You start an analysis manually once the target device fully
powers on and the JTAG connection for the device is available. With Signal Tap Power-
Up Trigger feature, the Signal Tap logic analyzer captures data immediately after
device initialization.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can add a different Power-Up Trigger to each logic analyzer instance in the Signal
Tap Instance Manager pane.

2.4.6.7.1. Enabling a Power-Up Trigger

To enable the Power-Up Trigger for Signal Tap instance:

• In the Instance Manager, right-click the Signal Tap instance and click Enable
Power-Up Trigger.

Figure 50. Enabling Power-Up Trigger in Signal Tap Instance Manager

Power-Up Trigger appears as a child instance below the name of the selected
instance. The node list displays the default trigger conditions.

To disable a Power-Up Trigger, right-click the instance and click Disable Power-Up
Trigger.

2.4.6.7.2. Configuring Power-Up Trigger Conditions

• Any change that you make to a Power-Up Trigger conditions requires that you
recompile the Signal Tap logic analyzer instance, even if a similar change to the
Runtime Trigger conditions does not require a recompilation.

• You can also force trigger conditions with the In-System Sources and Probes in
conjunction with the Signal Tap logic analyzer. The In-System Sources and Probes
feature allows you to drive and sample values on to selected nets over the JTAG
chain.

Related Information

Design Debugging Using In-System Sources and Probes on page 144

2.4.6.7.3. Managing Signal Tap Instances with Run-Time and Power-Up Trigger Conditions

On instances that have two types of trigger conditions, Power-Up Trigger conditions
are color coded light blue, while Run-Time Trigger conditions remain white.

To switch between the trigger conditions of the Power-Up Trigger and the Run-Time
Trigger, double-click the instance name or the Power-Up Trigger name in the Instance
Manager.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

60

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To copy trigger conditions from a Run-Time Trigger to a Power-Up Trigger or vice
versa, right-click the trigger name in the Instance Manager and click Duplicate
Trigger. Alternatively, select the trigger name and click Edit ➤ Duplicate Trigger.

Figure 51. Instance Manager Commands

Note: Run-time trigger conditions allow fewer adjustments than power-up trigger conditions.

2.4.6.8. External Triggers

External trigger inputs allow you to trigger the Signal Tap logic analyzer from an
external source.

The external trigger input behaves like trigger condition 0, in that the condition must
evaluate to TRUE before the logic analyzer evaluates any other trigger conditions.

The Signal Tap logic analyzer supplies a signal to trigger external devices or other
logic analyzer instances. These features allow you to synchronize external logic
analysis equipment with the internal logic analyzer. Power-Up Triggers can use the
external triggers feature, but they must use the same source or target signal as their
associated Run-Time Trigger.

You can use external triggers to perform cross-triggering on a hard processor system
(HPS):

• The processor debugger allows you to configure the HPS to obey or disregard
cross-trigger request from the FPGA, and to issue or not issue cross-trigger
requests to the FPGA.

• The processor debugger in combination with the Signal Tap external trigger
feature allow you to develop a dynamic combination of cross-trigger behaviors.

• You can implement a system-level debugging solution for an Intel FPGA SoC by
using the cross-triggering feature with the ARM Development Studio 5 (DS-5)
software.

2.4.6.9. Trigger Condition Flow Control

The Trigger Condition Flow Control allows you to define the relationship between a set
of triggering conditions. Signal Tap logic analyzer Signal Configuration pane offers
two flow control mechanisms for organizing trigger conditions:

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Sequential Triggering—default triggering flow. Sequential triggering allows you
to define up to 10 triggering levels that must be satisfied before the acquisition
buffer finishes capturing.

• State-Based Triggering—gives the greatest control over your acquisition buffer.
Custom-based triggering allows you to organize trigger conditions into states
based on a conditional flow that you define.

You can use sequential or state based triggering with either a segmented or a non-
segmented buffer.

2.4.6.10. Sequential Triggering

When you specify a sequential trigger the Signal Tap logic analyzer sequentially
evaluates each the conditions. The sequential triggering flow allows you to cascade up
to 10 levels of triggering conditions.

When the last triggering condition evaluates to TRUE, the Signal Tap logic analyzer
starts the data acquisition. For segmented buffers, every acquisition segment after the
first starts on the last condition that you specified. The Signal Tap Node annotates
this final condition column with Seg if a segmented buffer is enabled. The Simple
Sequential Triggering feature allows you to specify basic triggers, comparison triggers,
advanced triggers, or a mix of all three. The following figure illustrates the simple
sequential triggering flow for non-segmented and segmented buffers. The acquisition
buffer starts capture when all n triggering levels are satisfied, where n<10.

Figure 52. Sequential Triggering Flow
Segmented BufferNon Segmented Buffer

n ≤ 10

Trigger Condition n

Trigger Condition 1

Trigger Condition 2

Trigger Condition 1

Trigger Condition 2

Trigger Condition n

Trigger Condition n

Trigger Condition n

n - 2 transitions

Acquisition Segment m
trigger

trigger

trigger

Acquisition Buffer
trigger

n - 2 transitions

m-2 transitions

Acquisition Segment 2

Acquisition Segment 1

The Signal Tap logic analyzer considers external triggers as level 0, evaluating
external triggers before any other trigger condition.

2.4.6.10.1. Configuring the Sequential Triggering Flow

To configure Signal Tap logic analyzer for sequential triggering:

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

62

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. On Trigger Flow Control, select Sequential

2. On Trigger Conditions, select the number of trigger conditions from the drop-
down list.
The Node List pane now displays the same number of trigger condition columns.

3. Configure each trigger condition in the Node List pane.

You can enable/disable any trigger condition from the column header.

Figure 53. Sequential Triggering Flow Configuration

2.4.6.11. State-Based Triggering

With state-based triggering, a state diagram organizes the events that trigger the
acquisition buffer. The states capture all actions that the acquisition buffer performs,
and each state contains conditional expressions that define transition conditions.

Custom state-based triggering grants control over triggering condition arrangement.
Because the logic analyzer only captures samples of interest, custom state-based
triggering allows for more efficient use of the space available in the acquisition buffer.

To help you describe the relationship between triggering conditions, the state-based
triggering flow provides tooltips in the GUI. Additionally, you can use the Signal Tap
Trigger Flow Description Language, which is based upon conditional expressions.

Each state allows you to define a set of conditional expressions. Conditional
expressions are Boolean expressions that depend on a combination of triggering
conditions, counters, and status flags. You configure the triggering conditions within
the Setup tab. The Signal Tap logic analyzer custom-based triggering flow provides
counters and status flags.

Figure 54. State-Based Triggering Flow

n ≤ 20

Segmented Acquisition Buffer

First Acquisition Segment Next Acquisition Segment Next Acquisition Segment Last Acquisition Segment

Transition
 Condition: i

TC: j

TC: k

TC: l S: 2
TCS: b S: 3

TCS: c

State: 1
Trigger Condition Set: a

 S: n (last state)
TCS: d

segment_trigger segment_trigger segment_trigger segment_trigger

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Within each conditional expression you define a set of actions. Actions include
triggering the acquisition buffer to stop capture, a modification to either a counter or
status flag, or a state transition.

Trigger actions can apply to either a single segment of a segmented acquisition buffer
or to the entire non-segmented acquisition buffer. Each trigger action provides an
optional count that specifies the number of samples the buffer captures before the
logic analyzer stops acquisition of the current segment. The count argument allows
you to control the amount of data the buffer captures before and after a triggering
event occurs.

Resource manipulation actions allow you to increment and decrement counters or set
and clear status flags. The logic analyzer uses counter and status flag resources as
optional inputs in conditional expressions. Counters and status flags are useful for
counting the number of occurrences of certain events and for aiding in triggering flow
control.

The state-based triggering flow allows you to capture a sequence of events that may
not necessarily be contiguous in time. For example, a communication transaction
between two devices that includes a hand shaking protocol containing a sequence of
acknowledgments.

2.4.6.11.1. State-Based Triggering Flow Tab

The State-Based Trigger Flow tab is the control interface for the custom state-
based triggering flow.

This tab is only available when you select State-Based on the Trigger Flow Control
list. If you specify Trigger Flow Control as Sequential, the State-Based Trigger
Flow tab is not visible.

Figure 55. State-Based Triggering Flow Tab

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

64

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The State-Based Trigger Flow tab contains three panes:

2.4.6.11.2. State Machine Pane

The State Machine pane contains the text entry boxes where you define the
triggering flow and actions associated with each state.

• You can define the triggering flow using the Signal Tap Trigger Flow Description
Language, a simple language based on “if-else” conditional statements.

• Tooltips appear when you move the mouse over the cursor, to guide command
entry into the state boxes.

• The GUI provides a syntax check on your flow description in real-time and
highlights any errors in the text flow.

The State Machine description text boxes default to show one text box per state. You
can also have the entire flow description shown in a single text field. This option can
be useful when copying and pasting a flow description from a template or an external
text editor. To toggle between one window per state, or all states in one window,
select the appropriate option under State Display mode.

Related Information

Signal Tap Trigger Flow Description Language on page 66

2.4.6.11.3. Resources Pane

The Resources pane allows you to declare status flags and counters for your Custom
Triggering Flow's conditional expressions.

• You can increment/decrement counters or set/clear status flags within your
triggering flow.

• You can specify up to 20 counters and 20 status flags.

• To initialize counter and status flags, right-click the row in the table and select Set
Initial Value.

• To specify a counter width, right-click the counter in the table and select Set
Width.

• To assist in debugging your trigger flow specification, the logic analyzer
dynamically updates counters and flag values after acquisition starts.

The Configurable at runtime settings allow you to control which options can change
at runtime without requiring a recompilation.

Table 14. Runtime Reconfigurable Settings, State-Based Triggering Flow

Setting Description

Destination of goto action Allows you to modify the destination of the state transition at runtime.

Comparison values Allows you to modify comparison values in Boolean expressions at runtime. In
addition, you can modify the segment_trigger and trigger action post-fill
count argument at runtime.

Comparison operators Allows you to modify the operators in Boolean expressions at runtime.

Logical operators Allows you to modify the logical operators in Boolean expressions at runtime.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

65

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Performance and Resource Considerations on page 82

• Runtime Reconfigurable Options on page 87

2.4.6.11.4. State Diagram Pane

The State Diagram pane provides a graphical overview of your triggering flow. this
pane displays the number of available states and the state transitions. To adjust the
number of available states, use the menu above the graphical overview.

2.4.6.11.5. Signal Tap Trigger Flow Description Language

The Trigger Flow Description Language is based on a list of conditional expressions per
state to define a set of actions.

To describe the actions that the logic analyzer evaluates when a state is reached,
follow this syntax:

Syntax of Trigger Flow Description Language

state <state_label>:
 <action_list>
 if (<boolean_expression>)
 <action_list>
 [else if (<boolean_expression>)
 <action_list>]
 [else
 <action_list>]

• Non-terminals are delimited by "<>".

• Optional arguments are delimited by "[]".

• The priority for evaluation of conditional statements is from top to bottom.

• The Trigger Flow Description Language allows multiple else if conditions.

<state_label> on page 66

<boolean_expression> on page 67

<action_list> on page 68

Trigger that Skips Clock Cycles after Hitting Condition on page 68

Storage Qualification with Post-Fill Count Value Less than m on page 69

Resource Manipulation Action on page 70

Buffer Control Actions on page 70

State Transition Action on page 70

Related Information

Custom State-Based Triggering Flow Examples on page 112

<state_label>

Identifies a given state. You use the state label to start describing the actions the logic
analyzer evaluates once said state is reached. You can also use the state label with the
goto command.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The state description header syntax is:
state <state_label>

The description of a state ends with the beginning of another state or the end of the
whole trigger flow description.

<boolean_expression>

Collection of operators and operands that evaluate into a Boolean result. The
operators can be logical or relational. Depending on the operator, the operand can
reference a trigger condition, a counter and a register, or a numeric value. To group a
set of operands within an expression, you use parentheses.

Table 15. Logical Operators
Logical operators accept any boolean expression as an operand.

Operator Description Syntax

! NOT operator ! expr1

&& AND operator expr1 && expr2

|| OR operator expr1 || expr2

Table 16. Relational Operators
You use relational operators on counters or status flags.

Operator Description Syntax

> Greater than <identifier> > <numerical_value>

>= Greater than or Equal
to

<identifier> >= <numerical_value>

== Equals <identifier> == <numerical_value>

!= Does not equal <identifier> != <numerical_value>

<= Less than or equal to <identifier> <= <numerical_value>

< Less than <identifier> < <numerical_value>

Notes to table:
1. <identifier> indicates a counter or status flag.
2. <numerical_value> indicates an integer.

Note: • The <boolean_expression> in an if statement can contain a single event or
multiple event conditions.

• When the boolean expression evaluates TRUE, the logic analyzer evaluates all the
commands in the <action_list> concurrently.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

67

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

<action_list>

List of actions that the logic analyzer performs within a state once a condition is
satisfied.

• Each action must end with a semicolon (;).

• If you specify more than one action within an if or an else if clause, you must
delimit the action_list with begin and end tokens.

Possible actions include:
Buffer Control Actions

Actions that control the acquisition buffer.

Table 17. Buffer Control Actions

Action Description Syntax

trigger Stops the acquisition for the current buffer and
ends analysis. This command is required in every
flow definition.

trigger <post-fill_count>;

segment_trigger Available only in segmented acquisition mode.
Ends acquisition of the current segment. After
evaluating this command, the Signal Tap logic
analyzer starts acquiring from the next segment. If
all segments are written, the logic analyzer
overwrites the oldest segment with the latest
sample. When a trigger action is evaluated the
acquisition stops.

segment_trigger <post-fill_count>;

start_store Active only in state-based storage qualifier mode.
Asserts the write_enable to the Signal Tap
acquisition buffer.

start_store

stop_store Active only in state-based storage qualifier mode.
De-asserts the write_enable signal to the Signal
Tap acquisition buffer.

stop_store

Both trigger and segment_trigger actions accept an optional post-fill_count
argument.

State Transition Action

Specifies the next state in the custom state control flow. The syntax is:
goto <state_label>;

Trigger that Skips Clock Cycles after Hitting Condition

Trigger flow description that skips three clock cycles of samples after hitting
condition 1

Code:

State 1: ST1
 start_store
 if (condition1)
 begin
 stop_store;
 goto ST2;
 end
State 2: ST2
 if (c1 < 3)
 increment c1; //skip three clock cycles; c1 initialized to 0
 else if (c1 == 3)

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

68

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 begin
 start_store;//start_store necessary to enable writing to finish
 //acquisition
 trigger;
 end

The figures show the data transaction on a continuous capture and the data capture
when you apply the Trigger flow description.

Figure 56. Continuous Capture of Data Transaction

Figure 57. Capture of Data Transaction with Trigger Flow Description Applied

Storage Qualification with Post-Fill Count Value Less than m

The data capture finishes successfully. It uses a buffer with a sample depth of 64, m =
n = 10, and post-fill count = 5.

Real data acquisition of the previous scenario

Figure 58. Storage Qualification with Post-Fill Count Value Less than m (Acquisition
Successfully Completes)

The combination of using counters, Boolean and relational operators in conjunction
with the start_store and stop_store commands can give a clock-cycle level of
resolution to controlling the samples that are written into the acquisition buffer.

Figure 59. Waveform After Forcing the Analysis to Stop

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Resource Manipulation Action

The resources the trigger flow description uses can be either counters or status flags.

Table 18. Resource Manipulation Actions

Action Description Syntax

increment Increments a counter resource by 1 increment <counter_identifier>;

decrement Decrements a counter resource by 1 decrement <counter_identifier>;

reset Resets counter resource to initial value reset <counter_identifier>;

set Sets a status flag to 1 set <register_flag_identifier>;

clear Sets a status flag to 0 clear <register_flag_identifier>;

Buffer Control Actions

Actions that control the acquisition buffer.

Table 19. Buffer Control Actions

Action Description Syntax

trigger Stops the acquisition for the current buffer and
ends analysis. This command is required in every
flow definition.

trigger <post-fill_count>;

segment_trigger Available only in segmented acquisition mode.
Ends acquisition of the current segment. After
evaluating this command, the Signal Tap logic
analyzer starts acquiring from the next segment. If
all segments are written, the logic analyzer
overwrites the oldest segment with the latest
sample. When a trigger action is evaluated the
acquisition stops.

segment_trigger <post-fill_count>;

start_store Active only in state-based storage qualifier mode.
Asserts the write_enable to the Signal Tap
acquisition buffer.

start_store

stop_store Active only in state-based storage qualifier mode.
De-asserts the write_enable signal to the Signal
Tap acquisition buffer.

stop_store

Both trigger and segment_trigger actions accept an optional post-fill_count
argument.

Related Information

Post-fill Count on page 59

State Transition Action

Specifies the next state in the custom state control flow. The syntax is:
goto <state_label>;

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

70

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.6.11.6. State-Based Storage Qualifier Feature

Selecting a state-based storage qualifier type enables the start_store and
stop_store actions. When you use these actions in conjunction with the expressions
of the State-based trigger flow, you get maximum flexibility to control data written
into the acquisition buffer.

Note: You can only apply the start_store and stop_store commands to a non-
segmented buffer.

The start_store and stop_store commands are similar to the start and stop
conditions of the start/stop storage qualifier mode. If you enable storage
qualification, the Signal Tap logic analyzer doesn't write data into the acquisition buffer
until the start_store command occurs. However, in the state-based storage
qualifier type you must include a trigger command as part of the trigger flow
description. This trigger command is necessary to complete the acquisition and
display the results on the waveform display.

Storage Qualification Feature for the State-Based Trigger Flow

This trigger flow description contains three trigger conditions that occur at different
times after you click Start Analysis:

State 1: ST1:
 if (condition1)
 start_store;
 else if (condition2)
 trigger value;
 else if (condition3)
 stop_store;

Figure 60. Capture Scenario for Storage Qualification with the State-Based Trigger Flow

a b c Sample
n Samples

m Samples

Time Scale for Data Stream
at the Start of Acquisition

Condition 1 Occurs Condition 3 OccursCondition 2 Occurs

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

71

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When you apply the trigger flow to the scenario in the figure:

1. The Signal Tap logic analyzer does not write into the acquisition buffer until
Condition 1 occurs (sample a).

2. When Condition 2 occurs (sample b), the logic analyzer evaluates the trigger
value command, and continues to write into the buffer to finish the acquisition.

3. The trigger flow specifies a stop_store command at sample c, which occurs m
samples after the trigger point.

4. If the data acquisition finishes the post-fill acquisition samples before Condition 3
occurs, the logic analyzer finishes the acquisition and displays the contents of the
waveform. In this case, the capture ends if the post-fill count value is < m.

5. If the post-fill count value in the Trigger Flow description 1 is > m samples, the
buffer pauses acquisition indefinitely, provided there is no recurrence of Condition
1 to trigger the logic analyzer to start capturing data again.

The Signal Tap logic analyzer continues to evaluate the stop_store and
start_store commands even after evaluating the trigger. If the acquisition paused,
click Stop Analysis to manually stop and force the acquisition to trigger. You can use
counter values, flags, and the State diagram to help you perform the trigger flow. The
counter values, flags, and the current state update in real-time during a data
acquisition.

2.4.6.12. Trigger Lock Mode

Trigger lock mode restricts changes to only the configuration settings that you specify
as Configurable at runtime. The runtime configurable settings for the Custom
Trigger Flow tab are on by default.

Note: You may get some performance advantages by disabling some of the runtime
configurable options.

You can restrict changes to your Signal Tap configuration to include only the options
that do not require a recompilation. Trigger lock-mode allows you to make changes
that reflect immediately in the device.

1. On the Setup tab, point to Lock mode and select Allow trigger condition
changes only.

Figure 61. Allow Trigger Conditions Change Only

2. Modify the Trigger Flow conditions.

2.4.7. Specifying Pipeline Settings

The Pipeline factor setting indicates the number of pipeline registers that the Intel
Quartus Prime software can add to boost the fMAX of the Signal Tap logic analyzer.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

72

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To specify the pipeline factor from the Signal Tap GUI:

• In the Signal Configuration pane, specify a pipeline factor ranging from 0 to 5.
The default value is 0.

Note: Setting the pipeline factor does not guarantee an increase in fMAX, as the pipeline
registers may not be in the critical paths.

Alternatively, you can specify pipeline parameters as part of HDL instantiation, as
Creating a Signal Tap Instance by HDL Instantiation on page 34 describes.

Note: The Signal Tap Intel FPGA IP is not optimized for the Intel Hyperflex architecture.

2.4.8. Filtering Relevant Samples

The Storage Qualifier feature allows you to filter out individual samples not relevant to
debugging your design.

The Signal Tap logic analyzer offers a snapshot in time of the data that the acquisition
buffers store. By default, the Signal Tap logic analyzer writes into acquisition memory
with data samples on every clock cycle. With a non-segmented buffer, there is one
data window that represents a comprehensive snapshot of the data stream.
Conversely, segmented buffers use several smaller sampling windows spread out over
more time, with each sampling window representing a contiguous data set.

With analysis using acquisition buffers you can capture most functional errors in a
chosen signal set, provided adequate trigger conditions and a generous sample depth
for the acquisition. However, each data window can have a considerable amount of
unnecessary data; for example, long periods of idle signals between data bursts. The
default behavior in the Signal Tap logic analyzer doesn't discard the redundant sample
bits.

The Storage Qualifier feature allows you to establish a condition that acts as a write
enable to the buffer during each clock cycle of data acquisition, thus allowing a more
efficient use of acquisition memory over a longer period of analysis.

Because you can create a discontinuity between any two samples in the buffer, the
Storage Qualifier feature is equivalent to creating a custom segmented buffer in which
the number and size of segment boundaries are adjustable.

Note: You can only use the Storage Qualifier feature with a non-segmented buffer. The IP
Catalog flow only supports the Input Port mode for the Storage Qualifier feature.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 62. Data Acquisition Using Different Modes of Controlling the Acquisition Buffer

Data Transaction Elapsed Time

Trigger

Acquisition Buffer

1 1 0 01

(1) Non-Segmented Buffer

0 1 1 0 1

Data Transaction
Elapsed Time

Trigger

Acquisition Buffer

1 0 0

(2) Segmented Buffer

1 1 01 10 0

Trigger

0 1

Data Transaction
Elapsed Time

Acquisition Buffer

0

(3) Non-Segmented Buffer with Storage Qualifier

0 1

Trigger

0 1 01 1 0 0 1

Trigger

Notes to figure:

1. Non-segmented buffers capture a fixed sample window of contiguous data.

2. Segmented buffers divide the buffer into fixed sized segments, with each segment
having an equal sample depth.

3. Storage Qualifier allows you to define a custom sampling window for each
segment you create with a qualifying condition, thus potentially allowing a larger
time scale of coverage.

There are six storage qualifier types available under the Storage Qualifier feature:

• Continuous (default) Turns the Storage Qualifier off.

• Input port

• Transitional

• Conditional

• Start/Stop

• State-based

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

74

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 63. Storage Qualifier Settings

Upon the start of an acquisition, the Signal Tap logic analyzer examines each clock
cycle and writes the data into the buffer based upon the storage qualifier type and
condition. Acquisition stops when a defined set of trigger conditions occur.

The Signal Tap logic analyzer evaluates trigger conditions independently of storage
qualifier conditions.

2.4.8.1. Input Port Mode

When using the Input port mode, the Signal Tap logic analyzer takes any signal from
your design as an input. During acquisition, if the signal is high on the clock edge, the
Signal Tap logic analyzer stores the data in the buffer. If the signal is low on the clock
edge, the logic analyzer ignores the data sample. If you don't specify an internal node,
the logic analyzer creates and connects a pin to this input port.

When creating a Signal Tap logic analyzer instance with the Signal Tap logic analyzer
GUI, specify the Storage Qualifier signal for the Input port field located on the
Setup tab. You must specify this port for your project to compile.

When creating a Signal Tap logic analyzer instance through HDL instantiation, specify
the Storage Qualifier parameter to include in the instantiation template. You can
then connect this port to a signal in your RTL. If you enable the input port storage
qualifier, the port accepts a signal and predicates when signals are recorded into the
acquisition buffer before or after the specified trigger condition occurs. That is, the
trigger you specify is responsible for triggering and moving the logic analyzer into the
post-fill state. The input port storage qualifier signal you select controls the recording
of samples.

The following example compares and contrasts two waveforms of the same data, one
without storage qualifier enabled (Continuous means always record samples,
effectively no storage qualifier), and the other with Input Port mode. The bottom
signal in the waveform, data_out[7],is the input port storage qualifier signal. The
continuous mode waveform shows 01h, 07h, 0Ah, 0Bh, 0Ch, 0Dh, 0Eh, 0Fh, 10h as
the sequence of data_out[7] bus values where the storage qualifier signal is
asserted. The lower waveform for input port storage qualifier shows how this same
traffic pattern of the data_out bus is recorded when you enable the input port
storage qualifier. Values recorded are a repeating sequence of the 01h, 07h, 0Ah, 0Bh,
0Ch, 0Dh, 0Eh, 0Fh, 10h (same as Continuous mode).

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

75

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 64. Comparing Continuous and Input Port Capture Mode in Data Acquisition of a
Recurring Data Pattern

• Continuous Mode:

• Input Port Storage Qualifier:

2.4.8.2. Transitional Mode

In Transitional mode, the logic analyzer monitors changes in a set of signals, and
writes new data in the acquisition buffer only after detecting a change. You select the
signals for monitoring using the check boxes in the Storage Qualifier column.

Figure 65. Transitional Storage Qualifier Setup

Select signals to monitor

Figure 66. Comparing Continuous and Transitional Capture Mode in Data Acquisition of a
Recurring Data Pattern

• Continuous mode:

IDLE

• Transitional mode:

Redundant Idle
Samples Discarded

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

76

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.4.8.3. Conditional Mode

In Conditional mode, the Signal Tap logic analyzer determines whether to store a
sample by evaluating a combinational function of predefined signals within the node
list. The Signal Tap logic analyzer writes into the buffer during the clock cycles in
which the condition you specify evaluates TRUE.

You can select either Basic AND, Basic OR, Comparison, or Advanced storage
qualifier conditions. A Basic AND or Basic OR condition matches each signal to one
of the following:

• Don’t Care

• Low

• High

• Falling Edge

• Rising Edge

• Either Edge

If you specify a Basic AND storage qualifier condition for more than one signal, the
Signal Tap logic analyzer evaluates the logical AND of the conditions.

You can specify any other combinational or relational operators with the enabled signal
set for storage qualification through advanced storage conditions.

You can define storage qualification conditions similar to the manner in which you
define trigger conditions.

Figure 67. Conditional Storage Qualifier Setup
The figure details the conditional storage qualifier setup in the .stp file.

Signals not enabled for storage cannot be part
of the Storage Qualifier condition

Storage Enable Storage Condition

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

77

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 68. Comparing Continuous and Conditional Capture Mode in Data Acquisition of a
Recurring Data Pattern

The data pattern is the same in both cases.

• Continuous sampling capture mode:

• Conditional sampling capture mode:

Related Information

• Basic Trigger Conditions on page 50

• Comparison Trigger Conditions on page 51

• Advanced Trigger Conditions on page 53

2.4.8.4. Start/Stop Mode

The Start/Stop mode uses two sets of conditions, one to start data capture and one
to stop data capture. If the start condition evaluates to TRUE, the Signal Tap logic
analyzer stores the buffer data every clock cycle until the stop condition evaluates to
TRUE, which then pauses the data capture. The logic analyzer ignores additional start
signals received after the data capture starts. If both start and stop evaluate to TRUE
at the same time, the logic analyzer captures a single cycle.

Note: You can force a trigger by pressing the Stop button if the buffer fails to fill to
completion due to a stop condition or if the start condition never occurs.

Figure 69. Start/Stop Mode Storage Qualifier Setup
Start condition Stop Condition

Storage Qualifier Enabled signals

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

78

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 70. Comparing Continuous and Start/Stop Acquisition Modes for a Recurring Data
Pattern

• Continuous Mode:

IDLE

• Start/Stop Storage Qualifier:

2.4.8.5. State-Based Mode

The State-based storage qualification mode is part of the State-based triggering flow.
The state based triggering flow evaluates a conditional language to define how the
Signal Tap logic analyzer writes data into the buffer. With the State-based trigger flow,
you have command over boolean and relational operators to guide the execution flow
for the target acquisition buffer.

When you enable the storage qualifier feature for the State-based flow, two additional
commands become available: start_store and stop_store. These commands are
similar to the Start/Stop capture conditions. Upon the start of acquisition, the Signal
Tap logic analyzer doesn't write data into the buffer until a start_store action is
performed. The stop_store command pauses the acquisition. If both start_store
and stop_store actions occur within the same clock cycle, the logic analyzer stores
a single sample into the acquisition buffer.

Related Information

State-Based Triggering on page 63

2.4.8.6. Showing Data Discontinuities

When you turn on Record data discontinuities, the Signal Tap logic analyzer marks
the samples during which the acquisition paused from a storage qualifier. This marker
is displayed in the waveform viewer after acquisition completes.

2.4.8.7. Disable the Storage Qualifier

You can disable the storage qualifier with the Disable Storage Qualifier option, and
then perform a continuous capture. The Disable Storage Qualifier option is run-time
reconfigurable. Changing the storage qualifier mode from the Type field requires
recompilation of the project.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

79

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5. Step 3: Compile the Design and Signal Tap Instances

After you configure one or more Signal Tap instances and define trigger conditions,
you must compile your project that includes the Signal Tap logic analyzer, prior to
device configuration.

When you define a Signal Tap instance in the logic analyzer GUI or with HDL
instantiation, the Signal Tap logic analyzer instance becomes part of your design for
compilation.

To run full compilation of the design that includes the Signal Tap logic analyzer
instance:

• Click Processing ➤ Start Compilation

You can employ various techniques to preserve specific signals for debugging during
compilation, and to reduce overall compilation time and iterations. Refer to the
following sections for more details.

2.5.1. Recompiling Only Signal Tap Changes

Certain Signal Tap configuration changes require a full recompilation of the design to
implement. However, you can use the Start Recompile command to implement the
following types of configuration changes without running a full design compilation.

Table 20. Signal Tap Configuration Changes Not Requiring Full Compilation

Change the post-fit tap target Increase the number of post-fit targets

Change the post-fit tap inputs to a Basic AND trigger Change the post-fit tap inputs to a Basic OR trigger

Change an Advanced trigger (post-fit inputs or logic) Convert a pre-synthesis tap into a post-fit tap

Start Recompile appends Signal Tap node changes to the existing finalized snapshot,
without changing placement and routing outside of the Signal Tap partition.

To recompile Signal Tap configuration changes only, follow these steps:

1. Make supported changes to the Signal Tap configuration in the Signal
Configuration pane, according to Table 20 on page 80.

2. In the Signal Tap window, click Processing ➤ Start Recompile, or click the
Start Recompile button. A dialog box displays whether each change is Supported
or Unsupported by Start Recompile.

Figure 71. Signal Tap Toolbar Start Recompile Button and Command

Start Recompile
ButtonStart Recompile

Command

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

80

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 72. Recompilation Changes List

Recompile Button

3. If the Signal Tap configuration changes have a Status of Supported, click the
Recompile button to recompile and implement only the Signal Tap configuration
changes, as Figure 72 on page 81 shows.

4. For any change with Status of Unsupported, you must either revert the change to
Previous value, or click Processing ➤ Start Compilation in Signal Tap to
perform a full compilation to implement the change.

Figure 73. Signal Tap Toolbar Start Compilation Button and Command

Start Compilation
Button

Start Compilation
Command

Related Information

Changing the Post-Fit Target Nodes on page 84

2.5.2. Timing Preservation

The following techniques can help you preserve timing in designs that include the
Signal Tap logic analyzer:

• Avoid adding critical path signals to the .stp file.

• Minimize the number of combinational signals you add to the .stp file, and add
registers whenever possible.

• Specify an fMAX constraint for each clock in the design.

Related Information

Timing Closure and Optimization
In Intel Quartus Prime Pro Edition User Guide: Design Optimization

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

81

https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html#mwh1410471203263
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.3. Performance and Resource Considerations

When you perform logic analysis of your design, you can see the necessary trade-off
between runtime flexibility, timing performance, and resource usage. The Signal Tap
logic analyzer allows you to select runtime configurable parameters to balance the
need for runtime flexibility, speed, and area.

The default values of the runtime configurable parameters provide maximum
flexibility, so you can complete debugging as quickly as possible; however, you can
adjust these settings to determine whether there is a more appropriate configuration
for your design. Because performance results are design-dependent, try these options
in different combinations until you achieve the desired balance between functionality,
performance, and utilization.

2.5.3.1. Increasing Signal Tap Logic Performance

If Signal Tap logic is part of your critical path, follow these tips to speed up the
performance of the Signal Tap logic:

• Disable runtime configurable options—runtime flexibility features expend
some device resources. If you use Advanced Triggers or State-based triggering
flow, disable runtime configurable parameters to a boost in fMAX of the Signal Tap
logic. If you use the State-based triggering flow, disable the Goto state
destination option and perform a recompilation before disabling the other
runtime configurable options. The Goto state destination option has the
greatest impact on fMAX, compared to the other runtime configurable options.

• Minimize the number of signals that have Trigger Enable selected—By
default, the Signal Tap logic analyzer enables the Trigger Enable option for all
signals that you add to the .stp file. For signals that you do not plan to use as
triggers, turn this option off.

• Turn on Physical Synthesis for register retiming—If many (more than the
number of inputs that fit in a LAB) enabled triggering signals fan-in logic to a
gate-based triggering condition (basic trigger condition or a logical reduction
operator in the advanced trigger tab), turn on Perform register retiming. This
can help balance combinational logic across LABs.

2.5.3.2. Reducing Signal Tap Device Resources

If your design has resource constraints, follow these tips to reduce the logic or
memory the Signal Tap logic analyzer requires:

• Disable runtime configurable options—disabling runtime configurability for
advanced trigger conditions or runtime configurable options in the State-based
triggering flow results in fewer LEs.

• Minimize the number of segments in the acquisition buffer—you can reduce
the logic resources that the Signal Tap logic analyzer requires if you limit the
segments in your sampling buffer.

• Disable the Data Enable for signals that you use only for triggering—by
default, the Signal Tap logic analyzer enables data enable options for all signals.
Turning off the data enable option for signals you use only as trigger inputs saves
memory resources.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

82

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6. Step 4: Program the Target Hardware

After you add the Signal Tap logic analyzer instance to your project and fully compile
the design, you configure the FPGA target device with your design that includes the
Signal Tap logic analyzer instance. You can also program multiple devices with
different designs and simultaneously debug them.

When you debug a design with the Signal Tap logic analyzer, you can program a target
device directly using the supported JTAG hardware from the Signal Tap window,
without using the Intel Quartus Prime Programmer.

Related Information

• Managing Multiple Signal Tap Configurations on page 99

• Intel Quartus Prime Pro Edition User Guide: Programmer

2.6.1. Ensure Compatibility Between .stp and .sof Files

The .stp file is compatible with a .sof file if the logic analyzer instance parameters,
such as the size of the capture buffer and the monitoring and triggering signals, match
the programming settings for the target device.

If the files are not compatible, you can still program the device, but you cannot run or
control the logic analyzer from the Signal Tap logic analyzer GUI.

Use either of the following methods to ensure compatibility between .stp and .sof
files

• Attach the .sof file to the .stp file in the SOF Manager. The SOF Manager ensures
compatibility between any attached .sof files and the current .stp file settings
automatically, as SOF Manager on page 100 describes.

• To ensure programming compatibility, program the FPGA device with the most
recent .sof file.

Note: When the Signal Tap logic analyzer detects incompatibility after the analysis starts, the
Intel Quartus Prime software generates a system error message containing two CRC
values: the expected value and the value retrieved from the .stp instance on the
device. The CRC value comes from all Signal Tap settings that affect the compilation.

2.7. Step 5: Run the Signal Tap Logic Analyzer

Debugging signals with the Signal Tap logic analyzer GUI is similar to debugging with
an external logic analyzer. During normal device operation, you control the logic
analyzer through the JTAG connection, specifying the start time for trigger conditions
to begin capturing data.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

83

https://www.intel.com/content/www/us/en/programmable/documentation/ftt1513991830769.html#htp1524091712017
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 74. Starting Signal Tap Analysis

1. Select the Signal Tap instance, and then initialize the logic analyzer for that
instance by clicking Processing ➤ Run Analysis in the Signal Tap logic analyzer
GUI.

2. When a trigger event occurs, the logic analyzer stores the captured data in the
FPGA device's memory buffer, and then transfers this data to the Signal
Configuration pane Data tab. You can perform the equivalent of a force trigger
instruction that allows you to view the captured data currently in the buffer
without a trigger event occurring.

You can also use In-System Sources and Probes in conjunction with the Signal Tap
logic analyzer to force trigger conditions. The In-System Sources and Probes feature
allows you to drive and sample values on to selected signals over the JTAG chain.

2.7.1. Changing the Post-Fit Signal Tap Target Nodes

After performing full compilation of your design and Signal Tap instance, you can
subsequently make iterative changes to the post-fit Signal Tap nodes that you want to
target, without rerunning full compilation to implement the changes.

The Signal Tap Node list displays whether a target node is Pre-Syn (pre-synthesis) or
Post-Fit in the filterable Tap column.

To modify the post-fit Signal Tap nodes:

1. Optionally, mark signals for debug, as Preserving Signals for Monitoring and
Debugging on page 39 describes.

Note: You cannot change all pre-synthesis nodes to post-fit nodes, unless you are
changing the nodes before running full compilation. Once you preserve any
signal with preserve_for_debug, you can change those preserved pre-
synthesis nodes to post-fit nodes.

2. In the Signal Configuration pane, modify any of the following properties for
nodes with a Tap of Post-Fit:

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

84

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 75. Changing the Post-Fit Signal Tap Nodes

Change Post-Fit Targets Change Trigger Mode Change Number of NodesConvert Pre-Synthesis
to Post-Fit Nodes

• In the Name column, modify or add a new post-fit Signal Tap node target,
regardless of the trigger mode.

• In the Trigger Conditions column, modify the trigger mode. You can add the
post-fit Signal Tap node inputs to a Basic AND or Basic OR trigger.

• In Nodes Allocated, you can specify the Manual option to increase or
decrease the number of post-fit node targets. You can use manual allocation
to help you avoid any major logic change that may require a full
recompilation. The data input width affects memory use. The trigger input and
storage input width affects the complexity of the condition logic, which can
increase the device resource use and the complexity of timing closure.

• Right-click any pre-synthesis Signal Tap node to convert to a post-fit Signal
Tap node. The conversion is only successful if Signal Tap can resolve pre-
synthesis to post-fit name mapping. Otherwise, the node appears in red and
connected to ground. When conversion is successful the post-fit taps names
appear in blue text.

Figure 76. Post-fit Taps Names Appear in Blue Text

Post-fit Nodes Appear in Blue Text

3. After your post-fit node changes are complete, click Processing ➤ Start
Recompile to implement only the Signal Tap node changes. A dialog box appears
that lists the changes you are implementing, and whether recompilation supports
the change.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

85

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 77. Recompilation Changes List

Recompile Button

4. For any change with Status of Unsupported, you must either revert the change
to Previous value, or perform a full compilation to implement the change.

5. Click the Recompile button, as Figure 77 on page 86 shows. Recompilation uses
the Engineering Change Order (ECO) compilation flow to append your Signal Tap
node changes to the existing finalized snapshot, without changing placement and
routing outside the Signal Tap partition.

Note: The recompilation only applies to the project database if the recompilation is
successful. Otherwise, the last successful compilation results remain
unchanged.

6. View the changes in the following Compilation Reports following recompilation:

Figure 78. Connections to In-System Debugging Report
Lists each tap target and whether the connection successfully routes (is Connected after recompilation)

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

86

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 79. ECO Detected Changes Report
Lists each tap change that you implement with recompilation.

Figure 80. ECO Resource Usage Change
Shows the device resource area change that recompilation implements. Use this report to approximate whether
additional changes to the Signal Tap configuration are likely to succeed in combination with the overall design
utilization reports.

Related Information

• Preserving Signals for Monitoring and Debugging on page 39

• Recompiling Signal Tap Configuration Changes on page 80

• Using the ECO Compilation Flow chapter, Intel Quartus Prime Pro Edition User
Guide: Design Optimization

2.7.2. Runtime Reconfigurable Options

When you use Runtime Trigger mode, you can change certain settings in the .stp
without requiring recompilation of the design.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

87

https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html#hko1547763828940
https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html#hko1547763828940
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 21. Runtime Reconfigurable Features

Runtime Reconfigurable Setting Description

Basic Trigger Conditions and Basic Storage
Qualifier Conditions

Change without recompiling all signals that have the Trigger condition
turned on to any basic trigger condition value

Comparison Trigger Conditions and Comparison
Storage Qualifier Conditions

All the comparison operands, the comparison numeric values, and the
interval bound values are runtime-configurable.
You can also switch from Comparison to Basic OR trigger at runtime
without recompiling.

Advanced Trigger Conditions and Advanced
Storage Qualifier Conditions

Many operators include runtime configurable settings. For example, all
comparison operators are runtime-configurable. Configurable settings
appear with a white background in the block representation. This
runtime reconfigurable option is turned on in the Object Properties
dialog box.

Switching between a storage-qualified and a
continuous acquisition

Within any storage-qualified mode, you can switch to continuous
capture mode without recompiling the design. To enable this feature,
turn on disable storage qualifier.

State-based trigger flow parameters Refer to Runtime Reconfigurable Settings, State-Based Triggering
Flow

Runtime Reconfigurable options can save time during the debugging cycle by allowing
you to cover a wider possible range of events, without requiring design recompilation.
You may experience a slight impact to the performance and logic utilization. You can
turn off runtime re-configurability for advanced trigger conditions and the state-based
trigger flow parameters, boosting performance and decreasing area utilization.

To configure the .stp file to prevent changes that normally require recompilation in
the Setup tab, select the Allow Trigger Condition changes only lock mode above
the node list.

This example illustrates a potential use case for Runtime Reconfigurable features, by
providing a storage qualified enabled State-based trigger flow description, and
showing how to modify the size of a capture window at runtime without a recompile.
This example gives you equivalent functionality to a segmented buffer with a single
trigger condition where the segment sizes are runtime reconfigurable.

state ST1:
if (condition1 && (c1 <= m))// each "segment" triggers on condition // 1
begin // m = number of total "segments"
 start_store;
 increment c1;
 goto ST2:
end

else (c1 > m) // This else condition handles the last
 // segment.
begin
 start_store
 trigger (n-1)
end

state ST2:
if (c2 >= n) //n = number of samples to capture in each
 //segment.
begin
 reset c2;
 stop_store;
 goto ST1;
end

else (c2 < n)
begin

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

88

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 increment c2;
 goto ST2;
end

Note: m x n must equal the sample depth to efficiently use the space in the sample buffer.

The next figure shows the segmented buffer that the trigger flow example describes.

Figure 81. Segmented Buffer Created with Storage Qualifier and State-Based Trigger
Total sample depth is fixed, where m x n must equal sample depth.

Segment 1

1 n

Segment 2

1 n

Segment m

1 n

During runtime, you can modify the values m and n. Changing the m and n values in
the trigger flow description adjust the segment boundaries without recompiling.

You can add states into the trigger flow description and selectively mask out specific
states and enable other ones at runtime with status flags.

This example is like the previous example with an additional state inserted. You use
this extra state to specify a different trigger condition that does not use the storage
qualifier feature. You insert status flags into the conditional statements to control the
execution of the trigger flow.

state ST1 :
 if (condition2 && f1) // additional state for non-segmented
 // acquisition set f1 to enable state
 begin
 start_store;
 trigger
 end
 else if (! f1)
 goto ST2;
state ST2:
 if ((condition1 && (c1 <= m) && f2) // f2 status flag used to mask state.
Set f2
 // to enable
 begin
 start_store;
 increment c1;
 goto ST3:
 end
 else (c1 > m)
 start_store;
 trigger (n-1)
 end
state ST3:
 if (c2 >= n)
 begin
 reset c2;
 stop_store;
 goto ST1;
 end
 else (c2 < n)
 begin
 increment c2;
 goto ST2;
 end

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

89

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.7.3. Signal Tap Status Messages

The following table describes the text messages that might appear in the Signal Tap
Status Indicator in the Instance Manager pane before, during, or after data
acquisition. These messages allow you to monitor the state of the logic analyzer and
identify the operation that the logic analyzer is performing.

Table 22. Messages in the Signal Tap Status Indicator

Message Message Description

Not running The Signal Tap logic analyzer is not running.
This message appears when there is no connection to a device, or
the device is not configured.

(Power-Up Trigger) Waiting for clock (1) The Signal Tap logic analyzer is performing a Runtime or Power-Up
Trigger acquisition and is waiting for the clock signal to transition.

Acquiring (Power-Up) pre-trigger data (1) The trigger condition is not yet evaluated.
If the acquisition mode is non-segmented buffer, and the storage
qualifier type is continuous, the Signal Tap logic analyzer collects a
full buffer of data.

Trigger In conditions met Trigger In conditions are met. The Signal Tap logic analyzer is
waiting for the first trigger condition to occur.
This message only appears when a Trigger In condition exists.

Waiting for (Power-up) trigger (1) The Signal Tap logic analyzer is waiting for the trigger event to
occur.

Trigger level <x> met Trigger condition x occurred. The Signal Tap logic analyzer is
waiting for condition x + 1 to occur.

Acquiring (power-up) post-trigger data (1) The entire trigger event occurred. The Signal Tap logic analyzer is
acquiring the post-trigger data.
You define the amount of post-trigger data to collect (between
12%, 50%, and 88%) when you select the non-segmented buffer
acquisition mode.

Offload acquired (Power-Up) data (1) The JTAG chain is transmitting data to the Intel Quartus Prime
software.

Ready to acquire The Signal Tap logic analyzer is waiting for you to initialize the
analyzer.

1. This message can appear for both Runtime and Power-Up Trigger events. When referring to a Power-Up Trigger, the
text in parentheses appears.

Note: In segmented acquisition mode, pre-trigger and post-trigger do not apply.

2.8. Step 6: Analyze Signal Tap Captured Data

The Signal Tap logic analyzer GUI allows you to examine the data that you capture
manually or with a trigger. In the Data view, you can isolate the data of interest with
the drag-to-zoom feature, enabled with a left-click. You can save the data for later
analysis, or convert the data to other formats for sharing and further study.

• To simplify reading and interpreting the signal data you capture, set up mnemonic
tables, either manually or with a plug-in.

• To speed up debugging, use the Locate feature in the Signal Tap node list to
find the locations of problem nodes in other tools in the Intel Quartus Prime
software.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

90

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following topics describe viewing, saving, and exporting Signal Tap analysis
captured data:

• Viewing Capture Data Using Segmented Buffers on page 91

• Viewing Data with Different Acquisition Modes on page 92

• Creating Mnemonics for Bit Patterns on page 93

• Locating a Node in the Design on page 94

• Saving Captured Signal Tap Data on page 95

• Exporting Captured Signal Tap Data on page 95

• Creating a Signal Tap List File on page 95

2.8.1. Viewing Capture Data Using Segmented Buffers

Segmented buffers allow you to capture recurring events or sequences of events that
span over a long period.

Each acquisition segment acts as a non-segmented buffer, continuously capturing data
after activation. When you run analyses with segmented buffers, the Signal Tap logic
analyzer captures back-to-back data for each acquisition segment within the data
buffer. You define the trigger flow, or the type and order in which the trigger
conditions evaluate for each buffer, either in the Sequential trigger flow control or in
the Custom State-based trigger flow control.

The following figure shows a segmented acquisition buffer with four segments
represented as four separate non-segmented buffers.

Figure 82. Segmented Acquisition Buffer

01
1

Segment 1 Buffer

11111
1

1 1 1 1 1 1

0000
0

0
0 0 0

Trigger 1
Post Pre

01
1

Segment 2 Buffer

11111
1

1 1 1 1 1 1

0000
0

0
0 0 0

Trigger 2
Post Pre

01
1

Segment 3 Buffer

11111
1

1 1 1 1 1 1

0000
0

0
0 0 0

Trigger 3
Post Pre

01
1

Segment 4 Buffer

11111
1

1 1 1 1 1 1

0000
0

0
0 0 0

Trigger 4
Post Pre

When the Signal Tap logic analyzer finishes an acquisition with a segment and
advances to the next segment to start a new acquisition, the data capture that
appears in the waveform viewer depends on when a trigger condition occurs. The
figure illustrates the data capture method. The Trigger markers—Trigger 1, Trigger 2,
Trigger 3 and Trigger 4—refer to the evaluation of the segment_trigger and
trigger commands in the Custom State-based trigger flow. In sequential flows, the
Trigger markers for segments 2 through 4 refer to the final trigger condition that you
specify within the Setup tab.

If the Segment 1 Buffer is the active segment and Trigger 1 occurs, the Signal Tap
logic analyzer starts evaluating Trigger 2 immediately. Data Acquisition for the
Segment 2 buffer starts when either the Segment 1 Buffer finishes its post-fill count,
or when Trigger 2 evaluates as TRUE, whichever condition occurs first. Thus, trigger
conditions associated with the next buffer in the data capture sequence can preempt
the post-fill count of the current active buffer. This allows the Signal Tap logic analyzer
to accurately capture all the trigger conditions that occurred. Unused samples appear
as a blank space in the waveform viewer.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

91

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 83. Segmented Capture with Preemption of Acquisition Segments
The figure shows a capture using sequential flow control with the trigger condition for each segment specified
as Don’t Care.

Each segment before the last captures only one sample, because the next trigger
condition immediately preempts capture of the current buffer. The trigger position for
all segments is specified as pre-trigger (12% of the data is before the trigger condition
and 88% of the data is after the trigger position). Because the last segment starts
immediately with the trigger condition, the segment contains only post-trigger data.
The three empty samples in the last segment are left over from the pre-trigger
samples that the Signal Tap logic analyzer allocated to the buffer.

For the sequential trigger flow, the Trigger Position option applies to every segment
in the buffer. A custom state-based trigger flow provides maximum flexibility defining
the trigger position. By adjusting the trigger position specific to the debugging
requirements, you can help maximize the use of the allocated buffer space.

Related Information

Segmented Buffer on page 44

2.8.2. Viewing Data with Different Acquisition Modes

Different acquisition modes capture different amounts of data immediately after
running the Signal Tap logic analyzer and before any trigger conditions occur.

Non-Segmented Buffers in Continuous Mode

In configurations with non-segmented buffers running in continuous mode, the buffer
must be full of sampled data before evaluating any trigger condition. Only after the
buffer is full, the Signal Tap logic analyzer starts retrieving data through the JTAG
connection and evaluates the trigger condition.

If you click the Stop Analysis button, Signal Tap prevents the buffer from dumping
data during the first acquisition prior to a trigger condition.

Buffers with Storage Qualification

For buffers using a storage qualification mode, the Signal Tap logic analyzer
immediately evaluates all trigger conditions while writing samples into the acquisition
memory. This evaluation is especially important when using any storage qualification
on the data set. The logic analyzer may miss a trigger condition if it waits to capture a
full buffer's worth of data before evaluating any trigger conditions.

If a trigger activates before the specified amount of pre-trigger data has occurred, the
Signal Tap logic analyzer begins filling memory with post-trigger data, regardless of
the amount of pre-trigger data you specify. For example, if you set the trigger position
to 50% and set the logic analyzer to trigger on a processor reset, start the logic
analyzer, and then power on the target system, the trigger activates. However, the
logic analyzer memory contains only post-trigger data, and not any pre-trigger data,
because the trigger event has higher precedence than the capture of pre-trigger data.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

92

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.8.2.1. Continuous Mode and a Storage Qualifier Examples

The following show the capture differences between a non-segmented buffer in
continuous mode and a non-segmented buffer using a storage qualifier. The
configuration of the logic analyzer waveforms is a base trigger condition, sample depth
of 64 bits, and Post trigger position.

Figure 84. Signal Tap Logic Analyzer Continuous Data Capture

In the continuous data capture, Trig1 occurs several times in the data buffer before
the Signal Tap logic analyzer trigger activates. The buffer must be full before the logic
analyzer evaluates any trigger condition. After the trigger condition occurs, the logic
analyzer continues acquisition for eight additional samples (12% of the buffer, as
defined by the "post-trigger" position).

Figure 85. Signal Tap Logic Analyzer Conditional Data Capture

Note to figure:

1. Conditional capture, storage always enabled, post-fill count.

2. The Signal Tap logic analyzer captures a recurring pattern using a non-segmented
buffer in conditional mode. The configuration of the logic analyzer is a basic
trigger condition "Trig1" and sample depth of 64 bits. The Trigger in condition is
Don't care, so the buffer captures all samples.

In conditional capture the logic analyzer triggers immediately. As in continuous
capture, the logic analyzer completes the acquisition with eight samples, or 12% of
64, the sample capacity of the acquisition buffer.

2.8.3. Creating Mnemonics for Bit Patterns

A mnemonic table allows you to assign a meaningful name to a set of bit patterns,
such as a bus. To create a mnemonic table:

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

93

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Right-click the Setup or Data tab of a Signal Tap instance, and click Mnemonic
Table Setup.

2. Create a mnemonic table by entering sets of bit patterns and specifying a label to
represent each pattern.

3. Assign the table to a group of signals by right-clicking the group, clicking Bus
Display Format, and selecting the mnemonic table.

4. On the Setup tab, you can create basic triggers with meaningful names by right-
clicking an entry in the Trigger Conditions column and selecting a label from the
table you assigned to the signal group.

On the Data tab, if data captured matches a bit pattern contained in an assigned
mnemonic table, the Signal Tap GUI replaces the signal group data with the
appropriate label, simplifying the visual inspection of expected data patterns.

2.8.3.1. Adding Mnemonics with a Plug-In

When you use a plug-in to add signals to an .stp, mnemonic tables for the added
signals are automatically created and assigned to the signals defined in the plug-in. To
enable these mnemonic tables manually, right-click the name of the signal or signal
group. On the Bus Display Format shortcut menu, click the name of the mnemonic
table that matches the plug-in.

As an example, the Nios II plug-in helps you to monitor signal activity for your design
as the code is executed. If you set up the logic analyzer to trigger on a function name
in your Nios II code based on data from an .elf, you can see the function name in
the Instruction Address signal group at the trigger sample, along with the
corresponding disassembled code in the Disassembly signal group, as shown in
Figure 13–52. Captured data samples around the trigger are referenced as offset
addresses from the trigger function name.

Figure 86. Data Tab when the Nios II Plug-In is Used

2.8.4. Locating a Node in the Design

When you find the source of an error in your design using the Signal Tap logic
analyzer, you can use the node locate feature to locate that signal in various Intel
Quartus Prime design visualization tools, as well as in the design file. Locating the
node allows you to visualize the source of the problem quickly and correct the issue.
To locate a signal from the Signal Tap logic analyzer, right-click the signal in the .stp,
and click Locate in ➤ <tool name>.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

94

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can locate a signal from the node list with the following tools:

• Assignment Editor

• Pin Planner

• Timing Closure Floorplan

• Chip Planner

• Resource Property Editor

• Technology Map Viewer

• RTL Viewer

• Design File

2.8.5. Saving Captured Signal Tap Data

When you save a data capture, the Signal Tap logic analyzer stores this data in the
active .stp file, and the Data Log adds the capture as a log entry under the current
configuration.

When you set Signal Tap analysis to Autorun Analysis, which starts the Signal Tap
logic analyzer in a repetitive acquisition mode, the logic analyzer creates a separate
entry in the Data Log to store the data captured each time the trigger occurs. This
preservation allows you to review the captured data for each trigger event.

The default name for a log derives from the time stamp when the logic analyzer
acquires the data. As a best practice, rename the data log with a more meaningful
name.

The organization of logs is hierarchical; the logic analyzer groups similar logs of
captured data in trigger sets.

Related Information

Data Log Pane on page 99

2.8.6. Exporting Captured Signal Tap Data

You can export captured data to the following file formats, for use with other EDA
simulation tools:

• Comma Separated Values File (.csv)

• Table File (.tbl)

• Value Change Dump File (.vcd)

• Vector Waveform File (.vwf)

• Graphics format files (.jpg, .bmp)

To export the captured data from the Signal Tap logic analyzer, click File ➤ Export,
and then specify the File Name, Export Format, and Clock Period.

2.8.7. Creating a Signal Tap List File

You can generate a Signal Tap list file that contains all the data the logic analyzer
captures for a trigger event, in text format.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

95

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Signal Tap list file is especially useful when combined with a plug-in that includes
instruction code disassembly. You can view the order of instruction code execution
during the same time period of the trigger event.

To create a Signal Tap list file, click File ➤ Create/Update ➤ Create Signal Tap List
File.

Each row of the list file corresponds to one captured sample in the buffer. Columns
correspond to the value of each of the captured signals or signal groups for that
sample. If you defined a mnemonic table for the captured data, a matching entry from
the table replaces the numerical values in the list.

2.9. Other Signal Tap Debugging Flows

Refer to the following information about more advanced (non-standard) Signal Tap
debugging flows and alternative methods.

2.9.1. Signal Tap and Simulator Integration

You can use Signal Tap signal and acquisition data directly in your supported simulator
for enhanced visibility into internal signal states in a design hierarchy. The Add
Simulator Aware Nodes command intelligently analyzes the circuit to determine the
minimum set of nodes needed to tap to gain full visibility into the selected hierarchy's
cone of logic.

Signal Tap can also transform the Signal Tap data into an RTL simulation testbench for
any level of the design hierarchy. This simulation testbench allows you to export
acquired Signal Tap hardware data directly into your RTL simulator and observe signal
states beyond Signal Tap observability.

The following topics describe these Signal Tap and Simulator Integration features in
detail:

• Adding Simulator-Aware Signal Tap Nodes on page 47

• Generating a Simulation Testbench from Signal Tap Data on page 96

Simulator Integration Beta Limitations

This version of the Signal Tap and simulator integration feature is a beta release. The
following known limitations apply to this beta release:

• Supports only Verilog HDL simulation.

• Supports testbench generation only within the current project directory.

Related Information

Adding Signals to the Signal Tap Logic Analyzer on page 44

2.9.1.1. Generating a Simulation Testbench from Signal Tap Data

You can use Signal Tap to capture signal data about your running system, and then
automatically generate an RTL simulation testbench directly from this capture data for
use in your supported simulator.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

96

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To generate a simulation testbench from Signal Tap data, follow these steps:

1. Add simulator-aware Signal Tap nodes to the logic analyzer, as Adding Simulator-
Aware Signal Tap Nodes on page 47 describes.

2. Run Signal Tap analysis, as Step 5: Run the Signal Tap Logic Analyzer on page 83
describes.

Figure 87. Create Simulation Testbench

3. In the Signal Tap window, click File ➤ Create Simulation Testbench. Retain
defaults and click OK. The testbench generates in a vendor-sepecific directory.
Refer to Create Simulation Testbench Dialog Box Settings on page 98.

4. Source the generated simulator setup script in your supported simulator. For
example:

source msim_setup.tcl

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

97

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Use the commands in the setup script to compile and load the testbench into a
supported simulator. For example, in the Questa or ModelSim simulators:

ld_debug

Note: Signal Tap uses a Verilog HDL force statement to inject the Signal Tap data
into the simulator.

6. Add signals to the waveform and run the simulation in your simulator.

7. View the results of simulation in your simulator.

2.9.1.2. Create Simulation Testbench Dialog Box Settings

The following options are available for RTL simulation testbench generation from the
Signal Tap Create Simulation Testbench Dialog Box. The default values derive
from Signal Tap signal data.

Table 23. Create Simulation Testbench Dialog Box (Signal Tap Logic Analyzer)

Name Description

Directory Specifies the directory to generated save RTL simulation testbench files.
Note: Signal Tap currently supports testbench generation only within the

current project directory.

Starting hierarchy to simulate Specifies the design hierarchy level to include in the simulation. The default
location is a subdirectory of the project with the hierarchy name.

Testbench top level properties Specifies the following testbench properties. By default, these values populate
from the Signal Tap data:
• Module name—specifies the name of the design module that you want to

simulate, as specified in Signal Tap
• DUT instance name—specifies the default instance name for the design

under test (DUT) in your simulator. The default is DUT. This name appears in
your simulator.

• DUT clock port name—specifies the clock port name of the design under
test (DUT) for simulation. Signal Tap automatically derives this value based
on the DUT instance name.

Simulation event properties Specifies the following testbench properties. By default, these values populate
from the Signal Tap data:
• Initial unknown data—specifies the number of clock cycles for which the

data value is initially unknown at the start of simulation.
• Discontinued data due to storage qualification—specifies the number of

clock cycles for which the data is discontinued because of lack of storage.
• Final unknown data—specifies the number of clock cycles for which the

data is unknown initially at the end of simulation.

Options The following options must be enabled for testbench generation:
• Use force statement based on value change—specifies the number of

clock cycles for which the data value is initially unknown at the start of
simulation.
Note: Signal Tap uses a Verilog HDL force statement to inject the Signal

Tap data into the simulator.
• Generate simulation scripts—specifies that simulation scripts generate in

vendor specific subdirectories during testbench generation. Source these
scripts in your simulator to setup simulation.

Node string replacement Specifies options for nomenclature and syntax within the generated testbench:

continued...

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

98

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Description

• Prefix hierarchies with instance name—specifies the instance name that
prepends to hierarchy names in the testbench. In general, the derived default
value is suitable.

• Search|Replace—specifies the search and replace strings for Node string
replacement.

Preview Displays the result of the Node string replacement settings within the
testbench.

2.9.2. Managing Multiple Signal Tap Configurations

You can debug different blocks in your design by grouping related monitoring signals.
Similarly, you can use a group of signals to define multiple trigger conditions. Each
combination of signals, capture settings, and trigger conditions determines a debug
configuration, and one configuration can have zero or more associated data logs.

You can save each debug configuration as a different .stp file. Alternatively, you can
embed multiple configurations within the same .stp file, and use the Data Log to
view and manage each debug configuration.

Note: Each .stp pertains to a specific programming (.sof) file. To function correctly, the
settings in the .stp file you use at runtime must match the Signal Tap specifications
in the .sof file that you use to program the device.

Related Information

Ensure Compatibility Between .stp and .sof Files on page 83

2.9.2.1. Data Log Pane

The Data Log pane displays all Signal Tap configurations and data capture results that
a single .stp file stores.

• To save the current configuration or capture in the Data Log of the current .stp
file, click Edit ➤ Save to Data Log.

• To automatically generate a log entry after every data capture, click Edit ➤
Enable Data Log. Alternatively, enable the box at the top of the Data Log pane.

The Data Log displays its contents in a tree hierarchy. The active items display a
different icon.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

99

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 24. Data Log Items

Item Icon Contains one or
more

Comments

Unselected Selected

Instance Signal Set The top-level for a particular Signal Tap instance.

Signal Set Trigger The Signal Set changes whenever you add a new
signal to a Signal Tap instance. After a change in
the Signal Set, you need to recompile.

Trigger Capture Log A trigger changes when you change any trigger
condition. Some of these changes do not require
recompilation.

Capture Log Contains captured sample data for this particular
trigger configuration, for the particular signal set
for this particular Signal Tap instance. There can
be multiple capture logs for a particular setup if
you run the logic analyzer multiple times, as
Figure 88 on page 100 shows.

The name on each entry displays the wall-clock time when the Signal Tap logic
analyzer triggers, and the time elapsed from start acquisition to trigger activation. You
can rename entries.

To switch between configurations, double-click an entry in the Data Log. As a result,
the Setup and Data tabs update to display the active signal list, trigger conditions, or
specified captured data.

Figure 88. Simple Data Log
In this example, the Data Log displays one instance with three signal set configurations, two trigger condition
setups, and three different captured data sets.

2.9.2.2. SOF Manager

The SOF Manager is in the JTAG Chain Configuration pane.

With the SOF Manager you can attach multiple .sof files to a single .stp file. This
attachment allows you to move the .stp file to a different location, either on the
same computer or across a network, without including the attached .sof separately.

The SOF Manager also ensures compatibility between any attached .sof files and the
current .stp file settings automatically, asEnsure Compatibility Between .stp and .sof
Files on page 83 describes.

To attach a new .sof in the .stp file, click the Attach SOF File icon .

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

100

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 89. SOF Manager

Attach SOF File Icon

As you switch between configurations in the Data Log, you can extract the .sof that
is compatible with that configuration.

To download the new .sof to the FPGA, click the Program Device icon in the SOF
Manager, after ensuring that the configuration of your .stp is compatible with the
design to program into the target device.

Related Information

Data Log Pane on page 99

2.9.3. Debugging Partial Reconfiguration Designs with Signal Tap

You can debug a Partial Reconfiguration (PR) design with the Signal Tap logic analyzer.
The Signal Tap logic analyzer supports data acquisition in the static and PR regions.
You can debug multiple personas present in a PR region and multiple PR regions.

For examples on debugging PR designs targeting specific devices, refer to AN 841:
Signal Tap Tutorial for Intel Stratix® 10 Partial Reconfiguration Design or AN 845:
Signal Tap Tutorial for Intel Arria® 10 Partial Reconfiguration Design.

Related Information

• AN 841: Signal Tap Tutorial for Intel Stratix 10 Partial Reconfiguration Design

• AN 845: Signal Tap Tutorial for Intel Arria 10 Partial Reconfiguration Design

2.9.3.1. Signal Tap Guidelines for PR Designs

Follow these guidelines to obtain the best results when debugging PR designs with the
Signal Tap logic analyzer:

• Include one .stp file per project revision.

• Tap pre-synthesis nodes only. In the Node Finder, filter by Signal Tap: pre-
synthesis.

• Do not tap nodes in the default persona (the personas you use in the base revision
compile). Create a new PR implementation revision that instantiates the default
persona, and tap nodes in the new revision.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

101

https://www.intel.com/content/www/us/en/programmable/documentation/xax1520968829156.html#smz1520983537036
https://www.intel.com/content/www/us/en/programmable/documentation/fir1520982817117.html#smz1520983537036
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Store all the tapped nodes from a PR persona in one .stp file, to enable
debugging the entire persona using only one Signal Tap window.

• Do not tap across PR regions, or from a static region to a PR region in the
same .stp file.

• Each Signal Tap window opens only one .stp file. Therefore, to debug more than
one partition simultaneously, you must use stand-alone Signal Tap from the
command-line.

2.9.3.2. PR Design Setup for Signal Tap Debug

Figure 90. Setting Up PR Design for Debug with Signal Tap

Prepare Base Revision

Finish

Debug Static Region

Prepare PR Personas

Prepare Static Region

yes

no

To debug a PR design, you must instantiate SLD JTAG bridges when generating the
base revision, and then define debug components for all PR personas. Optionally, you
can specify signals to tap in the static region. After configuring all the PR personas in
the design, you can continue the PR design flow.

Related Information

• Debug Fabric for Partial Reconfiguration Designs on page 19

• Partial Reconfiguration Design Flow, Intel Quartus Prime Pro Edition User Guide:
Partial Reconfiguration

2.9.3.2.1. Preparing the Static Region for Signal Tap Debugging

To debug the static region in your PR design:

1. Tap nodes in the static region exclusively.

2. Save the .stp file with a name that identifies the file with the static region.

3. Enable Signal Tap in your project, and include the .stp file in the base revision.

Note: Do not tap signals in the default PR personas.

2.9.3.2.2. Preparing the Base Revision for Signal Tap Debugging

In the base revision, for each PR region that you want to debug in the design:

1. Instantiate the SLD JTAG Bridge Agent Intel FPGA IP in the static region.

2. Instantiate the SLD JTAG Bridge Host Intel FPGA IP in the PR region of the default
persona.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

102

https://www.intel.com/content/www/us/en/programmable/documentation/tnc1513987819990.html#jka1466632817917
https://www.intel.com/content/www/us/en/programmable/documentation/tnc1513987819990.html#jka1466632817917
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use the IP Catalog or Platform Designer to instantiate SLD JTAG Bridge
components.

Related Information

• Instantiating the SLD JTAG Bridge Agent on page 16

• Instantiating the SLD JTAG Bridge Host on page 17

2.9.3.2.3. Preparing PR Personas for Signal Tap Debugging

Before you create revisions for personas in your design, you must instantiate debug IP
components and tap signals.

For each PR persona that you want to debug:

1. Instantiate the SLD JTAG Bridge Host Intel FPGA IP in the PR persona.

2. Tap pre-synthesis nodes in the PR persona only.

3. Save in a new .stp file with a name that identifies the persona.

4. Use the new .stp file in the implementation revision.

If you do not want to debug a particular persona, drive the tdo output signal to 0.

2.9.3.3. Performing Data Acquisition in a PR design

After generating the .sof and .rbf files for the revisions you want to debug, you are
ready to program your device and debug with the Signal Tap logic analyzer.

To perform data acquisition:

1. Program the base image into your device.

2. Partially reconfigure the device with the persona that you want to debug.

3. Open the Signal Tap logic analyzer by clicking Tools ➤ Signal Tap logic
analyzer in the Intel Quartus Prime software.

The logic analyzer opens and loads the .stp file set in the current active revision.

4. To debug other regions in your design, open new Signal Tap windows by opening
the other region's .stp file from the Intel Quartus Prime main window.

Alternatively, use the command-line:

quartus_stpw <stp_file_other_region.stp>

5. Debug your design with Signal Tap.

To debug another revision, you must partially reconfigure your design with the
corresponding .rbf file.

2.9.4. Debugging Block-Based Designs with Signal Tap

The Intel Quartus Prime Pro Edition software supports verification of block-based
design flows with the Signal Tap logic analyzer.

Verifying a block-based design requires planning to ensure visibility of logic inside
partitions and communication with the Signal Tap logic analyzer. The preparation steps
depend on whether you are reusing a core partition or a root partition.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

103

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For information about designing with reusable blocks, refer to the Intel Quartus Prime
Pro Edition User Guide: Block-Based Design. For step-by-step block-based design
debugging instructions, refer to AN 847: Signal Tap Tutorial with Design Block Reuse
for Intel Arria 10 FPGA Development Board.

Related Information

Intel Quartus Prime Pro Edition User Guide: Block-Based Design

2.9.4.1. Signal Tap Debugging with a Core Partition

To perform Signal Tap debugging in a core design partition that you reuse from
another project, you identify the signals of interest, and then make those signals
visible to a Signal Tap logic analyzer instance. The Intel Quartus Prime software
supports two methods to make the reused core partition signals visible for Signal Tap
monitoring: by creating partition boundary ports, or by Signal Tap HDL instantiation.

Figure 91. Debug Setup with Reused Core Partition

Signal Tap HDL Instance
Parent Partition

JTAG
TAP

RTL

Reused Core Partition
JTAG
HUB

Signal Tap
Instance

Partition Boundary Ports
Parent Partition

JTAG
TAP

Reused Core Partition
JTAG
HUB

Manual Connection Automatic Connection RTL Partition Boundary Ports

Signal Tap
Instance

Signal Tap
Instance

Legend:

2.9.4.1.1. Partition Boundary Ports Method

Partition boundary ports expose core partition nodes to the top-level partition.
Boundary ports simplify the management of hierarchical blocks by tunneling through
layers of logic without making RTL changes. The partition boundary ports method
includes these high-level steps:

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

104

https://www.intel.com/content/www/us/en/programmable/documentation/yrh1513988099640.html#xdj1491668852667
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. In the project that exports the partition, define boundary ports for all potential
Signal Tap nodes in the core partition. Define partition boundary ports with the
Create Partition Boundary Ports assignment in the Assignment Editor. When
you assign a bus, the assignment applies to the root name of the debug port, with
each bit enumerated.

2. In the project that exports the partition, create a black box file that includes the
partition boundary ports, to allows tapping these ports as pre-synthesis or post-fit
nodes in another project.

3. In the project that reuses the partition, run Analysis & Synthesis on the reused
partition. All valid ports with the Create Partition Boundary Ports become
visible in the project. After synthesis you can verify the partition boundary ports in
the Create Partition Boundary Ports report in the In-System Debugging folder
under Synthesis reports.

4. Tap the partition boundary ports to connect to a Signal Tap instance in the top-
level partition. You can also tap logic from the top-level partition to this Signal Tap
instance. When using this method, the project requires only one Signal Tap
instance to debug both the top-level and the reused core partition.

The following procedures explain these steps in more detail.

2.9.4.1.2. Debug a Core Partition through Partition Boundary Ports

To use Signal Tap to debug a design that includes a core partition exported with
partition boundary ports from another project, follow these steps:

1. Add to your project the black-box file that you create in Export a Core Partition
with Partition Boundary Ports on page 105.

2. To run synthesis, double-click Analysis & Synthesis on the Compilation
Dashboard.

3. Define a Signal Tap instance with the Signal Tap GUI, or by instantiating a Signal
Tap HDL instance in the top level root partition, as Step 1: Add the Signal Tap
Logic Analyzer to the Project on page 33 describes.

4. Connect the partition boundary ports of the reused core partition to the HDL
instance, or add post-synthesis or post-fit nodes to the Signal Configuration tab
in the Signal Tap logic analyzer GUI.

5. To create a design partition, click Assignments ➤ Design Partitions Window.
Define a partition and assign the exported partition .qdb file as the Partition
Database File option.

6. Compile the design, including all partitions and the Signal Tap instance.

7. Program the Intel FPGA device with the design and Signal Tap instances.

8. Perform data acquisition with the Signal Tap logic analyzer GUI.

2.9.4.1.3. Export a Core Partition with Partition Boundary Ports

To export a core partition with partition boundary ports for reuse and Signal Tap
debugging in another project, follow these steps:

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

105

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. To run synthesis, double-click Analysis & Synthesis on the Compilation
Dashboard.

2. Define a design partition for reuse that contains only core logic. Click
Assignments ➤ Design Partitions Window to define the partition.

3. To create partition boundary ports for the core partition, specify the Create
Partition Boundary Ports assignment in the Assignment Editor for partition
ports.

4. Click Project ➤ Export Design Partition. By default, the .qdb file you export
includes any Signal Tap HDL instances for the partition.

5. Compile the design and Signal Tap instance.

6. Create a black box file that defines only the port and module or entity definitions,
without any logic.

7. Manually copy the exported partition .qdb file and any black box file to the other
project.

Optionally, you can verify signals in the root and core partitions in the Developer
project with the Signal Tap logic analyzer.

2.9.4.1.4. Signal Tap HDL Instance Method

To use the Signal Tap HDL instance method, you first create a Signal Tap HDL instance
in the reusable core partition, and then connect the signals of interest to that
instance. The Compiler ensures top-level visibility of Signal Tap instances inside
partitions. Since the root partition and the core partition have separated HDL
instances, the Signal Tap files are also separate.

When you reuse the partition in another project, you must generate one Signal Tap file
in the target project for each HDL instance present in the reused partition.

Debug a Core Partition Exported with Signal Tap HDL Instances

To use Signal Tap to debug a design that includes a core partition exported with Signal
Tap HDL instances, follow these steps:

1. Add to your project the black-box file that you create in Export a Core Partition
with Signal Tap HDL Instances on page 107.

2. To create a design partition, click Assignments ➤ Design Partitions Window.
Define a partition and assign the exported partition .qdb file as the Partition
Database File option.

3. Create a Signal Tap file for the top-level partition as Step 1: Add the Signal Tap
Logic Analyzer to the Project on page 33 describes.

4. Compile the design and Signal Tap instances.

5. Generate a Signal Tap file for the reused Core Partition with the File ➤ Create/
Update ➤ Create Signal Tap File from Design Instance command.

6. Program the Intel FPGA device with the design and Signal Tap instances.

7. Perform hardware verification of top-level partition with the Signal Tap instance
defined in Step 3.

8. Perform hardware verification of the Reused Core Partition with the Signal Tap
instance defined in Step 5.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

106

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.4.1.5. Export a Core Partition with Signal Tap HDL Instances

To export a core partition with Signal Tap HDL instances for reuse and eventual Signal
Tap debugging in another project, follow these steps:

1. To run synthesis, double-click Analysis & Synthesis on the Compilation
Dashboard.

2. Define a design partition for reuse that contains only core logic. Click
Assignments ➤ Design Partitions Window to define the partition.

3. Add a Signal Tap HDL instance to the core partition, connecting it to nodes of
interest.

4. Click Project ➤ Export Design Partition. By default, the .qdb file you export
includes any Signal Tap HDL instances for the partition.

5. Create a black box file that defines only the port and module or entity definitions,
without any logic.

6. Manually copy the exported partition .qdb file and any black box file to the other
project.

2.9.4.1.6. Debug a Core Partition Exported with Signal Tap HDL Instances

To use Signal Tap to debug a design that includes a core partition exported with Signal
Tap HDL instances, follow these steps:

1. Add to your project the black-box file that you create in Export a Core Partition
with Signal Tap HDL Instances on page 107.

2. To create a design partition, click Assignments ➤ Design Partitions Window.
Define a partition and assign the exported partition .qdb file as the Partition
Database File option.

3. Create a Signal Tap file for the top-level partition as Step 1: Add the Signal Tap
Logic Analyzer to the Project on page 33 describes.

4. Compile the design and Signal Tap instances.

5. Generate a Signal Tap file for the reused Core Partition with the File ➤ Create/
Update ➤ Create Signal Tap File from Design Instance command.

6. Program the Intel FPGA device with the design and Signal Tap instances.

7. Perform hardware verification of top-level partition with the Signal Tap instance
defined in Step 3.

8. Perform hardware verification of the Reused Core Partition with the Signal Tap
instance defined in Step 5.

2.9.4.2. Signal Tap Debugging with a Root Partition

In a project that reuses a root partition, you enable debugging of the root partition
and the core partition independently, with separate Signal Tap instances in each
partition. In the project that exports the partition, you add the Signal Tap instance to
the root partition. Additionally, you extend the debug fabric into the reserved core
partition with a debug bridge. This bridge allows subsequent instantiation of Signal Tap
when reusing the partition in another project.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

107

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You implement the debug bridge with the SLD JTAG Bridge Agent Intel FPGA IP and
SLD JTAG Bridge Host Intel FPGA IP pair for each reserved core boundary in the
design. You instantiate the SLD JTAG Bridge Agent IP in the root partition, and the
SLD JTAG Bridge Host IP in the core partition.

Figure 92. Debug Setup with Reused Root Partition

Root Partition

JTAG
TAP

JTAG
HUB

Manual Connection

Automatic Connection

RTL
Signal Tap

Partition

JTAG
HUB

Signal Tap

SL
D

JTA
G

Br
idg

e A
ge

nt

SL
D

JTA
G

Br
idg

e H
os

t

For details about the debug bridge, refer to the SLD JTAG Bridge in the System
Debugging Tools Overview chapter.

Related Information

SLD JTAG Bridge on page 14

2.9.4.2.1. Export the Root Partition with SLD JTAG Bridge

To export a reusable root partition with SLD JTAG Bridge that allows debugging of core
partitions in another project, follow these steps.

1. Create a reserved core partition and define a Logic Lock region.

2. Generate and instantiate SLD JTAG Bridge Agent in the root partition.

The combination of agent and host allows debugging the reserved core partition in
Consumer projects.

3. Generate and instantiate the SLD JTAG Bridge Host in the reserved core partition.

4. Add a Signal Tap instance to the root partition, as Step 1: Add the Signal Tap Logic
Analyzer to the Project on page 33 describes.

5. In the Signal Tap instance, specify the signals for monitoring. This action allows
debugging the root partition in the Developer and Consumer projects.

6. Compile the design and Signal Tap instance.

7. Click Project ➤ Export Design Partition. By default, the .qdb file you export
includes any Signal Tap HDL instances for the partition.

8. Manually copy files to the project that reuses the root partition:

— In designs targeting the Intel Arria 10 device family, copy .qdb and .sdc
files.

— In designs targeting the Intel Stratix 10 device family copy the .qdb file.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

108

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In designs with multiple child partitions, you must provide the hierarchy path and
the associated index of the JTAG Bridge Instance Agents in the design to the
Consumer.

2.9.4.2.2. Debugging an Exported Root Partition and Core Partition Simultaneously using
the SLD JTAG Bridge

When you reuse an exported root partition in another project, the exported .qdb
includes the Signal Tap connection to signals in the root partition, and the SLD JTAG
Bridge Agent IP, which allows debugging logic in the core partition.

To perform Signal Tap debugging in a project that includes a reused root partition:

1. Add the exported .qdb (and .sdc) files to the project that reuses them.

2. From the IP Catalog, parameterize and instantiate the SLD JTAG Bridge Host Intel
FPGA IP in the core partition.

3. Run the Analysis & Synthesis stage of the Compiler.

4. Create a Signal Tap instance in the core partition, as Step 1: Add the Signal Tap
Logic Analyzer to the Project on page 33 describes.

5. In the Signal Tap instance, specify post-synthesis signals for monitoring.

Note: You can only tap signals in the core partition.

6. Compile the design and Signal Tap instance.

7. Generate a Signal Tap file for the reused root partition with the quartus_stp
command.

8. Program the device.

9. Perform hardware verification of the reserved core partition with the Signal Tap
instance defined in Step 3.

10. Perform hardware verification of the reused root partition with the Signal Tap
instance defined in Step 7.

2.9.4.3. Compiler Snapshots and Signal Tap Debugging

When you reuse a design partition exported from another project, the design partition
preserves the results of a specific snapshot of the compilation. Whenever possible, it is
easiest to specify the signals for monitoring in the original project that exports the
partition.

Adding new signals to a Signal Tap instance in a reused partition requires the Fitter to
connect and route these signals. This is only possible when:

• The reused partition contains the Synthesis snapshot—reused partitions that
contain the Placed or Final snapshot do not allow adding more signals to the
Signal Tap instance for monitoring, because you cannot create additional boundary
ports.

• The signal that you want to tap is a post-fit signal—adding pre-synthesis Signal
Tap signals is not possible, because that requires resynthesis of the partition.

Related Information

Signals Unavailable for Signal Tap Debugging on page 50

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

109

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.9.4.3.1. Add Post-Fit Nodes when Reusing a Partition Containing a Synthesis Snapshot

You can add post-fit nodes for Signal Tap debug when reusing a design partition
containing the synthesis snapshot exported from another project.

To add post-fit nodes to Signal Tap for monitoring:

1. Open the project that reuses the partition, and then compile the reused partition
through the Fitter stage.

2. Add a Signal Tap instance to the project that reuses the partition, as Step 1: Add
the Signal Tap Logic Analyzer to the Project on page 33 describes.

3. In the Signal Tap GUI, add the post-fit Signal Tap nodes to the Signal
Configuration tab.

4. Recompile the design from the Place stage by clicking Processing ➤ Start ➤
Start Fitter (Place).

The Fitter attaches the Signal Tap nodes to the existing synthesized nodes.

2.9.5. Debugging Devices that use Configuration Bitstream Security

Some Intel FPGA device families support bitstream decryption during configuration
using an on-device AES decryption engine. You can still use the Signal Tap logic
analyzer to analyze functional data within the FPGA with such devices. However, JTAG
configuration is not possible after programming the security key into the device.

Use an unencrypted bitstream during the prototype and debugging phases of the
design, to allow programming file generation and reconfiguration of the device over
the JTAG connection while debugging.

If you must use the Signal Tap logic analyzer with an encrypted bitstream, first
configure the device with an encrypted configuration file using Passive Serial (PS),
Fast Passive Parallel (FPP), or Active Serial (AS) configuration modes. The design must
contain at least one instance of the Signal Tap logic analyzer. After configuring the
FPGA with a Signal Tap instance and the design, you can open the Signal Tap logic
analyzer GUI and scan the chain to acquire data with the JTAG connection.

Related Information

Intel Quartus Prime Pro Edition User Guide: Programmer

2.9.6. Signal Tap Data Capture with the MATLAB MEX Function

When you use MATLAB for DSP design, you can acquire data from the Signal Tap logic
analyzer directly into a matrix in the MATLAB environment. To use this method, you
call the MATLAB MEX function, alt_signaltap_run, that the Intel Quartus Prime
software includes. If you use the MATLAB MEX function in a loop, you can perform as
many acquisitions in the same amount of time as when using Signal Tap in the Intel
Quartus Prime software environment.

Note: The MATLAB MEX function for Signal Tap is available in the Windows* version and
Linux version of the Intel Quartus Prime software. This function is compatible with
MATLAB Release 14 Original Release Version 7 and later.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

110

https://www.intel.com/content/www/us/en/programmable/documentation/ftt1513991830769.html#htp1524091712017
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To set up the Intel Quartus Prime software and the MATLAB environment to perform
Signal Tap acquisitions:

1. In the Intel Quartus Prime software, create an .stp file.

2. In the node list in the Data tab of the Signal Tap logic analyzer Editor, organize
the signals and groups of signals into the order in which you want them to appear
in the MATLAB matrix.

Each column of the imported matrix represents a single Signal Tap acquisition
sample, while each row represents a signal or group of signals in the order you
defined in the Data tab.

Note: Signal groups that the Signal Tap logic analyzer acquires and transfers into
the MATLAB MEX function have a width limit of 32 signals. To use the
MATLAB MEX function with a bus or signal group that contains more than 32
signals, split the group into smaller groups that do not exceed the limit.

3. Save the .stp file and compile your design. Program your device and run the
Signal Tap logic analyzer to ensure your trigger conditions and signal acquisition
work correctly.

4. In the MATLAB environment, add the Intel Quartus Prime binary directory to your
path with the following command:

addpath <Quartus install directory>\win

You can view the help file for the MEX function by entering the following command
in MATLAB without any operators:

alt_signaltap_run

5. Use the MATLAB MEX function to open the JTAG connection to the device and run
the Signal Tap logic analyzer to acquire data. When you finish acquiring data, close
the JTAG connection.

To open the JTAG connection and begin acquiring captured data directly into a
MATLAB matrix called stp, use the following command:

stp = alt_signaltap_run \
('<stp filename>'[,('signed'|'unsigned')[,'<instance names>'[, \
'<signalset name>'[,'<trigger name>']]]]);

When capturing data, you must assign a filename, for example, <stp filename> as
a requirement of the MATLAB MEX function. The following table describes other
MATLAB MEX function options:

Table 25. Signal Tap MATLAB MEX Function Options

Option Usage Description

signed

unsigned

'signed'

'unsigned'

The signed option turns signal group data into 32-bit two’s-
complement signed integers. The MSB of the group as
defined in the Signal Tap Data tab is the sign bit. The
unsigned option keeps the data as an unsigned integer.
The default is signed.

<instance name> 'auto_signaltap_0' Specify a Signal Tap instance if more than one instance is
defined. The default is the first instance in the .stp,
auto_signaltap_0.

<signal set name>
<trigger name>

'my_signalset'

'my_trigger'

Specify the signal set and trigger from the Signal Tap data
log if multiple configurations are present in the .stp. The
default is the active signal set and trigger in the file.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

111

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

During data acquisition, you can enable or disable verbose mode to see the status
of the logic analyzer. To enable or disable verbose mode, use the following
commands:

alt_signaltap_run('VERBOSE_ON');-alt_signaltap_run('VERBOSE_OFF');

When you finish acquiring data, close the JTAG connection with the following
command:

alt_signaltap_run('END_CONNECTION');

For more information about the use of MATLAB MEX functions in MATLAB, refer to
the MATLAB Help.

2.10. Signal Tap Logic Analyzer Design Examples

Application Note 845: Signal Tap Tutorial for Intel Arria 10 Partial Reconfiguration
Design includes a design example that demonstrates Signal Tap debugging with a
partial reconfiguration design. The design example has one 32-bit counter. At the
board level, the design connects the clock to a 50MHz source, and connects the output
to four LEDs on the FPGA. Selecting the output from the counter bits in a specific
sequence causes the LEDs to blink at a specific frequency example demonstrates
initiating a DMA transfer. The tutorial demonstrates how to tap signals in a PR design
by extending the debug fabric to the PR regions when creating the base revision, and
then defining debug components in the implementation revisions.

Application Note 446: Debugging Nios II Systems with the Signal Tap Logic Analyzer
includes a design example with a Nios II processor, a direct memory access (DMA)
controller, on-chip memory, and an interface to external SDRAM memory. After you
press a button, the processor initiates a DMA transfer, which you analyze using the
Signal Tap logic analyzer. In this example, the Nios II processor executes a simple C
program from on-chip memory and waits for you to press a button.

Related Information

• AN 845: Signal Tap Tutorial for Intel Arria 10 Partial Reconfiguration Design

• AN 446: Debugging Nios II Systems with the Signal Tap Logic Analyzer

2.11. Custom State-Based Triggering Flow Examples

The custom state-based triggering flow in the Signal Tap logic analyzer GUI can
organize multiple triggering conditions for precise control over the acquisition buffer.
The following examples demonstrate defining a custom triggering flow. You can easily
copy the examples directly into the state machine description box by specifying the All
states in one window option.

Related Information

On-chip Debugging Design Examples website

2.11.1. Trigger Example 1: Custom Trigger Position

Actions to the acquisition buffer can accept an optional post-count argument. This
post-count argument enables you to define a custom triggering position for each
segment in the acquisition buffer.

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

112

https://www.intel.com/content/www/us/en/programmable/documentation/fir1520982817117.html
http://www.altera.com/literature/an/an446.pdf
http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following example shows how to apply a trigger position to all segments in the
acquisition buffer. The example describes a triggering flow for an acquisition buffer
split into four segments. If each acquisition segment is 64 samples in depth, the
trigger position for each buffer is at sample #34. The acquisition stops after all
segments are filled once.

if (c1 == 3 && condition1)
 trigger 30;
else if (condition1)
begin
 segment_trigger 30;
 increment c1;
end

Each segment acts as a non-segmented buffer that continuously updates the memory
contents with the signal values.

The Data tab displays the last acquisition before stopping the buffer as the last
sample number in the affected segment. The trigger position in the affected segment
is then defined by N – post count fill, where N is the number of samples per
segment.

Figure 93. Specifying a Custom Trigger Position

0
1

1
111

1

1

1 1 1 1 1
1

1

000
0

0

0

0 0
0

Trigger

Sample #1

Post Count

Last Sample

2.11.2. Trigger Example 2: Trigger When triggercond1 Occurs Ten Times
between triggercond2 and triggercond3

You can use a custom trigger flow to count a sequence of events before triggering the
acquisition buffer, as the following example shows. This example uses three basic
triggering conditions configured in the Signal Tap Setup tab.

This example triggers the acquisition buffer when condition1 occurs after
condition3 and occurs ten times prior to condition3. If condition3 occurs prior
to ten repetitions of condition1, the state machine transitions to a permanent wait
state.

state ST1:
if (condition2)
begin
 reset c1;
 goto ST2;
end

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

113

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

State ST2 :
if (condition1)
 increment c1;
else if (condition3 && c1 < 10)
 goto ST3;
else if (condition3 && c1 >= 10)
 trigger;
ST3:
goto ST3;

2.12. Signal Tap File Templates

Signal Tap file templates provide preset settings for various trigger conditions,
interfaces, and state-based triggering flows. The following Signal Tap file templates
are available whenever you open a new Signal Tap session or create a new .stp file.

Right-click any template in the New File from Template dialog box, and then click
Set as the default selection to always open new .stp files in that template by
default.

Figure 94. Settings Default Signal Tap File Template

Note: Refer to the New File from Template dialog box for complete descriptions of all
templates.

Table 26. Quick Start Signal Tap File Templates

Template Summary Description

Default The most basic and compact setup that is suitable for many debugging needs

Default with Hidden Hierarchy
and Data Log

The same setup as the Default template, with additional Hierarchy Display and Data
Log windows for trigger condition setup.

State-Based Trigger Flow Control Starts with three conditions setup to replicate the basic sequential trigger flow
control.

Conditional Storage Qualifier Enables the Conditional storage qualifier and Basic OR condition. This setup
provides a versatile storage qualifier condition expression.

Transitional Storage Qualifier Enables the Transitional storage qualifier. The Transitional storage qualifier
simply detects changes in data.

Start-Stop Storage Qualifier Enables the Start/Stop storage qualifier and the Basic OR condition. Provides two
conditions to frame the data.

State-Based Storage Qualifier Provides more sophisticated qualification conditions for use with state machine
expressions. You must use the State-Based Storage Qualifier template in
conjunction with the state-based trigger flow control

continued...

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

114

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Template Summary Description

Input Port Storage Qualifier Enables the Input port storage qualifier to provide total control of the storage
qualifier condition by supporting development of custom logic outside of the Signal
Tap logic hierarchy.

Trivial Advanced Trigger
Condition

Enables the Advanced trigger condition. The Advanced condition provides the
most flexibility to express complex conditions. The Advanced trigger condition
scales from a simple wire to the most complex logical expression. This template
starts with the simplest condition.

Trigger Position Defined Using
Sample Count

Supports specifying an exact number of samples to store after the trigger position,
using the State-Based Trigger Flow Control template as a reference.

Cross-triggering Between STP
Instances

Enables "Cross-triggering by using the Trigger out from one instance as the
Trigger in of another instance, when using multiple Signal Tap instances.

Setup for Incremental
Compilation

Specifies a fixed input width for signal inputs. This technique allows efficient
incremental compilation by reducing the amount of Signal Tap logic change, and by
adding only post-fit nodes to tap.

Define Trigger Condition in RTL Supports defining a custom trigger condition in the RTL language of your choice.

Table 27. Standard Interface Signal Tap File Templates

Template Summary Description

Capture Avalon Memory Mapped
Transactions

Allows you to use the storage qualifier feature to store only meaningful Avalon
memory-mapped interface transactions.

Simple Avalon Streaming
Interface Bus Performance
Analysis

Supports recording of event time for analysis of the data packet flow in an Avalon
streaming interface.

Use Counters in the State-based
Flow Control to Collect Stats

Use counters to track of the number of packets produced (pkt_counter), number
of data beats produced (pkt_beat_counter), and number of data beats
consumed (stream_beat_counter).

Table 28. State-Based Triggering Design Flow Examples Signal Tap File Templates

Template Setup Description

Trigger on an Event Absent for
Greater Than or Equal to 5 Clock
Cycles

Requires setup of one basic trigger condition in the Setup tab to the value that you
want.

Trigger on Event Absent for Less
Than 5 Clock Cycles

Requires setup of one basic trigger condition in the Setup tab to the value that you
want.

Trigger on 5th Occurrence of a
Group Value

Requires setup of one basic trigger condition in the Setup tab to the value that you
want.

Trigger on the 5th Transition of a
Group Value

Requires setup of an edge-sensitive trigger condition to detect all bus transitions to
the desired group value. Requires edge detection for any data bus bit logically
ANDed with a comparison to the desired group value. An advanced trigger condition
is necessary in this case.

Trigger After Condition1 is
Followed by Condition2

Requires setup of three basic trigger conditions in the Setup tab to the values you
specify. The first two trigger conditions are set to the desired group values. The
third trigger condition is set to capture some type of idle transaction across the bus
between the first and second conditions.

Trigger on Condition1
Immediately Followed by
Condition2

Requires setup of two basic trigger conditions in the Setup tab to the group values
that you want.

Trigger on Condition2 Not
Occurring Between Condition1
and Condition3

Requires setup of three basic trigger conditions in the Setup tab to the group
values that you want.

continued...

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

115

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Template Setup Description

Trigger on the 5th Consecutive
Occurrence of Condition1

Requires setup of one basic trigger condition in the Setup tab to the value you
want.

Trigger After a Violation of
Sequence From Condition1 To
Condition4

Requires setup of four basic trigger conditions to the sequence values that you
want.

Trigger on a Sequence of Edges Requires setup of three edge-sensitive basic trigger conditions for the sequence
that you want.

Trigger on Condition1 Followed
by Condition2 After 5 Clock
Cycles

Requires setup of two basic trigger conditions to the group values that you want.

Trigger on Condition1 Followed
by Condition2 Within 5 Samples

Requires setup of two basic trigger conditions to the group values that you want.

Trigger on Condition1 Not
Followed by Condition2 Within 5
Samples

Requires setup of two basic trigger conditions to the group values that you want.

Trigger After 5 Consecutive
Transitions

Requires setup of a trigger condition to capture any transition activity on the
monitored bus. This example requires an Advanced trigger condition because the
example requires an OR condition.

Trigger When Condition1 Occurs
Less Than 5 Times Between
Condition2 and Condition3

Requires setup of three edge-sensitive trigger conditions, with each trigger
condition containing a comparison to the desired group value.

2.13. Running the Stand-Alone Version of Signal Tap

You can optionally install a stand-alone version of the Signal Tap logic analyzer, rather
than using the Signal Tap logic analyzer integrated with the Intel Quartus Prime
software.

The stand-alone version of Signal Tap is particularly useful in a lab environment that
lacks a suitable workstation for a complete Intel Quartus Prime installation, or lacks a
full Intel Quartus Prime software license.

The standalone version of the Signal Tap logic analyzer includes and requires use of
the Intel Quartus Prime stand-alone Programmer, which is also available from the
Download Center for FPGAs.

2.14. Signal Tap Scripting Support

The Intel Quartus Prime software supports automation of Signal Tap controls in a Tcl
scripting environment, or with the quartus_stp executable. For detailed information
about scripting command options, refer to the Intel Quartus Prime command-line and
Tcl API help by typing quartus_sh --qhelp at the command prompt.

Related Information

• Tcl Scripting
In Intel Quartus Prime Pro Edition User Guide: Scripting

• Command Line Scripting
In Intel Quartus Prime Pro Edition User Guide: Scripting

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

116

https://www.intel.com/content/www/us/en/programmable/downloads/download-center.html
https://www.intel.com/content/www/us/en/programmable/documentation/sbv1513989262284.html#mwh1410471013439
https://www.intel.com/content/www/us/en/programmable/documentation/sbv1513989262284.html#mwh1410470998554
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.14.1. Signal Tap Command-Line Options

You can use the following options with the quartus_stp executable:

Table 29. quartus_stp Command-Line Options

Option Usage Description

--stp_file <stp_filename> Required Specifies the name of the .stp file.

--enable Optional Sets the ENABLE_SIGNALTAP option to ON in the project's .qsf file, so
the Signal Tap logic analyzer runs in the next compilation.
If you omit this option, the Intel Quartus Prime software uses the current
value of ENABLE_SIGNALTAP in the .qsf file.
Writes subsequent Signal Tap assignments to the .stp that appears in
the .qsf file. If the .qsf file does not specify a .stp file, you must use
the --stp_file option.

--disable Optional Sets the ENABLE_SIGNALTAP option to OFF in the project's .qsf file, so
the Signal Tap logic analyzer does not in the next compilation.
If you omit the --disable option, the Intel Quartus Prime software
uses the current value of ENABLE_SIGNALTAP in the .qsf file.

2.14.2. Data Capture from the Command Line

The quartus_stp executable supports a Tcl interface that allows you to capture data
without running the Intel Quartus Prime GUI.

Note: You cannot execute Signal Tap Tcl commands from within the Tcl console in the Intel
Quartus Prime software.

To execute a Tcl script containing Signal Tap logic analyzer Tcl commands, use:

quartus_stp -t <Tcl file>

Example 2. Continuously Capturing Data

This excerpt shows commands you can use to continuously capture data. Once the
capture meets trigger condition, the Signal Tap logic analyzer starts the capture and
stores the data in the data log.

Open Signal Tap session
open_session -name stp1.stp

Start acquisition of instances auto_signaltap_0 and
auto_signaltap_1 at the same time

Calling run_multiple_end starts all instances
run_multiple_start

run -instance auto_signaltap_0 -signal_set signal_set_1 -trigger \
 trigger_1 -data_log log_1 -timeout 5
run -instance auto_signaltap_1 -signal_set signal_set_1 -trigger \
 trigger_1 -data_log log_1 -timeout 5

run_multiple_end

Close Signal Tap session
close_session

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

117

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

::quartus::stp
In Intel Quartus Prime Help

2.15. Signal Tap File Version Compatibility

If you open a .stp file created in a previous version of the Intel Quartus Prime
software in a newer version of the software, you can no longer open that .stp file in
the previous version of the Intel Quartus Prime software.

If you open an Intel Quartus Prime project that includes a .stp file from a previous
version of the software in a later version of the Intel Quartus Prime software, the
software may require you to update the .stp configuration file before you can
compile the project. Update the configuration file by simply opening the .stp in the
Signal Tap logic analyzer GUI. If configuration update is required, Signal Tap confirms
that you want to update the .stp to match the current version of the Intel Quartus
Prime software.

Note: The Intel Quartus Prime Pro Edition software uses a new methodology for settings and
assignments. For example, Signal Tap assignments include only the instance name,
not the entity:instance name. Refer to Migrating to Intel Quartus Prime Pro
Edition for more information about migrating existing Signal Tap files (.stp) to Intel
Quartus Prime Pro Edition.

Related Information

Migrating to Intel Quartus Prime Pro Edition, Intel Quartus Prime Pro Edition User
Guide: Getting Started

2.16. Design Debugging with the Signal Tap Logic Analyzer Revision
History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2021.10.13 21.3 • Added Recompiling Only Signal Tap Changes topic.
• Changed title of Prevent Changes Requiring Recompilation to

Preventing Changes that Require Full Recompilation and revised
figures.

2021.10.04 21.3 • Updated Signal Tap Logic Analyzer Introduction with Signal Tap Logic
Analyzer and Simulator Integration section.

• Added description of Autorun mode to Managing Signal Tap Instances
topic.

• Added new Adding Simulator-Aware Signal Tap Nodes topic.
• Added new Add Simulator Aware Node Finder Settings topic.
• Added new Signal Tap and Simulator Integration topic.
• Added new Generating a Simulation Testbench from Signal Tap Data

topic.
• Added new Create Simulation Testbench Dialog Box Settings topic.
• Revised Preserving Signals for Monitoring and Debugging topic for

latest techniques and links to other resources.
• Revised Adding Pre-Synthesis or Post-Fit Nodes for latest techniques

and links to other resources.

continued...

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

118

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_stp_ver_1.0.htm
https://www.intel.com/content/www/us/en/programmable/documentation/spj1513986956763.html#jbr1442806931610
https://www.intel.com/content/www/us/en/programmable/documentation/spj1513986956763.html#jbr1442806931610
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

• Added new Changing the Post-Fit Signal Tap Target Nodes topic.
• Updated Adding Pre-Synthesis or Post-Fit Nodes topic for preserve for

debug filters.
• Added details about SOF Manager to Ensure Compatibility Between .stp

and .sof Files topic.

2020.09.28 20.3 • Revised "Signal Tap Logic Analyzer Introduction" for screenshot and
details about role of Signal Tap Intel FPGA IP.

• Revised graphic and wording in "Signal Tap Hardware and Software
Requirements" topic.

• Revised wording and link to download in "Running the Stand-Alone
Version of Signal Tap."

• Updated flow diagram and added links to retitled "Signal Tap Debugging
Flow" topic.

• Retitled "Add the Signal Tap Logic Analyzer to Your Design" to "Step 1:
Add the Signal Tap Logic Analyzer to the Project," and referenced new
template and added links to next steps.

• Added "Creating a Signal Tap Instance with the Signal Tap GUI" topic.
• Added new "Signal Tap File Templates" topic.
• Added new "Creating a Signal Tap Instance by HDL Instantiation" topic.
• Added new "Signal Tap Intel FPGA IP Parameters" topic.
• Retitled "Configure the Signal Tap Logic Analyzer" to "Step 2: Configure

the Signal Tap Logic Analyzer," and referenced new template and added
links to next steps.

• Enhanced description in Step 5: Run the Signal Tap Logic Analyzer"
topic.

• Revised "Adding Signals to the Signal Tap Logic Analyzer" to add
detailed steps and screenshot.

• Retitled and revised "Adding Nios II Processor Signals" to reflect there
is only one plug-in in Intel Quartus Prime Pro Edition.

• Revised "Disabling or Enabling Signal Tap Instances" and added
screenshot.

• Replaced outdated links to AN446 with links to AN845.
• Revised headings and steps in "Debugging Block-Based Designs with

Signal Tap" section.
• Retitled "Debugging Imported Snapshots" to "Compiler Snapshots and

Signal Tap Debugging".
• Retitled "Backward Compatibility" to "Signal Tap File Version

Compatibility."
• Removed incorrect statement about debugging multiple designs from

"Step 4: Program the Target Hardware" topic.
• Removed reference to obsolete resource checking function from

"Ensure Compatibility Between STP and SOF Files" topic.
• Removed obsolete "Remote Debugging Using the Signal Tap Logic

Analyzer" section.
• Removed obsolete "Estimating FPGA Resources" topic.

2019.06.11 18.1.0 Added more explanation to Figure 64 on page 76 about continuous and
input mode.

2019.05.01 18.1.0 In Adding Signals with a Plug-In topic, removed outdated information from
step 1 about turning on Create debugging nodes for IP cores.

2018.09.24 18.1.0 • Added content about debugging designs in block-based flows.
• Renamed topic: Untappable Signals to Signals Unavailable for Signal

Tap Debugging.

2018.08.07 18.0.0 Reverted document title to Debug Tools User Guide: Intel Quartus Prime
Pro Edition.

2018.07.30 18.0.0 Updated Partial Reconfiguration sections to reflect changes in the PR flow.

continued...

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

119

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

2018.05.07 18.0.0 • Added note stating Signal Tap IP not optimized for Stratix 10 Devices.
• Moved information about debug fabric on PR designs to the System

Debugging Tools Overview chapter.
• Removed restrictions of Rapid Recompile support for Intel Stratix 10

devices.

2017.11.06 17.1.0 • Added support for Incremental Routing in Intel Stratix 10 devices.
• Removed unsupported FSM auto detection.
• Clarified information about the Data Log Pane.
• Updated Figure: Data Log and renamed to Simple Data Log.
• Added Figure: Accessing the Advanced Trigger Condition Tab.
• Removed outdated information about command-line flow.

2017.05.08 17.0.0 • Added: Open Standalone Signal Tap Logic Analyzer GUI.
• Added: Debugging Partial Reconfiguration Designs Using Signal Tap

Logic Analyzer.
• Updated figures on Create Signal Tap File from Design Instance(s).

2016.10.31 16.1.0 • Implemented Intel rebranding.
• Added: Create SignalTap II File from Design Instance(s).
• Removed reference to unsupported Talkback feature.

2016.05.03 16.0.0 • Added: Specifying the Pipeline Factor
• Added: Comparison Trigger Conditions

2015.11.02 15.1.0 • Changed instances of Quartus II to Intel Quartus Prime.
• Updated content to reflect SignalTap II support in Intel Quartus Prime

Pro Edition

2015.05.04 15.0.0 Added content for Floating Point Display Format in table: SignalTap II Logic
Analyzer Features and Benefits.

2014.12.15 14.1.0 Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Synthesis Optimizations to Compiler Settings.

December 2014 14.1.0 • Added MAX 10 as supported device.
• Removed Full Incremental Compilation setting and Post-Fit (Strict)

netlist type setting information.
• Removed outdated GUI images from "Using Incremental Compilation

with the SignalTap II Logic Analyzer" section.

June 2014 14.0.0 • DITA conversion.
• Replaced MegaWizard Plug-In Manager and Megafunction content with

IP Catalog and parameter editor content.
• Added flows for custom trigger HDL object, Incremental Route with

Rapid Recompile, and nested groups with Basic OR.
• GUI changes: toolbar, drag to zoom, disable/enable instance, trigger

log time-stamping.

November 2013 13.1.0 Removed HardCopy material. Added section on using cross-triggering with
DS-5 tool and added link to white paper 01198. Added section on remote
debugging an Altera SoC and added link to application note 693. Updated
support for MEX function.

May 2013 13.0.0 • Added recommendation to use the state-based flow for segmented
buffers with separate trigger conditions, information about Basic OR
trigger condition, and hard processor system (HPS) external triggers.

• Updated “Segmented Buffer” on page 13-17, Conditional Mode on page
13-21, Creating Basic Trigger Conditions on page 13-16, and Using
External Triggers on page 13-48.

June 2012 12.0.0 Updated Figure 13–5 on page 13–16 and “Adding Signals to the SignalTap
II File” on page 13–10.

continued...

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

120

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

November 2011 11.0.1 Template update.
Minor editorial updates.

May 2011 11.0.0 Updated the requirement for the standalone SignalTap II software.

December 2010 10.0.1 Changed to new document template.

July 2010 10.0.0 • Add new acquisition buffer content to the “View, Analyze, and Use
Captured Data” section.

• Added script sample for generating hexadecimal CRC values in
programmed devices.

• Created cross references to Quartus II Help for duplicated procedural
content.

November 2009 9.1.0 No change to content.

March 2009 9.0.0 • Updated Table 13–1
• Updated “Using Incremental Compilation with the SignalTap II Logic

Analyzer” on page 13–45
• Added new Figure 13–33
• Made minor editorial updates

November 2008 8.1.0 Updated for the Quartus II software version 8.1 release:
• Added new section “Using the Storage Qualifier Feature” on page 14–

25
• Added description of start_store and stop_store commands in

section “Trigger Condition Flow Control” on page 14–36
• Added new section “Runtime Reconfigurable Options” on page 14–63

May 2008 8.0.0 Updated for the Quartus II software version 8.0:
• Added “Debugging Finite State machines” on page 14-24
• Documented various GUI usability enhancements, including

improvements to the resource estimator, the bus find feature, and the
dynamic display updates to the counter and flag resources in the State-
based trigger flow control tab

• Added “Capturing Data Using Segmented Buffers” on page 14–16
• Added hyperlinks to referenced documents throughout the chapter
• Minor editorial updates

2. Design Debugging with the Signal Tap Logic Analyzer

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

121

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Quick Design Verification with Signal Probe
This chapter describes a technique that provides debug access to internal device
signals without affecting the design.

The Signal Probe feature in the Intel Quartus Prime Pro Edition software allows you to
route an internal node to a top-level I/O. When you start with a fully routed design,
you can select and route debugging signals to I/O pins that you previously reserve or
are currently unused.

Related Information

System Debugging Tools Overview on page 6

3.1. Signal Probe Debugging Flow

Use the following flow to add Signal Probe debugging and verification capabilities to
your design:

Figure 95. Signal Probe Debugging Flow

Reserve Signal Probe Pins

Assign Nodes to Pins

Run Full Compilation

Change

No

View Compilation Report

Yes
Run Fitter-Only CompilationSignal Probe

Nodes

Step 1: Reserve Signal Probe Pins on page 123

Step 2: Assign Nodes to Signal Probe Pins on page 123

Step 3: Connect the Signal Probe Pin to an Output Pin on page 123

Step 4: Compile the Design on page 124

(Optional) Step 5: Modify the Signal Probe Pins Assignments on page 124

Step 6: Run Fitter-Only Compilation on page 124

Step 7: Check Connection Table in Fitter Report on page 125

683819 | 2021.10.13

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

3.1.1. Step 1: Reserve Signal Probe Pins

You must first create and reserve a pin for Signal Probe with a Tcl command:

set_global_assignment –name CREATE_SIGNALPROBE_PIN <pin_name>

pin_name Specifies the name of the Signal Probe pin.

Optionally, you can assign locations for the Signal Probe pins. If you do not assign a
location, the Fitter places the pins automatically.

Note: If from the onset of the debugging process you know which internal signals you want
to route, you can reserve pins and assign nodes before compilation. This early
assignment removes the recompilation step from the flow.

Example 3. Tcl Command to Reserve Signal Probe Pins

set_global_assignment -name CREATE_SIGNALPROBE_PIN wizard
set_global_assignment -name CREATE_SIGNALPROBE_PIN probey

Related Information

Constraining Designs with Tcl Scripts
In Intel Quartus Prime Pro Edition User Guide: Design Constraints

3.1.2. Step 2: Assign Nodes to Signal Probe Pins

You can assign any node in the post-compilation netlist to a Signal Probe pin. In the
Intel Quartus Prime software, click View ➤ Node Finder, and filter by Signal Tap:
post-fitting to view the nodes you can route.

You specify the node that connects to a Signal Probe pin with a Tcl command:

set_instance_assignment –name CONNECT_SIGNALPROBE_PIN <pin_name> \
 –to <node_name>

pin_name Specifies the name of the Signal Probe pin that connects to the node.

node_name Specifies the full hierarchy path of the node you want to route.

Example 4. Tcl Commands to Connect Pins to Internal Nodes

Make assignments to connect nodes of interest to pins
set_instance_assignment -name CONNECT_SIGNALPROBE_PIN wizard -to sprobe_me1
set_instance_assignment -name CONNECT_SIGNALPROBE_PIN probey -to sprobe_me2

3.1.3. Step 3: Connect the Signal Probe Pin to an Output Pin

Once you reserve pins and assign internal nodes to the Signal Probe pins, you must
connect the Signal Probe pin to an external output pin.

Example 5. Tcl Command to Specify Signal Probe Pin Assignment

set_instance_assignment –name CONNECT_SIGNALPROBE_PIN <pin_name> –to <node_name>

3. Quick Design Verification with Signal Probe

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

123

https://www.intel.com/content/www/us/en/programmable/documentation/iqe1513988936192.html#mwh1410470995637
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.4. Step 4: Compile the Design

Perform a full compilation of the design. You can use Intel Quartus Prime software
GUI, a command line executable, or the following Tcl command to start the Compiler

Example 6. Tcl Command to Compile the Design

execute_flow -compile

At this point in the design flow, you can determine the nodes that you want to debug.

Related Information

Design Compilation
In Intel Quartus Prime Pro Edition User Guide: Compiler

3.1.5. (Optional) Step 5: Modify the Signal Probe Pins Assignments

As long as you reserve the pins (with CREATE_SIGNALPROBE_PIN) before running full
compilation, you can optionally add or modify the node that connects to a reserved
Signal Probe pin (with CONNECT_SIGNALPROBE_PIN) without rerunning a full
compilation. Rather, you can run a Fitter-only compilation to implement the Signal
Probe pin assignment change.

Note: If you modify the physical I/O pin assignments with (with
CREATE_SIGNALPROBE_PIN) after running compilation, you must rerun full
compilation to implement those changes before using Signal Probe.

Example 7. Tcl Command to Specify Signal Probe Pin Assignment

set_instance_assignment –name CONNECT_SIGNALPROBE_PIN <pin_name> –to <node_name>

3.1.6. Step 6: Run Fitter-Only Compilation

After re-assigning nodes to the Signal Probe pins, you can run a Fitter-only
compilation (using --recompile) to implement the post-fit change without rerunning
a full compilation.

Example 8. Tcl Command to Run Fitter-Only Compile

Run the fitter with --recompile to preserve timing
and quickly connect the Signal Probe pins
execute_module -tool fit -args {--recompile}

After recompilation, you are ready to program the device and debug the design.

Related Information

• Using Rapid Recompile
In Intel Quartus Prime Pro Edition User Guide: Compiler

• Using the ECO Compilation Flow, Intel Quartus Prime Pro Edition User Guide:
Design Optimization

3. Quick Design Verification with Signal Probe

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

124

https://www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html#jbr1443197641054
https://www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html#jbr1414694395857
https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html#hko1547763828940
https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html#hko1547763828940
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.1.7. Step 7: Check Connection Table in Fitter Report

When you compile a design with Signal Probe pins, Compiler generates a connection
report showing the connection status to Signal Probe pins.

To view this report, click Processing ➤ Compilation Report, open the Fitter ➤ In-
System Debugging folder, and click Connections to Signal Probe pins.

The Status column indicates whether or not the routing attempt from the nodes to
the Signal Probe pins is successful.

Table 30. Status of Signal Probe Connection

Status Description

Connected Routing succeeded.

Unconnected Routing did not succeed. Possible reasons are:
• Node belongs to an I/O cell or another hard IP, thus cannot be routed.
• Node hierarchy path does not exist in the design.
• Node is not Signal Tap: post-fitting.

Example 9. Connections to Signal Probe Pins in the Compilation Report

Alternatively, you can find the Signal Probe connection information in the Fitter report
file (<project_name>.fit.rpt).

Example 10. Connections to Signal Probe Pins in top.fit.rpt

+---
-+
; Connections to Signal Probe
pins ;
+---
-+
Signal Probe Pin Name : probey
Status : Connected
Attempted Connection : sprobe_me2
Actual Connection : sprobe_me2
Details :

Signal Probe Pin Name : wizard
Status : Connected
Attempted Connection : sprobe_me1
Actual Connection : sprobe_me1
Details :
+---
-+

3. Quick Design Verification with Signal Probe

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

125

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Signals Unavailable for Signal Tap Debugging on page 50

• Text-Based Report Files
In Intel Quartus Prime Pro Edition User Guide: Scripting

3.2. Quick Design Verification with Signal Probe Revision History

Document Version Intel Quartus
Prime Version

Changes

2021.10.04 21.3 • Removed references to obsolete Rapid Recompile feature.
• Updated Signal Probe Debugging Flow topic for new optional step and

added flow diagram.
• Added step numbers to tasks in flow to emphasize order of operations.
• Added (Optional) Step 4: Modify the Signal Probe Pins Assignments

topic.
• Revised wording in Step 5: Run Fitter-Only Compilation.
• Revised screenshot and wording in Step 6: Check Connection Table in

Fitter Report.
• Added new Step 3: Connect the Signal Probe Pin to an Output Pin topic.

2018.05.07 18.0.0 Initial release for Intel Quartus Prime Pro Edition software.

3. Quick Design Verification with Signal Probe

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

126

https://www.intel.com/content/www/us/en/programmable/documentation/sbv1513989262284.html#mwh1410471005546
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. In-System Debugging Using External Logic Analyzers

4.1. About the Intel Quartus Prime Logic Analyzer Interface

The Intel Quartus Prime Logic Analyzer Interface (LAI) allows you to use an external
logic analyzer and a minimal number of Intel-supported device I/O pins to examine
the behavior of internal signals while your design is running at full speed on your
Intel-supported device.

The LAI connects a large set of internal device signals to a small number of output
pins. You can connect these output pins to an external logic analyzer for debugging
purposes. In the Intel Quartus Prime LAI, the internal signals are grouped together,
distributed to a user-configurable multiplexer, and then output to available I/O pins on
your Intel-supported device. Instead of having a one-to-one relationship between
internal signals and output pins, the Intel Quartus Prime LAI enables you to map many
internal signals to a smaller number of output pins. The exact number of internal
signals that you can map to an output pin varies based on the multiplexer settings in
the Intel Quartus Prime LAI.

Note: The term “logic analyzer” when used in this document includes both logic analyzers
and oscilloscopes equipped with digital channels, commonly referred to as mixed
signal analyzers or MSOs.

The LAI does not support Hard Processor System (HPS) I/Os.

Related Information

Device Support Center

4.2. Choosing a Logic Analyzer

The Intel Quartus Prime software offers the following two general purpose on-chip
debugging tools for debugging a large set of RTL signals from your design:

• The Signal Tap Logic Analyzer

• An external logic analyzer, which connects to internal signals in your Intel-
supported device by using the Intel Quartus Prime LAI

Table 31. Comparing the Signal Tap Logic Analyzer with the Logic Analyzer Interface

Feature Description Recommended Logic
Analyzer

Sample Depth You have access to a wider sample depth with an
external logic analyzer. In the Signal Tap Logic
Analyzer, the maximum sample depth is set to

LAI

continued...

683819 | 2021.10.13

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

http://www.altera.com/support/devices/dvs-index.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Feature Description Recommended Logic
Analyzer

128 Kb, which is a device constraint. However, with
an external logic analyzer, there are no device
constraints, providing you a wider sample depth.

Debugging Timing Issues Using an external logic analyzer provides you with
access to a “timing” mode, which enables you to
debug combined streams of data.

LAI

Performance You frequently have limited routing resources
available to place and route when you use the Signal
Tap Logic Analyzer with your design. An external logic
analyzer adds minimal logic, which removes resource
limits on place-and-route.

LAI

Triggering Capability The Signal Tap Logic Analyzer offers triggering
capabilities that are comparable to external logic
analyzers.

LAI or Signal Tap

Use of Output Pins Using the Signal Tap Logic Analyzer, no additional
output pins are required. Using an external logic
analyzer requires the use of additional output pins.

Signal Tap

Acquisition Speed With the Signal Tap Logic Analyzer, you can acquire
data at speeds of over 200 MHz. You can achieve the
same acquisition speeds with an external logic
analyzer; however, you must consider signal integrity
issues.

Signal Tap

Related Information

System Debugging Tools Overview on page 6

4.2.1. Required Components

To perform analysis using the LAI you need the following components:

• Intel Quartus Prime software version 15.1 or later

• The device under test

• An external logic analyzer

• An Intel FPGA communications cable

• A cable to connect the Intel-supported device to the external logic analyzer

4. In-System Debugging Using External Logic Analyzers

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

128

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 96. LAI and Hardware Setup

JTAG

(1)

(2)

FPGA

Connected to
Unused FPGA Pins

LAI

FPGA Programming
Hardware Quartus Prime Software

External Logic Analyzer
Board

Notes to figure:

1. Configuration and control of the LAI using a computer loaded with the Intel
Quartus Prime software via the JTAG port.

2. Configuration and control of the LAI using a third-party vendor logic analyzer via
the JTAG port. Support varies by vendor.

4.3. Flow for Using the LAI

Figure 97. LAI Workflow

Configure Logic Analyzer
Interface File

Create New Logic
Analyzer Interface File

Compile Project

Program Device

Control Output Pin

Debug Project

Start the Quartus Prime Software

Notes to figure:

1. Configuration and control of the LAI using a computer loaded with the Intel
Quartus Prime software via the JTAG port.

2. Configuration and control of the LAI using a third-party vendor logic analyzer via
the JTAG port. Support varies by vendor.

4. In-System Debugging Using External Logic Analyzers

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

129

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.3.1. Defining Parameters for the Logic Analyzer Interface

The Logic Analyzer Interface Editor allows you to define the parameters of the LAI.

• Click Tools ➤ Logic Analyzer Interface Editor.

Figure 98. Logic Analyzer Interface Editor

• In the Setup View list, select Core Parameters.

• Specify the parameters of the LAI instance.

Related Information

LAI Core Parameters on page 133

4.3.2. Mapping the LAI File Pins to Available I/O Pins

To assign pin locations for the LAI:

1. Select Pins in the Setup View list

4. In-System Debugging Using External Logic Analyzers

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

130

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 99. Mapping LAI file Pins

2. Double-click the Location column next to the reserved pins in the Name column,
and select a pin from the list.

3. Right-click the selected pin and locate in the Pin Planner.

Related Information

Managing Device I/O Pins
In Intel Quartus Prime Pro Edition User Guide: Design Constraints

4.3.3. Mapping Internal Signals to the LAI Banks

After specifying the number of banks to use in the Core Parameters settings page,
you must assign internal signals for each bank in the LAI.

1. Click the Setup View arrow and select Bank n or All Banks.

2. To view all the bank connections, click Setup View and then select All Banks.

3. Before making bank assignments, right click the Node list and select Add Nodes
to open the Node Finder.

4. Find the signals that you want to acquire.

5. Drag the signals from the Node Finder dialog box into the bank Setup View.

When adding signals, use Signal Tap: pre-synthesis for non-incrementally
routed instances and Signal Tap: post-fitting for incrementally routed instances

As you continue to make assignments in the bank Setup View, the schematic of
the LAI in the Logical View pane begins to reflect the changes.

6. Continue making assignments for each bank in the Setup View until you add all
the internal signals that you want to acquire.

Related Information

Node Finder Command
In Intel Quartus Prime Help

4.3.4. Compiling Your Intel Quartus Prime Project

After you save your .lai file, a dialog box prompts you to enable the Logic Analyzer
Interface instance for the active project. Alternatively, you can define the .lai file
your project uses in the Global Project Settings dialog box. After specifying the
name of your .lai file, compile your project.

4. In-System Debugging Using External Logic Analyzers

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

131

https://www.intel.com/content/www/us/en/programmable/documentation/iqe1513988936192.html#mwh1410471036713
http://quartushelp.altera.com/current/#assign/unb/unb_com_node_finder.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To verify the Logic Analyzer Interface is properly compiled with your project, open the
Compilation Report tab and select Resource Utilization by Entity, nested under
Partition "auto_fab_0". The LAI IP instance appears in the Compilation Hierarchy Node
column, nested under the internal module of auto_fab_0

Figure 100. LAI Instance in Compilation Report

Logic Analyzer
Interface
IP instance

Resource Utilization
 by Entity

4.3.5. Programming Your Intel-Supported Device Using the LAI

After compilation completes, you must configure your Intel-supported device before
using the LAI.

You can use the LAI with multiple devices in your JTAG chain. Your JTAG chain can also
consist of devices that do not support the LAI or non-Intel, JTAG-compliant devices. To
use the LAI in more than one Intel-supported device, create an .lai file and
configure an .lai file for each Intel-supported device that you want to analyze.

4.4. Controlling the Active Bank During Runtime

When you have programmed your Intel-supported device, you can control which bank
you map to the reserved .lai file output pins. To control which bank you map, in the
schematic in the Logical View, right-click the bank and click Connect Bank.

Figure 101. Configuring Banks

4.4.1. Acquiring Data on Your Logic Analyzer

To acquire data on your logic analyzer, you must establish a connection between your
device and the external logic analyzer. For more information about this process and for
guidelines about how to establish connections between debugging headers and logic
analyzers, refer to the documentation for your logic analyzer.

4. In-System Debugging Using External Logic Analyzers

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

132

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.5. LAI Core Parameters

The table lists the LAI file core parameters:

Table 32. LAI File Core Parameters

Parameter Range Value Description

Pin Count 1 - 255 Number of pins dedicated to the LAI. You must connect the pins to a
debug header on the board.
Within the device, The Compiler maps each pin to a user-
configurable number of internal signals.

Bank Count 1 - 255 Number of internal signals that you want to map to each pin.
For example, a Bank Count of 8 implies that you connect eight
internal signals to each pin.

Output/Capture Mode Specifies the acquisition mode. The two options are:
• Combinational/Timing—This acquisition mode uses the

external logic analyzer’s internal clock to determine when to
sample data.
This acquisition mode requires you to manually determine the
sample frequency to debug and verify the system, because the
data sampling is asynchronous to the Intel-supported device.
This mode is effective if you want to measure timing information
such as channel-to-channel skew. For more information about the
sampling frequency and the speeds at which it can run, refer to
the external logic analyzer's data sheet.

• Registered/State—This acquisition mode determines when to
sample from a signal on the system under test. Consequently, the
data samples are synchronous with the Intel-supported device.
The Registered/State mode provides a functional view of the
Intel-supported device while it is running. This mode is effective
when you verify the functionality of the design.

Clock Specifies the sample clock. You can use any signal in the design as a
sample clock. However, for best results, use a clock with an
operating frequency fast enough to sample the data that you want to
acquire.
Note: The Clock parameter is available only when Output/

Capture Mode is set to Registered State.

Power-Up State Specifies the power-up state of the pins designated for use with the
LAI. You can select tri-stated for all pins, or selecting a particular
bank that you enable.

Related Information

Defining Parameters for the Logic Analyzer Interface on page 130

4.6. In-System Debugging Using External Logic Analyzers Revision
History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.05.07 18.0.0 • Moved list of LAI File Core Parameters from Configuring the File Core
Parameters to its own topic, and added links.

2017.05.08 17.0.0 • Updated Compiling Your Intel Quartus Prime Project
• Updated figure: LAI Instance in Compilation Report.

continued...

4. In-System Debugging Using External Logic Analyzers

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

133

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

2016.10.31 16.1.0 • Implemented Intel rebranding.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

June 2014 14.0.0 • Dita conversion
• Added limitation about HPS I/O support

June 2012 12.0.0 Removed survey link

November 2011 10.1.1 Changed to new document template

December 2010 10.1.0 • Minor editorial updates
• Changed to new document template

August 2010 10.0.1 Corrected links

July 2010 10.0.0 • Created links to the Intel Quartus Prime Help
• Editorial updates
• Removed Referenced Documents section

November 2009 9.1.0 • Removed references to APEX devices
• Editorial updates

March 2009 9.0.0 • Minor editorial updates
• Removed Figures 15–4, 15–5, and 15–11 from 8.1 version

November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content

May 2008 8.0.0 • Updated device support list on page 15–3
• Added links to referenced documents throughout the chapter
• Added “Referenced Documents”
• Added reference to Section V. In-System Debugging
• Minor editorial updates

4. In-System Debugging Using External Logic Analyzers

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

134

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. In-System Modification of Memory and Constants
The Intel Quartus Prime In-System Memory Content Editor (ISMCE) allows to view and
update memories and constants at runtime through the JTAG interface. By testing
changes to memory contents in the FPGA while the design is running, you can identify,
test, and resolve issues.

The ability to read data from memories and constants can help you identify the source
of problems, and the write capability allows you to bypass functional issues by writing
expected data.

When you use the In-System Memory Content Editor in conjunction with the Signal
Tap logic analyzer, you can view and debug your design in the hardware lab.

Related Information

• System Debugging Tools Overview on page 6

• Design Debugging with the Signal Tap Logic Analyzer on page 28

5.1. IP Cores Supporting ISMCE

In Intel Arria 10 and Intel Stratix 10 device families, you can use the ISMCE in RAM: 1
PORT and the ROM: 1 PORT IP Cores.

Note: To use the ISMCE tool with designs migrated from older devices to Intel Stratix 10
devices, replace instances of the altsyncram Intel FPGA IP with the altera_syncram
Intel FPGA IP.

Related Information

• Intel Stratix 10 Embedded Memory IP Core References
In Intel Stratix 10 Embedded Memory User Guide

• About Embedded Memory IP Cores
In Embedded Memory (RAM: 1-PORT, RAM: 2-PORT, ROM: 1-PORT, and ROM:
2-PORT) User Guide

• Intel FPGA IP Cores/LPM
In Intel Quartus Prime Help

5.2. Debug Flow with the In-System Memory Content Editor

To debug a design with the In-System Memory Content Editor:

1. Identify the memories and constants that you want to access at runtime.

2. Specify in the design the memory or constant that must be run-time modifiable.

3. Perform a full compilation.

683819 | 2021.10.13

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/documentation/vgo1439451000304.html#vgo1459164393770
https://www.intel.com/content/www/us/en/programmable/documentation/eis1413425716965.html#eis1413185370899
http://quartushelp.altera.com/current/index.htm#hdl/mega/mega_list_mega_lpm.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

4. Program the device.

5. Launch the In-System Memory Content Editor.
The In-System Memory Content Editor retrieves all instances of run-time
configurable memories and constants by scanning the JTAG chain and sending a
query to the device selected in the JTAG Chain Configuration pane.

6. Modify the values of the memories or constants, and check the results.

For example, if a parity bit in a memory is incorrect, you can use the In-System
Memory Content Editor to write the correct parity bit values into the RAM, allowing
the system to continue functioning. To check the error handling functionality of a
design, you can intentionally write incorrect parity bit values into the RAM.

5.3. Enabling Runtime Modification of Instances in the Design

To make an instance of a memory or constant runtime-modifiable:

1. Open the instance with the Parameter Editor.

2. In the Parameter Editor, turn on Allow In-System Memory Content Editor to
capture and update content independently of the system clock.

3. Recompile the design.

When you specify that a memory or constant is run-time modifiable, the Intel Quartus
Prime software changes the default implementation to enable run-time modification
without changing the functionality of your design, by:

• Converting single-port RAMs to dual-port RAMs

• Adding logic to avoid memory write collision and maintain read write coherency in
device families that do not support true dual-port RAMs, such as Intel Stratix 10.

5.4. Programming the Device with the In-System Memory Content
Editor

After compilation, you must program the design in the FPGA. You can use the JTAG
Chain Configuration Pane to program the device from within the In-System Memory
Content Editor.

5. In-System Modification of Memory and Constants

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

136

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

JTAG Chain Configuration Pane (In-System Memory Content Editor)
In Intel Quartus Prime Help

5.5. Loading Memory Instances to the ISMCE

To view the content of reconfigurable memory instances:

1. On the Intel Quartus Prime software, click Tools ➤ In-System Memory Content
Editor.

2. In the JTAG Chain Configuration pane, click Scan Chain.

The In-System Memory Content Editor sends a query to the device in the JTAG
Chain Configuration pane and retrieves all instances of run-time configurable
memories and constants.

The Instance Manager pane lists all the instances of constants and memories
that are runtime-modifiable. The Hex Editor pane displays the contents of each
memory or constant instance. The memory contents in the Hex Editor pane
appear as red question marks until you read the device.

Figure 102. Hex Editor After Scanning JTAG Chain

3. Click an instance from the Instance manager, and then click to load the
contents of that instance.

The Hex Editor now displays the contents of the instance.

5. In-System Modification of Memory and Constants

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

137

http://quartushelp.altera.com/current/index.htm#program/red/red_com_jtag_chain.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.6. Monitoring Locations in Memory

The ISMCE allows you to monitor information in memory regions. For example, you
can determine if a counter increments, or if a given word changes. For memories
connected to a NIOS processor, you can observe how the software uses key regions of
memory.

5. In-System Modification of Memory and Constants

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

138

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Click to synchronize the Hex Editor to the current instance's content.
The Hex Editor displays in red content that changed with respect to the last device
synchronization.

Figure 103. Hex Editor after Manually Editing Content

• If you want a live output of the memory contents instead of manually

synchronizing, click .

Continuous read is analogous to using Signal Tap in continuous acquisition, with
the memory values appearing as words in the Hex Editor instead of toggling
waveforms.

Note: (Intel Stratix 10 only) ISMCE logic can perform Read/Write operations only when the
design logic is idle. If the design logic attempts a write or an address change
operation, the design logic prevails, and the ISMCE operation times out. An error
message lets you know that the memory connected to the In-System Memory Content
Editor instance is in use, and memory content is not updated.

Related Information

• Read Information from In-System Memory Commands (Processing Menu)
In Intel Quartus Prime Help

• Stop In-System Memory Analysis Command (Processing Menu)
In Intel Quartus Prime Help

5.7. Editing Memory Contents with the Hex Editor Pane

You can edit the contents of instances by typing values directly into the Hex Editor
pane.

5. In-System Modification of Memory and Constants

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

139

http://quartushelp.altera.com/current/index.htm#program/red/red_com_read_data.htm
http://quartushelp.altera.com/current/index.htm#program/red/red_com_stop.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Black content on the Hex Editor pane means that the value read is the same as last
synchronization.

1. Type content on the pane.
The Hex Editor displays in blue changed content that has not been synchronized
to the device.

Figure 104. Hex Editor after Manually Editing Content

2. Click to synchronize the content to the device.

Note: (Intel Stratix 10 only) ISMCE logic can perform Read/Write operations only when the
design logic is idle. If the design logic attempts a write or an address change
operation, the design logic prevails, and the ISMCE operation times out. An error
message lets you know that the memory connected to the In-System Memory Content
Editor instance is in use, and reports the number of successful writes before the
design logic requested access to the memory.

Related Information

• Custom Fill Dialog Box
In Intel Quartus Prime Help

• Write Information to In-System Memory Commands (Processing Menu)
In Intel Quartus Prime Help

• Go To Dialog Box
In Intel Quartus Prime Help

• Select Range Dialog Box
In Intel Quartus Prime Help

5. In-System Modification of Memory and Constants

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

140

http://quartushelp.altera.com/current/index.htm#program/red/red_com_val_fill_custom.htm
http://quartushelp.altera.com/current/index.htm#program/red/red_com_write_all_words.htm
http://quartushelp.altera.com/current/index.htm#program/red/red_com_go_to.htm
http://quartushelp.altera.com/current/index.htm#program/red/red_com_sel_range.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.8. Importing and Exporting Memory Files

The In-System Memory Content Editor allows you to import and export data values for
memories that are runtime modifiable. Importing from a data file enables you to
quickly load an entire memory image. Exporting to a data file allows you to save the
contents of the memory for future use.

You can import or export files in hex or mif formats.

1. To import a file, click Edit ➤ Import Data from File..., and then select the file to
import.

If the file is not compatible, unexpected data appears in the Hex Editor.

2. To export memory contents to a file, click Edit ➤ Export Data to File..., and then
specify the name.

Related Information

• Import Data
In Intel Quartus Prime Help

• Export Data
In Intel Quartus Prime Help

• Hexadecimal (Intel-Format) File (.hex) Definition
In Intel Quartus Prime Help

• Memory Initialization File (.mif) Definition
In Intel Quartus Prime Help

5.9. Access Two or More Devices

If you have more than one device with in-system configurable memories or constants
in a JTAG chain, you can launch multiple In-System Memory Content Editors within the
Intel Quartus Prime software to access the memories and constants in each of the
devices. Each window of the In-System Memory Content Editor can access the
memories and constants of a single device.

5.10. Scripting Support

The Intel Quartus Prime software allows you to perform runtime modification of
memories and constants in scripted flows.

You can enable memory and constant instances to be runtime modifiable from the HDL
code. Additionally, the In-System Memory Content Editor supports reading and writing
of memory contents via Tcl commands from the insystem_memory_edit package.

Related Information

• Tcl Scripting
In Intel Quartus Prime Pro Edition User Guide: Scripting

• Command Line Scripting
In Intel Quartus Prime Pro Edition User Guide: Scripting

5. In-System Modification of Memory and Constants

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

141

http://quartushelp.altera.com/current/index.htm#program/red/red_com_import_data.htm
http://quartushelp.altera.com/current/index.htm#program/red/red_com_export_data.htm
http://quartushelp.altera.com/current/index.htm#reference/glossary/def_hexfile.htm
http://quartushelp.altera.com/current/index.htm#reference/glossary/def_mif.htm
https://www.intel.com/content/www/us/en/programmable/documentation/sbv1513989262284.html#mwh1410471013439
https://www.intel.com/content/www/us/en/programmable/documentation/sbv1513989262284.html#mwh1410470998554
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.10.1. The insystem_memory_edit Tcl Package

The ::quartus::insystem_memory_edit Tcl package contains the set of Tcl functions
for reading and editing the contents of memory in an Intel FPGA device using the In-
System Memory Content Editor. The quartus_stp and quartus_stp_tcl command
line executables load this package by default.

For the most up-to-date information about the ::quartus::insystem_memory_edit,
refer to the Intel Quartus Prime Help.

Related Information

::quartus::insystem_memory_edit
In Intel Quartus Prime Help

5.10.1.1. Getting Information about the insystem_memory_edit Package

You can also get information on the insystem_memory_edit package directly from
the command line:

• For general information about the package, type:

quartus_stp --tcl_eval help -pkg insystem_memory_edit

• For information about a command in the package, type:

quartus_stp --tcl_eval help -cmd <command_name>

5.11. In-System Modification of Memory and Constants Revision
History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2018.05.07 18.0.0 • Added support for the Intel Stratix 10 device family.
• Removed obsolete example.

2016.10.31 16.1.0 • Implemented Intel rebranding.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

June 2014 14.0.0 • Dita conversion.
• Removed references to megafunction and replaced with IP core.

June 2012 12.0.0 Removed survey link.

November 2011 10.0.3 Template update.

December 2010 10.0.2 Changed to new document template. No change to content.

August 2010 10.0.1 Corrected links

July 2010 10.0.0 • Inserted links to Intel Quartus Prime Help
• Removed Reference Documents section

November 2009 9.1.0 • Delete references to APEX devices
• Style changes

continued...

5. In-System Modification of Memory and Constants

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

142

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

March 2009 9.0.0 No change to content

November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0.0 • Added reference to Section V. In-System Debugging in volume 3 of the
Intel Quartus Prime Handbook on page 16-1

• Removed references to the Mercury device, as it is now considered to
be a “Mature” device

• Added links to referenced documents throughout document
• Minor editorial updates

5. In-System Modification of Memory and Constants

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

143

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Design Debugging Using In-System Sources and Probes
The Signal Tap Logic Analyzer and Signal Probe allow you to read or “tap” internal
logic signals during run time as a way to debug your logic design.

Traditional debugging techniques often involve using an external pattern generator to
exercise the logic and a logic analyzer to study the output waveforms during run time.

You can make the debugging cycle more efficient when you can drive any internal
signal manually within your design, which allows you to perform the following actions:

• Force the occurrence of trigger conditions set up in the Signal Tap Logic Analyzer

• Create simple test vectors to exercise your design without using external test
equipment

• Dynamically control run time control signals with the JTAG chain

The In-System Sources and Probes Editor in the Intel Quartus Prime software extends
the portfolio of verification tools, and allows you to easily control any internal signal
and provides you with a completely dynamic debugging environment. Coupled with
either the Signal Tap Logic Analyzer or Signal Probe, the In-System Sources and
Probes Editor gives you a powerful debugging environment in which to generate
stimuli and solicit responses from your logic design.

The Virtual JTAG IP core and the In-System Memory Content Editor also give you the
capability to drive virtual inputs into your design. The Intel Quartus Prime software
offers a variety of on-chip debugging tools.

The In-System Sources and Probes Editor consists of the ALTSOURCE_PROBE IP core
and an interface to control the ALTSOURCE_PROBE IP core instances during run time.
Each ALTSOURCE_PROBE IP core instance provides you with source output ports and
probe input ports, where source ports drive selected signals and probe ports sample
selected signals. When you compile your design, the ALTSOURCE_PROBE IP core sets
up a register chain to either drive or sample the selected nodes in your logic design.
During run time, the In-System Sources and Probes Editor uses a JTAG connection to
shift data to and from the ALTSOURCE_PROBE IP core instances. The figure shows a
block diagram of the components that make up the In-System Sources and Probes
Editor.

683819 | 2021.10.13

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 105. In-System Sources and Probes Editor Block Diagram

Design Logic

altsource_probe
Intel FPGA IP Core

Probes Sources

JTAG
Controller

FPGA
Programming

Hardware

Intel
Quartus Prime

Software

FPGA

D Q

D Q

The ALTSOURCE_PROBE IP core hides the detailed transactions between the JTAG
controller and the registers instrumented in your design to give you a basic building
block for stimulating and probing your design. Additionally, the In-System Sources and
Probes Editor provides single-cycle samples and single-cycle writes to selected logic
nodes. You can use this feature to input simple virtual stimuli and to capture the
current value on instrumented nodes. Because the In-System Sources and Probes
Editor gives you access to logic nodes in your design, you can toggle the inputs of low-
level components during the debugging process. If used in conjunction with the Signal
Tap Logic Analyzer, you can force trigger conditions to help isolate your problem and
shorten your debugging process.

The In-System Sources and Probes Editor allows you to easily implement control
signals in your design as virtual stimuli. This feature can be especially helpful for
prototyping your design, such as in the following operations:

• Creating virtual push buttons

• Creating a virtual front panel to interface with your design

• Emulating external sensor data

• Monitoring and changing run time constants on the fly

The In-System Sources and Probes Editor supports Tcl commands that interface with
all your ALTSOURCE_PROBE IP core instances to increase the level of automation.

6. Design Debugging Using In-System Sources and Probes

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

145

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

System Debugging Tools
For an overview and comparison of all the tools available in the Intel Quartus Prime
software on-chip debugging tool suite

6.1. Hardware and Software Requirements

The following components are required to use the In-System Sources and Probes
Editor:

• Intel Quartus Prime software

or

• Intel Quartus Prime Lite Edition

• Download Cable (USB-BlasterTM download cable or ByteBlasterTM cable)

• Intel FPGA development kit or user design board with a JTAG connection to device
under test

The In-System Sources and Probes Editor supports the following device families:

• Arria series

• Stratix series

• Cyclone® series

• MAX® series

6.2. Design Flow Using the In-System Sources and Probes Editor

The In-System Sources and Probes Editor supports an RTL flow. Signals that you want
to view in the In-System Sources and Probes editor are connected to an instance of
the In-System Sources and Probes IP core.

After you compile the design, you can control each instance via the In-System
Sources and Probes Editor pane or via a Tcl interface.

6. Design Debugging Using In-System Sources and Probes

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

146

http://www.altera.com/literature/lit-qts.jsp
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 106. FPGA Design Flow Using the In-System Sources and Probes Editor

Yes

No

Start

End

Functionality
Satisfied?

Create a New Project or Open an
Existing Project

Configure altsource_probe
Intel FPGA IP Core

Instrument selected logic nodes
by Instantiating the

altsource_probe Intel FPGA IP
Core variation file into the HDL

Design

Compile the design

Program Target Device(s)

Control Source and Probe
Instance(s)

Debug/Modify HDL

6.2.1. Instantiating the In-System Sources and Probes IP Core

To instantiate the In-System Sources and Probes IP core in a design:

1. In the IP Catalog (Tools ➤ IP Catalog), type In-System Sources and
Probes.

2. Double-click In-System Sources and Probes to open the parameter editor.

3. Specify a name for the IP variation.

4. Specify the parameters for the IP variation.

6. Design Debugging Using In-System Sources and Probes

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

147

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The IP core supports up to 512 bits for each source, and design can include up to
128 instances of this IP core.

5. Click Generate or Finish to generate IP core synthesis and simulation files
matching your specifications.

6. Using the generated template, instantiate the In-System Sources and Probes IP
core in your design.

Note: The In-System Sources and Probes Editor does not support simulation. Remove the
In-System Sources and Probes IP core before you create a simulation netlist.

6.2.2. In-System Sources and Probes IP Core Parameters

Use the template to instantiate the variation file in your design.

Table 33. In-System Sources and Probes IP Port Information

Port Name Required? Direction Comments

probe[] No Input The outputs from your design.

source_clk No Input Source Data is written synchronously to this clock. This input is required
if you turn on Source Clock in the Advanced Options box in the
parameter editor.

source_ena No Input Clock enable signal for source_clk. This input is required if specified in
the Advanced Options box in the parameter editor.

source[] No Output Used to drive inputs to user design.

You can include up to 128 instances of the in-system sources and probes IP core in
your design, if your device has available resources. Each instance of the IP core uses a
pair of registers per signal for the width of the widest port in the IP core. Additionally,
there is some fixed overhead logic to accommodate communication between the IP
core instances and the JTAG controller. You can also specify an additional pair of
registers per source port for synchronization.

6.3. Compiling the Design

When you compile your design that includes the In-System Sources and Probes IP
core, the In-System Sources and Probes and SLD Hub Controller IP core are added to
your compilation hierarchy automatically. These IP cores provide communication
between the JTAG controller and your instrumented logic.

You can modify the number of connections to your design by editing the In-System
Sources and Probes IP core. To open the design instance you want to modify in the
parameter editor, double-click the instance in the Project Navigator. You can then
modify the connections in the HDL source file. You must recompile your design after
you make changes.

6.4. Running the In-System Sources and Probes Editor

The In-System Sources and Probes Editor gives you control over all
ALTSOURCE_PROBE IP core instances within your design. The editor allows you to
view all available run time controllable instances of the ALTSOURCE_PROBE IP core in
your design, provides a push-button interface to drive all your source nodes, and
provides a logging feature to store your probe and source data.

6. Design Debugging Using In-System Sources and Probes

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

148

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To run the In-System Sources and Probes Editor:

• On the Tools menu, click In-System Sources and Probes Editor.

6.4.1. In-System Sources and Probes Editor GUI

The In-System Sources and Probes Editor contains three panes:

• JTAG Chain Configuration—Allows you to specify programming hardware,
device, and file settings that the In-System Sources and Probes Editor uses to
program and acquire data from a device.

• Instance Manager—Displays information about the instances generated when
you compile a design, and allows you to control data that the In-System Sources
and Probes Editor acquires.

• In-System Sources and Probes Editor—Logs all data read from the selected
instance and allows you to modify source data that is written to your device.

When you use the In-System Sources and Probes Editor, you do not need to open an
Intel Quartus Prime software project. The In-System Sources and Probes Editor
retrieves all instances of the ALTSOURCE_PROBE IP core by scanning the JTAG chain
and sending a query to the device selected in the JTAG Chain Configuration pane.
You can also use a previously saved configuration to run the In-System Sources and
Probes Editor.

Each In-System Sources and Probes Editor pane can access the
ALTSOURCE_PROBE IP core instances in a single device. If you have more than one
device containing IP core instances in a JTAG chain, you can launch multiple In-
System Sources and Probes Editor panes to access the IP core instances in each
device.

6.4.2. Programming Your Device With JTAG Chain Configuration

After you compile your project, you must configure your FPGA before you use the In-
System Sources and Probes Editor.

To configure a device to use with the In-System Sources and Probes Editor, perform
the following steps:

1. Open the In-System Sources and Probes Editor.

2. In the JTAG Chain Configuration pane, point to Hardware, and then select the
hardware communications device. You may be prompted to configure your
hardware; in this case, click Setup.

3. From the Device list, select the FPGA device to which you want to download the
design (the device may be automatically detected). You may need to click Scan
Chain to detect your target device.

4. In the JTAG Chain Configuration pane, click to browse for the SRAM Object File
(.sof) that includes the In-System Sources and Probes instance or instances.
(The .sof may be automatically detected).

5. Click Program Device to program the target device.

6.4.3. Instance Manager

The Instance Manager pane provides a list of all ALTSOURCE_PROBE instances in
the design, and allows you to configure data acquisition.

6. Design Debugging Using In-System Sources and Probes

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

149

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Instance Manager pane contains the following buttons and sub-panes:

• Read Probe Data—Samples the probe data in the selected instance and displays
the probe data in the In-System Sources and Probes Editor pane.

• Continuously Read Probe Data—Continuously samples the probe data of the
selected instance and displays the probe data in the In-System Sources and
Probes Editor pane; you can modify the sample rate via the Probe read
interval setting.

• Stop Continuously Reading Probe Data—Cancels continuous sampling of the
probe of the selected instance.

• Read Source Data—Reads the data of the sources in the selected instances.

• Probe Read Interval—Displays the sample interval of all the In-System Sources
and Probe instances in your design; you can modify the sample interval by clicking
Manual.

• Event Log—Controls the event log that appears in the In-System Sources and
Probes Editor pane.

• Write Source Data—Allows you to manually or continuously write data to the
system.

Beside each entry, the Instance Manager pane displays the instance status. The
possible instance statuses are Not running Offloading data, Updating data, and
Unexpected JTAG communication error.

6.4.4. In-System Sources and Probes Editor Pane

The In-System Sources and Probes Editor pane allows you to view data from all
sources and probes in your design.

The data is organized according to the index number of the instance. The editor
provides an easy way to manage your signals, and allows you to rename signals or
group them into buses. All data collected from in-system source and probe nodes is
recorded in the event log and you can view the data as a timing diagram.

6.4.4.1. Reading Probe Data

You can read data by selecting the ALTSOURCE_PROBE instance in the Instance
Manager pane and clicking Read Probe Data.

This action produces a single sample of the probe data and updates the data column
of the selected index in the In-System Sources and Probes Editor pane. You can
save the data to an event log by turning on the Save data to event log option in the
Instance Manager pane.

If you want to sample data from your probe instance continuously, in the Instance
Manager pane, click the instance you want to read, and then click Continuously
read probe data. While reading, the status of the active instance shows Unloading.
You can read continuously from multiple instances.

You can access read data with the shortcut menus in the Instance Manager pane.

6. Design Debugging Using In-System Sources and Probes

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

150

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To adjust the probe read interval, in the Instance Manager pane, turn on the
Manual option in the Probe read interval sub-pane, and specify the sample rate in
the text field next to the Manual option. The maximum sample rate depends on your
computer setup. The actual sample rate is shown in the Current interval box. You
can adjust the event log window buffer size in the Maximum Size box.

6.4.4.2. Writing Data

To modify the source data you want to write into the ALTSOURCE_PROBE instance,
click the name field of the signal you want to change. For buses of signals, you can
double-click the data field and type the value you want to drive out to the
ALTSOURCE_PROBE instance. The In-System Sources and Probes Editor stores the
modified source data values in a temporary buffer.

Modified values that are not written out to the ALTSOURCE_PROBE instances appear in
red. To update the ALTSOURCE_PROBE instance, highlight the instance in the
Instance Manager pane and click Write source data. The Write source data
function is also available via the shortcut menus in the Instance Manager pane.

The In-System Sources and Probes Editor provides the option to continuously update
each ALTSOURCE_PROBE instance. Continuous updating allows any modifications you
make to the source data buffer to also write immediately to the ALTSOURCE_PROBE
instances. To continuously update the ALTSOURCE_PROBE instances, change the
Write source data field from Manually to Continuously.

6.4.4.3. Organizing Data

The In-System Sources and Probes Editor pane allows you to group signals into
buses, and also allows you to modify the display options of the data buffer.

To create a group of signals, select the node names you want to group, right-click and
select Group. You can modify the display format in the Bus Display Format and the
Bus Bit order shortcut menus.

The In-System Sources and Probes Editor pane allows you to rename any signal.
To rename a signal, double-click the name of the signal and type the new name.

The event log contains a record of the most recent samples. The buffer size is
adjustable up to 128k samples. The time stamp for each sample is logged and is
displayed above the event log of the active instance as you move your pointer over
the data samples.

You can save the changes that you make and the recorded data to a Sources and
Probes File (.spf). To save changes, on the File menu, click Save. The file contains
all the modifications you made to the signal groups, as well as the current data event
log.

6.5. Tcl interface for the In-System Sources and Probes Editor

To support automation, the In-System Sources and Probes Editor supports the
procedures described in this chapter in the form of Tcl commands. The Tcl package for
the In-System Sources and Probes Editor is included by default when you run
quartus_stp.

6. Design Debugging Using In-System Sources and Probes

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

151

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Tcl interface for the In-System Sources and Probes Editor provides a powerful
platform to help you debug your design. The Tcl interface is especially helpful for
debugging designs that require toggling multiple sets of control inputs. You can
combine multiple commands with a Tcl script to define a custom command set.

Table 34. In-System Sources and Probes Tcl Commands

Command Argument Description

start_insystem_source_probe -device_name <device
name>
-hardware_name
<hardware name>

Opens a handle to a device with the
specified hardware.
Call this command before starting any
transactions.

get_insystem_source_probe_instance_info -device_name <device
name>
-hardware_name
<hardware name>

Returns a list of all ALTSOURCE_PROBE
instances in your design. Each record
returned is in the following format:
{<instance Index>, <source width>,
<probe width>, <instance name>}

read_probe_data -instance_index
<instance_index>
-value_in_hex
(optional)

Retrieves the current value of the probe.
A string is returned that specifies the
status of each probe, with the MSB as
the left-most bit.

read_source_data -instance_index
<instance_index>
-value_in_hex
(optional)

Retrieves the current value of the
sources.
A string is returned that specifies the
status of each source, with the MSB as
the left-most bit.

write_source_data -instance_index
<instance_index>
-value <value>
-value_in_hex
(optional)

Sets the value of the sources.
A binary string is sent to the source
ports, with the MSB as the left-most bit.

end_insystem_source_probe None Releases the JTAG chain.
Issue this command when all
transactions are finished.

The example shows an excerpt from a Tcl script with procedures that control the
ALTSOURCE_PROBE instances of the design as shown in the figure below. The
example design contains a DCFIFO with ALTSOURCE_PROBE instances to read from
and write to the DCFIFO. A set of control muxes are added to the design to control the
flow of data to the DCFIFO between the input pins and the ALTSOURCE_PROBE
instances. A pulse generator is added to the read request and write request control
lines to guarantee a single sample read or write. The ALTSOURCE_PROBE instances,
when used with the script in the example below, provide visibility into the contents of
the FIFO by performing single sample write and read operations and reporting the
state of the full and empty status flags.

Use the Tcl script in debugging situations to either empty or preload the FIFO in your
design. For example, you can use this feature to preload the FIFO to match a trigger
condition you have set up within the Signal Tap logic analyzer.

6. Design Debugging Using In-System Sources and Probes

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

152

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 107. DCFIFO Example Design Controlled by Tcl Script

Write_clock

write_req
data[7..0]

write_clock

read_req

read_clock

wr_full

Q[7..0]

rd_empty

data_out

read_clock
source_read_sel

s_read_req

s_write_req

rd_req_in

wr_req_in

data_in[7..0]

altsource_probe
(Instance 1)

altsource_probe
(Instance 0)

source_write_sel

s_data[7..0]
D Q

D Q

Setup USB hardware - assumes only USB Blaster is installed and
an FPGA is the only device in the JTAG chain
set usb [lindex [get_hardware_names] 0]
set device_name [lindex [get_device_names -hardware_name $usb] 0]
write procedure : argument value is integer
proc write {value} {
global device_name usb
variable full
start_insystem_source_probe -device_name $device_name -hardware_name $usb
#read full flag
set full [read_probe_data -instance_index 0]
if {$full == 1} {end_insystem_source_probe
return "Write Buffer Full"
}
##toggle select line, drive value onto port, toggle enable
##bits 7:0 of instance 0 is S_data[7:0]; bit 8 = S_write_req;
##bit 9 = Source_write_sel
##int2bits is custom procedure that returns a bitstring from an integer
 ## argument
write_source_data -instance_index 0 -value /[int2bits [expr 0x200 | $value]]
write_source_data -instance_index 0 -value [int2bits [expr 0x300 | $value]]
##clear transaction
write_source_data -instance_index 0 -value 0
end_insystem_source_probe
}
proc read {} {
global device_name usb
variable empty
start_insystem_source_probe -device_name $device_name -hardware_name $usb
##read empty flag : probe port[7:0] reads FIFO output; bit 8 reads empty_flag
set empty [read_probe_data -instance_index 1]
if {[regexp {1........} $empty]} { end_insystem_source_probe
return "FIFO empty" }
toggle select line for read transaction

6. Design Debugging Using In-System Sources and Probes

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

153

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Source_read_sel = bit 0; s_read_reg = bit 1
pulse read enable on DC FIFO
write_source_data -instance_index 1 -value 0x1 -value_in_hex
write_source_data -instance_index 1 -value 0x3 -value_in_hex
set x [read_probe_data -instance_index 1]
end_insystem_source_probe
return $x
}

Related Information

• Tcl Scripting

• Intel Quartus Prime Settings File Manual

• Command Line Scripting

6.6. Design Example: Dynamic PLL Reconfiguration

The In-System Sources and Probes Editor can help you create a virtual front panel
during the prototyping phase of your design. You can create relatively simple, high
functioning designs of in a short amount of time. The following PLL reconfiguration
example demonstrates how to use the In-System Sources and Probes Editor to
provide a GUI to dynamically reconfigure a Stratix PLL.

Stratix PLLs allow you to dynamically update PLL coefficients during run time. Each
enhanced PLL within the Stratix device contains a register chain that allows you to
modify the pre-scale counters (m and n values), output divide counters, and delay
counters. In addition, the ALTPLL_RECONFIG IP core provides an easy interface to
access the register chain counters. The ALTPLL_RECONFIG IP core provides a cache
that contains all modifiable PLL parameters. After you update all the PLL parameters in
the cache, the ALTPLL_RECONFIG IP core drives the PLL register chain to update the
PLL with the updated parameters. The figure shows a Stratix-enhanced PLL with
reconfigurable coefficients.

6. Design Debugging Using In-System Sources and Probes

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

154

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1410471376527.html#mwh1410471013439
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1410471376527.html#mwh1410470998554
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 108. Stratix-Enhanced PLL with Reconfigurable Coefficients

÷n Δtn

Δt
m

÷m

÷g0 Δt
g0

÷e3 Δt
e3

÷g3 Δt
g3

PFD VCOCharge
Pump

Loop
Filter

fREF

scandata

scanclk

scanaclr

Counters and Clock
Delay Settings are
Programmable

All Output Counters and
Clock Delay Settings can
be Programmed Dynamically

LSB MSB

LSB MSB

LSB MSB

LSB MSB

LSB

MSB

(1) (2)

The following design example uses an ALTSOURCE_PROBE instance to update the PLL
parameters in the ALTPLL_RECONFIG IP core cache. The ALTPLL_RECONFIG IP core
connects to an enhanced PLL in a Stratix FPGA to drive the register chain containing
the PLL reconfigurable coefficients. This design example uses a Tcl/Tk script to
generate a GUI where you can enter in new m and n values for the enhanced PLL. The
Tcl script extracts the m and n values from the GUI, shifts the values out to the
ALTSOURCE_PROBE instances to update the values in the ALTPLL_RECONFIG IP core
cache, and asserts the reconfiguration signal on the ALTPLL_RECONFIG IP core. The
reconfiguration signal on the ALTPLL_RECONFIG IP core starts the register chain
transaction to update all PLL reconfigurable coefficients.

Figure 109. Block Diagram of Dynamic PLL Reconfiguration Design Example

In-System Sources
and Probes
Tcl Interface

JTAG
Interface

Counter
Parameters

Intel Stratix Series FPGA50 MHz

PLL_scandata
PLL_scandlk
PLL_scanaclr

E0

C0

C1

fref

Stratix-Enhanced
PLLalt_pll_reconfig

IP Core

In-System
Sources and

Probes

6. Design Debugging Using In-System Sources and Probes

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

155

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This design example was created using a Nios II Development Kit, Stratix Edition. The
file sourceprobe_DE_dynamic_pll.zip contains all the necessary files for running
this design example, including the following:

• Readme.txt—A text file that describes the files contained in the design example
and provides instructions about running the Tk GUI shown in the figure below.

• Interactive_Reconfig.qar—The archived Intel Quartus Prime project for this
design example.

Figure 110. Interactive PLL Reconfiguration GUI Created with Tk and In-System Sources
and Probes Tcl Package

Related Information

On-chip Debugging Design Examples
to download the In-System Sources and Probes Example

6.7. Design Debugging Using In-System Sources and Probes
Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2019.06.11 18.1.0 Rebranded megafunction to Intel FPGA IP core

2018.05.07 18.0.0 Added details on finding the In-System Sources and Probes in the IP
Catalog.

2016.10.31 16.1.0 Implemented Intel rebranding.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

June 2014 14.0.0 Updated formatting.

June 2012 12.0.0 Removed survey link.

November 2011 10.1.1 Template update.

December 2010 10.1.0 Minor corrections. Changed to new document template.

July 2010 10.0.0 Minor corrections.

November 2009 9.1.0 • Removed references to obsolete devices.
• Style changes.

continued...

6. Design Debugging Using In-System Sources and Probes

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

156

http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

March 2009 9.0.0 No change to content.

November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0.0 • Documented that this feature does not support simulation on page 17–
5

• Updated Figure 17–8 for Interactive PLL reconfiguration manager
• Added hyperlinks to referenced documents throughout the chapter
• Minor editorial updates

6. Design Debugging Using In-System Sources and Probes

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

157

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. Analyzing and Debugging Designs with System Console

7.1. Introduction to System Console

System Console provides visibility into your design and allows you to perform system-
level debug on an FPGA at run-time. System Console performs tests on debug-enabled
Intel FPGA IP. A variety of debug services provide read and write access to elements
in your design.

• Perform board bring-up with finalized or partially complete designs.

• Automate run-time verification through scripting across multiple devices.

• Debug transceiver links, memory interfaces, and Ethernet interfaces.

• Integrate your debug IP into the debug platform.

• Perform system verification with MATLAB and Simulink.

Figure 111. System Console Tools
The System Console API supports services that access your design in operation.

Tcl Console ToolkitsAutosweep Eye Viewer

System Console Tcl
(Command-Line Interface) System Console GUI Interface

System Console

Ethernet Processor Host Bytestream Others

TCP/IP Nios II JTAG Master JTAG UART ISSP

Nios II with
JTAG Debug

USB Debug
Master

Tools

API

Hardware
Requirements

Dashboard

683819 | 2021.10.13

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

System Console also provides the hardware debugging infrastructure to support
operation and customization of debugging "toolkits." Toolkits are small applications
that you can use to perform system-level debug of such elements as external memory
interfaces, Ethernet interfaces, PCI Express interfaces, transceiver PHY interfaces, and
various other debugging functions. The Intel Quartus Prime software includes the
Available System Debugging Toolkits on page 174. For advanced users, System
Console also supports Tcl commands that allow you to define and operate your own
custom toolkits, as System Console and Toolkit Tcl Command Reference Manual
describes.

Related Information

• System Console Online Training

• System Console and Toolkit Tcl Command Reference Manual

7.1.1. IP Cores that Interact with System Console

System Console runs on your host computer and communicates with your running
design through debug agents. Debug agents are the soft-logic embedded in some IP
cores that enable debug communication with the host computer.

You can instantiate debug IP cores using the Intel Quartus Prime software IP Catalog
and IP parameter editor. Some IP cores are enabled for debug by default, while you
must enable debug for other IP cores through options in the parameter editor. Some
debug agents have multiple purposes.

When you include debug-enabled IP cores in your design, you can access large
portions of the design running on hardware for debugging purposes. Debug agents
allow you to read and write to memory and alter peripheral registers from the tool.

Services associated with debug agents in the running design can open and close as
needed. System Console determines the communication protocol with the debug
agent. The communication protocol determines the best board connection to use for
command and data transmission.

The Programmable SRAM Object File (.sof) that the Intel Quartus Prime Assembler
generates for device programming provides the System Console with channel
communication information. When you open System Console from the Intel Quartus
Prime software GUI, with a project open that includes a .sof, System Console
automatically finds and links to the device(s) it detects. When you open System
Console without an open project, or with an unrelated project open, you can manually
load the .sof file that you want, and then the design linking occurs automatically if
the device(s) match.

Related Information

• Available System Debugging Toolkits on page 174

• WP-01170 System-Level Debugging and Monitoring of FPGA Designs

7.1.2. Services Provided through Debug Agents

By adding the appropriate debug agent to your design, System Console services can
use the associated capabilities of the debug agent.

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

159

http://www.altera.com/education/training/courses/OEMB1117
https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
http://www.altera.com/literature/wp/wp-01170-system-console.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 35. Common Services for System Console

Service Function Debug Agent Providing Service

host Access a memory-mapped agent connected to the
host interface.

• Nios II with debug
• JTAG to Avalon Master Bridge
• USB Debug Master

agent Allows a host component to access a single agent
without needing to know the location of the agent
in the host's memory map. Any agent that is
accessible to a System Console host can provide
this service.

• Nios II with debug
• JTAG to Avalon Master Bridge
• USB Debug Master
If an SRAM Object File (.sof) is loaded, then
agents accessed by a debug host provide the
agent service.

issp The In-System Sources and Probes (ISSP) service
provides scriptable access to the In-System
Sources and Probes Intel FPGA IP for generating
stimuli and soliciting responses from your logic
design.

In-System Sources and Probes Intel FPGA IP

processor • Start, stop, or step the processor.
• Read and write processor registers.

Nios II with debug

JTAG UART The JTAG UART is an Avalon memory mapped
agent that you can use in conjunction with
System Console to send and receive byte
streams.

JTAG UART

Note: The following debug agent IP cores in the IP Catalog do not support VHDL simulation
generation in the current version of the Intel Quartus Prime software:

• JTAG Debug Link

• JTAG Hub Controller System

• USB Debug Link

Related Information

Available System Debugging Toolkits on page 174

7.1.3. System Console Debugging Flow

The System Console debugging flow includes the following steps:

1. Add debug-enabled Intel FPGA IP to your design.

2. Compile the design.

3. Connect to a board and program the FPGA.

4. Start System Console.

5. Locate and open a System Console service.

6. Perform debug operations with the service.

7. Close the service.

Related Information

• Starting System Console on page 161

• Launching a Toolkit in System Console on page 172

• Using System Console Services on page 176

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

160

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Running System Console in Command-Line Mode on page 191

7.2. Starting System Console

You can use any of the following methods to start System Console:

• To start System Console from the Intel Quartus Prime software GUI:

Click Tools ➤ System Debugging Tools ➤ System Console.

Or

Click Tools ➤ System Debugging Tools ➤ System Debugging Toolkits.

• To start System Console from Platform Designer:

Click Tools ➤ System Console

• To start Stand-Alone System Console:

1. Navigate to the Download Center page, click Additional Software, and
download and install Intel Quartus Prime Pro Edition Programmer and Tools.

2. On the Windows Start menu, click All Programs ➤ Intel FPGA <version> ➤
Programmer and Tools ➤ System Console.

• To start System Console from a Nios II Command Shell:

1. On the Windows Start menu, click All Programs ➤ Intel ➤ Nios II EDS
<version> ➤ Nios II<version> ➤ Command Shell.

2. Type system-console --project_dir=<project directory> and
specify a directory that contains .qsf or .sof files.

Note: Type --help for System Console help.

Related Information

Download Center for FPGAs

7.2.1. Customizing System Console Startup

You can customize your System Console startup environment, as follows:

• Add commands to the system_console_rc configuration file located at:

— <$HOME>/system_console/system_console_rc.tcl

The file in this location is the user configuration file, which only affects the owner
of the home directory.

• Specify your own design startup configuration file with the command-line
argument --rc_script=<path_to_script>, when you launch System Console
from the Nios II command shell.

• Use the system_console_rc.tcl file in combination with your custom
rc_script.tcl file. In this case, the system_console_rc.tcl file performs
System Console actions, and the rc_script.tcl file performs your debugging
actions.

On startup, System Console automatically runs the Tcl commands in these files. The
commands in the system_console_rc.tcl file run first, followed by the commands
in the rc_script.tcl file.

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

161

https://fpgasoftware.intel.com/?edition=pro
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.3. System Console GUI

The System Console GUI consists of a main window with the following panes that
allow you to interact with the design currently running on the FPGA device:

• Toolkit Explorer—displays all available toolkits and launches tools that use the
System Console framework.

• System Explorer—displays a list of interactive instances in your design, including
board connections, devices, designs, servers, and scripts.

• Main View—initially displays the welcome screen. All toolkits that you launch
display in this view.

• Tcl Console—allows you to interact with your design through individual Tcl
commands or by sourcing Tcl scripts, writing procedures, and using System
Console APIs.

• Messages—displays status, warning, and error messages related to connections
and debug actions.

Figure 112. System Console GUI

Toolkit Explorer
and System Explorer

Messages

Tcl Console

System Console GUI also provides the Autosweep, Dashboard, and Eye Viewer
panes, that display as tabs in the Main View.

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

162

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

System Console Views on page 163

Toolkit Explorer Pane on page 171

System Explorer Pane on page 171

Related Information

System Console and Toolkit Tcl Command Reference Manual

7.3.1. System Console Views

System Console provides the following views:

Main View on page 164

Autosweep View on page 167

Dashboard View on page 168

Eye Viewer on page 169

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

163

https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.3.1.1. Main View

The Main View in System Console allows you to visualize certain parameter values of
the IP that the toolkit targets. These parameter values can be static values from
compile-time parameterization, or dynamic values read from the hardware (like
reading from CSR registers) at run-time.

The Main View GUI controls allow you to control or configure the IP on the hardware.

Figure 113. Main View of the System Console

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

164

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you are using a toolkit, you can add or remove columns from the table in the Main
View. Right-click on the table header and select Edit Columns in the right-click
menu. The Select column headers dialog box is displayed where you can choose to
include more columns, as shown in the following image:

Figure 114. Column Selection in the Main View Table

Parameters Pane

The Main View provides the Parameters pane that has two tabs, one for global
parameters (those not associated with a given channel) and another for channel
parameters (those associated with channels). The Channel Parameters tab is filled
with per-channel parameter editors based on channel row selection in the Status
Table, as Figure 120 on page 171 shows.

Status Table Pane

The Status Table does not appear for toolkits that do not define channels. The
Status Table allows you to view status information across all channels of a collection
or a toolkit instance, as well as execute actions across multiple channels, as Figure
120 on page 171 shows. You can execute bulk actions spanning multiple channels by
selecting desired channels, and right-clicking and exploring the Actions sub-menu.

You can also use the Status Table to select which channel to display in the
Parameters Pane on page 165. The channels you select in the Status Table are shown
in the Parameters Pane. You can use the Pin setting for a channel to display the
channel, regardless of the current selection in the Status Table.

If you develop your own toolkit, you can design the layout and GUI elements in the
Main View using the Toolkit Tcl API. You can also define how each GUI element
interacts with the hardware.

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

165

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.3.1.1.1. Link Pair View

Displaying Links With the Main View

You can use the Main View to simultaneously display and control associated TX and
RX pairs:

1. Select both RX and TX channels in the Status Table.

2. Right-click to view the context-sensitive menu.

3. Navigate to the Actions menu.

Figure 115. Displaying Links in the Main View

Custom Groups with Links

In the Status Table, links are displayed like any other channel, with the exception
that their parameter lists encompass all parameters from the associated TX and RX
channels. If you create a group with a link and its associated TX and RX instance
channels, the link row in the Status Table populates in all columns. Whereas, for the
independent TX and RX channel rows, only parameters associated with that channel
populate the Status Table.

Configuring a Link

You have the option to configure links in the following ways:

• Through the provided status table in the Main View.

• Through configuration options provided for the associated TX and RX channels.

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

166

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option provided for the TX and RX channels allow you to individually manipulate each
associated channel. You can manipulate multiple parameters simultaneously by
selecting one or more items, and then right-clicking parameters in the status table.

7.3.1.2. Autosweep View

The Autosweep view allows you to sweep over IP parameters to find the best
combination and define your own quality metrics for a given Autosweep run.

The System Console Autosweep view allows you to define your own quality metrics
for a given Autosweep run.

Figure 116. Autosweep View of the System Console

By default, the Autosweep view launches without any connection to a toolkit
instance(s) or channel pair(s). You can add parameters by clicking Add Parameter
and selecting parameters from specific toolkit instance(s) in the Select Parameter
dialog box. You can remove parameters by selecting them and clicking Remove
Parameter. Alternatively, you can add your own parameters and create as many
Autosweep views as you want, to allow sweeping over different parameters on
different channels of the same instance, or different instances entirely.

To save a parameter set for future use, select the parameter set, and then click
Export Settings. To load a collection, click Import Settings.

Important: Any channel of a particular instance that has parameters currently being swept over in
one Autosweep view cannot have other (or the same) parameters swept over in a
different Autosweep view. For example, if one Autosweep view is currently
sweeping over parameters from InstA | Channel 0, and another Autosweep view
has parameters from InstA | Channel 0, an error is displayed if you attempt to
start the second sweep before the first has completed. This prevents you from
changing more things than are expected from a given run of autosweep.

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

167

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Consider the following example complex system with parameters spread across
multiple devices:

Figure 117. An Example of the Autosweep System

FPGA 0 FPGA 1 FPGA 2
Communication

channel X
Communication

channel Y

Autosweep parameter A: -1, 3,8
Autosweep parameter B: foo, bar

Autosweep parameter C: 0->2
Autosweep parameter D: 5, 12

Quality metric A: Protocol-level QoS
Quality metric B: Eye Height
Quality metric C: Eye Width

The Autosweep view allows you to sweep such a complex system when the multiple
devices are visible to System Console. You can select the quality metrics from
instances different from those you sweep. You can even span levels of the hardware
stack from the PMA-level up to protocol-level signaling.

Results

The Results table is populated with one row per autosweep iteration. For every output
quality metric added in the Output Metrics section, a column for that metric is added
to the Results table, with new row entries added to the bottom. This format allows
sorting of the results by quality metric of the system under test, across many
combinations of parameters, to determine which parameter settings achieve best real-
world results.

The Results table allows visualizing or copying the parameter settings associated with
a given case, and sorting by quality metrics. Sort the rows of the table by clicking on
the column headers.

Control

The Control pane of the Autosweep view allows starting an autosweep run, once you
define at least one input parameter and one quality metric. Starting a run, allowing all
combinations to complete, and then pressing the Start button re-runs the same test
case. Pressing the Stop button cancels a currently running autosweep.

7.3.1.3. Dashboard View

The Dashboard view allows you to visualize the changes to toolkit parameters over
time.

The Dashboard provides options to view a line chart, histogram, pie chart or bar
graph, and a data history. There is no limit imposed on the number of instances of the
Dashboard view open at once. However, a performance penalty occurs if you update
a high number of parameters at a high frequency simultaneously.

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

168

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 118. Dashboard View of the System Console

The Add Parameter dialog box opens when you click the Add button. Only those
parameters that declare the allows_charting parameter property are available for
selection in the Add Parameter dialog box.

7.3.1.4. Eye Viewer

The System Console Eye Viewer allows you to configure, run, and render eye scans.
The Eye Viewer allows independent control of the eye for each transceiver instance.
System Console allows you to open only one Eye Viewer per-instance channel pair at
any given time. Therefore, there is a one-to-one mapping of a given Eye Viewer GUI
to a given instance of the eye capture hardware on the FPGA. Click Tools ➤ Eye
Viewer to launch the Eye Viewer.

Eye Viewer Controls

The Eye Viewer controls allow you to configure toolkit-specific settings for the current
Eye Viewer scan. The parameters in the Eye Viewer affect the behavior and details
of the eye scan run.

Start / Stop Controls

The Eye Viewer provides Start and Stop controls. The Start button starts the eye
scanning process while the Stop button cancels an incomplete scan.

Note: The actual scanning controls, configurations, and metrics shown with the Eye Viewer
vary by toolkit.

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

169

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Eye Diagram Visualization

The eye diagram displays the transceiver eye captured from on-die instrumentation
(ODI) with a color gradient.

Figure 119. Eye Viewer (E-Tile Transceiver Native PHY Toolkit Example)

Eye Viewer Settings

Start/Stop Controls

Eye Parameters

Eye Diagram

Results Table

The Results table displays results and statistics of all eye scans. While an eye scan is
running, you cannot view any partial results. However, there is a progress bar showing
the current progress of the eye scan underway.

When an eye scan successfully completes, a new entry appears in the Results table,
and that entry automatically gains focus. When you select a given entry in the
Results table, the eye diagram renders the associated eye data. You can right-click in
the Results table to do the following:

• Apply the test case parameters to the device

• Delete an entry

If developing your own toolkit that includes the Eye Viewer, the BER gradient is
configurable, and the eye diagram GUI supports the following features:

• A BER tool-tip for each cell

• Ability to export the map as PNG

• Zoom

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

170

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.3.2. Toolkit Explorer Pane

The Toolkit Explorer pane displays all available toolkits and launches tools that use
the System Console framework. When you load a design that contains debug-enabled
IP, the Toolkit Explorer displays the design instances, along with a list of channels
and channel collections for debugging. To interact with a channel or a toolkit, double-
click on it to launch the Main View tabbed window, as shown in the following image:

Figure 120. System Console Toolkit Explorer

IP Instances

Channels and Link Groups

Status Table Pane

Parameters Pane

Note: If you close Toolkit Explorer, you can reopen it by clicking View ➤ Toolkit
Explorer.

7.3.3. System Explorer Pane

The System Explorer pane displays a list of interactive instances from the design
loaded on a connected device. This includes the following items:

• IP instances with debug toolkit capabilities

• IP instances with a debug endpoint

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

171

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 121. System Explorer Pane

Additionally, the System Explorer also displays custom toolkit groups and links that
you create. System Explorer organizes the interactive instances according to the
available device connections. The System Explorer contains a Links instance, and
may contain a Files instance. The Links instance shows debug agents (and other
hardware) that System Console can access. The Files instance contains information
about the programming files loaded from the Intel Quartus Prime project for the
device.

The System Explorer provides the following information:

• Devices—displays information about all devices connected to the System Console.

• Scripts—stores scripts for easy execution.

• Connections—displays information about the board connections visible to System
Console, such as the Intel FPGA Download Cable. Multiple connections are
possible.

• Designs—displays information about Intel Quartus Prime designs connected to
System Console. Each design represents a loaded .sof file.

• Right-click on some of the instances to execute related commands.

• Instances that include a message display a message icon. Click on the instance to
view the messages in the Messages pane.

7.4. Launching a Toolkit in System Console

System Console provides the hardware debugging infrastructure to run the Available
System Debugging Toolkits on page 174. When you load a design in the Toolkit
Explorer that includes debug-enabled Intel FPGA IP, the Toolkit Explorer
automatically lists the toolkits that are available for the IP in the design.

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

172

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To launch a toolkit in System Console, follow these steps:

1. Create an Intel Quartus Prime project that includes debug-enabled Intel FPGA IP.
Refer to IP Cores that Interact with System Console on page 159.

2. On the Compilation Dashboard, double-click Assembler to generate a .sof
programming file for the design. Any prerequisite Compiler stages run
automatically before the Assembler starts.

3. Launch System Console, as Starting System Console on page 161 describes.

Figure 122. Launching a Toolkit in System Console

Debug-Enabled IP

Select Channels
and Open Toolkit

Save or Load Collections

4. In the Toolkit Explorer, click Load Design, and then select the .sof file that
you create in step 2. When you load the design, Toolkit Explorer displays the
debug-enabled IP instances.

5. Select a debug-enabled IP instance. The Details pane displays the channels that
can launch toolkits.

6. To launch a toolkit, select the toolkit under Details. For toolkits with channels, you
can also multi-select one or more channels from the Details pane. Then, click
Open Toolkit. The toolkit opens in the Main View, and the Collections pane
displays a collection of any channels that you select.

7. To save a collection for future use, right-click the collection, and then click Export
Collection. To load a collection, right-click in the Collections pane, and then click
Import Collection. By default, System Console creates a collection when you
launch a toolkit.

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

173

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

System Console and Toolkit Tcl Command Reference Manual

7.4.1. Available System Debugging Toolkits

The following toolkits are available to launch from the System Console Toolkit
Explorer in the current version of the Intel Quartus Prime software.

Table 36. Toolkits Available in System Console Toolkit Explorer

Toolkit Description Toolkit Documentation

EMIF Calibration Debug Toolkit Helps you to debug external memory interfaces by
accessing calibration data obtained during memory
calibration. The analysis tools can evaluate the stability of
the calibrated interface and assess hardware conditions.

• External Memory
Interfaces Intel Agilex™

FPGA IP User Guide
• External Memory

Interfaces Intel Stratix
10 FPGA IP User Guide

EMIF Traffic Generator
Configuration Toolkit

Helps you to debug external memory interfaces by
sending sample traffic through the external memory
interface to the memory device. The generated EMIF
design example includes a traffic generator block with
control and status registers.

EMIF Efficiency Monitor Toolkit Helps you to debug external memory interfaces by
measuring efficiency on the Avalon interface in real time.
The generated EMIF design example can include the
Efficiency Monitor block.

• External Memory
Interfaces Intel Agilex
FPGA IP User Guide

• External Memory
Interfaces Intel Stratix
10 FPGA IP User Guide

Ethernet Toolkit Helps you to interact with and debug an Ethernet Intel
FPGA IP interface in real time. You can verify the status of
the Ethernet link, assert and deassert IP resets, verifies
the IP error correction capability,

Ethernet Toolkit User Guide

Intel Stratix 10 FPGA P-Tile
Toolkit (for PCIe)

Helps you to optimize the performance of large-size data
transfers with real-time control, monitoring, and
debugging of the PCI Express* links at the Physical, Data
Link, and Transaction layers.

Intel FPGA P-Tile Avalon
Memory Mapped IP for PCI
Express* User Guide

Serial Lite IV IP Toolkit An inspection tool that monitors the status of a Serial Lite
IV IP link and provides a step-by-step guide for the IP link
initialization sequences.

• Serial Lite IV Intel
Agilex FPGA IP Design
Example User Guide

• Serial Lite IV Intel
Stratix 10 FPGA IP
Design Example User
Guide

Intel Arria 10 and Intel Cyclone
10 GX Transceiver Native PHY
Toolkit

Helps you to optimize high-speed serial links in your board
design by providing real-time control, monitoring, and
debugging of the transceiver links running on your board.

L-Tile and H-Tile Transceiver
Native PHY Toolkit

E-Tile Transceiver Native PHY
Toolkit

The following legacy toolkits remain available by clicking Tools ➤ Legacy Toolkits in
System Console. The legacy toolkits support earlier device families and may be
subject to end of life and removal of support in a coming software release.

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

174

https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 37. Legacy Toolkits Available in System Console

Legacy Toolkit Description Legacy Toolkit
Documentation

Ethernet Link Inspector - Link
Monitor Toolkit

The Ethernet Link Inspector is an inspection tool that can
continuously monitor an Ethernet link that contains an Ethernet
IP. The Link Monitor toolkit performs real-time status monitoring
of an Ethernet IP link. The link monitor continuously reads and
displays all of the required status registers related to the
Ethernet IP link, and displays the Ethernet IP link status at
various stages are valid. Ethernet Link

Inspector User Guide
for Intel Stratix 10
Devices

Ethernet Link Inspector - Link
Analysis Toolkit

The Link Analysis toolkit displays a sequence of events on an
Ethernet IP link, which occur in a finite duration of time. The
Link Analysis requires the Signal Tap logic analyzer to first
capture and store a database (.csv) of all required signals. The
Link Analysis toolkit then performs an analysis on the database
to extract all the required information and displays them in a
user-friendly graphical user interface (GUI).

S10 SDM Debug Toolkit Provides access to current status of the Intel Stratix 10 device.
To use these commands, you must have a valid design loaded
that includes the module that you intend to access.

Intel Stratix 10
Configuration User
Guide

Note: Refer to the toolkit documentation for individual toolkit launch, setup, and use
information. The Transceiver Toolkit previously available in the Intel Quartus Prime
software Tools menu is replaced by the Intel Arria 10 and Intel Cyclone 10 GX
Transceiver Native PHY Toolkit.

Related Information

• External Memory Interfaces Intel Agilex FPGA IP User Guide

• External Memory Interfaces Intel Stratix 10 FPGA IP User Guide

• Ethernet Toolkit User Guide

• Intel FPGA P-Tile Avalon Memory Mapped IP for PCI Express* User Guide

• Intel FPGA P-Tile Avalon Streaming IP for PCI Express* User Guide

• Ethernet Link Inspector User Guide for Intel Stratix 10 Devices

• Intel Stratix 10 Configuration User Guide

• Serial Lite IV Intel Agilex FPGA IP Design Example User Guide

• Serial Lite IV Intel Stratix 10 FPGA IP Design Example User Guide

7.4.2. Creating Collections from the Toolkit Explorer

You can create custom collections to view and configure members from different
instances in a single Main View.

Perform these steps to group instances:

1. Select multiple items in the instances tree.

2. Right click to view the context-sensitive menu.

3. Select Add to Collection ➤ New Collection. The Add to Collection dialog box
appears with members you select.

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

175

https://www.intel.com/content/www/us/en/programmable/documentation/edk1547216976887.html#hob1561653506734
https://www.intel.com/content/www/us/en/programmable/documentation/kly1427763997001.html#arw1504106465992
https://www.intel.com/content/www/us/en/programmable/documentation/nrb1596652301528.html#xzv1596652963571
https://www.intel.com/content/www/us/en/programmable/documentation/aib1557867923977.html#sfr1538517070963
https://www.intel.com/content/www/us/en/programmable/documentation/htp1538516890095.html
https://www.intel.com/content/www/us/en/programmable/documentation/fos1530493828572.html#hag1520820037191%20
https://www.intel.com/content/www/us/en/programmable/documentation/sss1439972793861.html#dtn1534779107124
https://www.intel.com/content/www/us/en/programmable/documentation/obg1556870853107.html
https://www.intel.com/content/www/us/en/programmable/documentation/rso1556871097670.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

System Console adds the collections that you create to the Collections pane of the
Toolkit Explorer. You can perform one of the following actions:

• Double-click on a custom-created collection to launch the Main view containing all
of the group’s members.

• Right-click on an existing collection member and select Remove from Collection
to remove the member.

7.4.3. Filtering and Searching Interactive Instances

By default, the Toolkits list shows all toolkit instances and their respective channels
linking to the System Console. This view is useful in simple cases, but can become
very dense in a complex system having many debug-enabled IPs, and having
potentially multiple FPGAs connected to System Console.

Figure 123. Toolkit Explorer with Filters

To limit the information display, the Filter list allows filtering the display by toolkit
types currently available in the System Console. You can also create custom filters
using groups, for example, “Inst A, Inst F, and Inst Z”, or “E-Tile and L/H-Tile
Transceivers only".

To refine the list of toolkits, use the search field in the Toolkit Explorer to filter the
list further.

7.5. Using System Console Services

System Console services provide access to hardware modules that you instantiate in
your FPGA. Services vary in the type of debug access they provide.

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

176

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

System Console and Toolkit Tcl Command Reference Manual

7.5.1. Locating Available Services

System Console uses a virtual file system to organize the available services, which is
similar to the /dev location on Linux systems. Board connection, device type, and
IP names are all part of a service path. Instances of services are referred to by their
unique service path in the file system. To retrieve service paths for a particular
service, use the command get_service_paths <service-type>.

Example 11. Locating a Service Path

#We are interested in master services.
set service_type "master"

#Get all the paths as a list.
set master_service_paths [get_service_paths $service_type]

#We are interested in the first service in the list.
set master_index 0

#The path of the first master.
set master_path [lindex $master_service_paths $master_index]

#Or condense the above statements into one statement:
set master_path [lindex [get_service_paths master] 0]

System Console commands require service paths to identify the service instance you
want to access. The paths for different components can change between runs of
System Console and between versions. Use the get_service_paths command to
obtain service paths.

The string values of service paths change with different releases of the tool. Use the
marker_node_info command to get information from the path.

System Console automatically discovers most services at startup. System Console
automatically scans for all JTAG and USB-based service instances and retrieves their
service paths. System Console does not automatically discover some services, such as
TCP/IP. Use add_service to inform System Console about those services.

Example 12. Marker_node_info

Use the marker_node_info command to get information about SLD nodes
associated with the specified service.

set slave_path [get_service_paths -type altera_avalon_uart.slave slave]
array set uart_info [marker_node_info $slave_path]
echo $uart_info(full_hpath)

7.5.2. Opening and Closing Services

After you have a service path to a particular service instance, you can access the
service for use.

The claim_service command directs System Console to start using a particular
service instance, and with no additional arguments, claims a service instance for
exclusive use.

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

177

https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 13. Opening a Service

set service_type "master"
set claim_path [claim_service $service_type $master_path mylib];#Claims service.

You can pass additional arguments to the claim_service command to direct System
Console to start accessing a particular portion of a service instance. For example, if
you use the master service to access memory, then use claim_service to only
access the address space between 0x0 and 0x1000. System Console then allows
other users to access other memory ranges, and denies access to the claimed memory
range. The claim_service command returns a newly created service path that you
can use to access your claimed resources.

You can access a service after you open it. When you finish accessing a service
instance, use the close_service command to direct System Console to make this
resource available to other users.

Example 14. Closing a Service

close_service master $claim_path; #Closes the service.

7.5.3. Using the SLD Service

The SLD Service shifts values into the instruction and data registers of SLD nodes and
captures the previous value. When interacting with a SLD node, start by acquiring
exclusive access to the node on an opened service.

Example 15. SLD Service

set timeout_in_ms 1000
set lock_failed [sld_lock $sld_service_path $timeout_in_ms]

This code attempts to lock the selected SLD node. If it is already locked, sld_lock
waits for the specified timeout. Confirm the procedure returns non-zero before
proceeding. Set the instruction register and capture the previous one:

if {$lock_failed} {
 return
}
set instr 7
set delay_us 1000
set capture [sld_access_ir $sld_service_path $instr $delay_us]

The 1000 microsecond delay guarantees that the following SLD command executes at
least 1000 microseconds later. Data register access works the same way.

set data_bit_length 32
set delay_us 1000
set data_bytes [list 0xEF 0xBE 0xAD 0xDE]
set capture [sld_access_dr $sld_service_path $data_bit_length $delay_us \
$data_bytes]

Shift count is specified in bits, but the data content is specified as a list of bytes. The
capture return value is also a list of bytes. Always unlock the SLD node once finished
with the SLD service.

sld_unlock $sld_service_path

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

178

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Virtual JTAG IP Core User Guide

7.5.3.1. SLD Commands

Table 38. SLD Commands

Command Arguments Function

sld_access_ir <claim-path>
<ir-value>
<delay> (in µs)

Shifts the instruction value into the instruction register of the specified
node. Returns the previous value of the instruction.
If the <delay> parameter is non-zero, then the JTAG clock is paused for
this length of time after the access.

sld_access_dr <service-path>
<size_in_bits>
<delay-in-µs>,
<list_of_byte_values>

Shifts the byte values into the data register of the SLD node up to the size
in bits specified.
If the <delay> parameter is non-zero, then the JTAG clock is paused for at
least this length of time after the access.
Returns the previous contents of the data register.

sld_lock <service-path>
<timeout-in-milliseconds>

Locks the SLD chain to guarantee exclusive access.
Returns 0 if successful. If the SLD chain is already locked by another user,
tries for <timeout>ms before returning a Tcl error. You can use the catch
command if you want to handle the error.

sld_unlock <service-path> Unlocks the SLD chain.

Related Information

System Console and Toolkit Tcl Command Reference Manual

7.5.4. Using the In-System Sources and Probes Service

The In-System Sources and Probes (ISSP) service provides scriptable access to the In-
System Sources and Probes Intel FPGA IP in a similar manner to using the In-System
Sources and Probes Editor in the Intel Quartus Prime software.

Example 16. ISSP Service

Before you use the ISSP service, ensure your design works in the In-System
Sources and Probes Editor. In System Console, open the service for an ISSP
instance:

set issp_index 0
set issp [lindex [get_service_paths issp] 0]
set claimed_issp [claim_service issp $issp mylib]

View information about this particular ISSP instance:

array set instance_info [issp_get_instance_info $claimed_issp]
set source_width $instance_info(source_width)
set probe_width $instance_info(probe_width)

The Intel Quartus Prime software reads probe data as a single bitstring of length equal
to the probe width:

set all_probe_data [issp_read_probe_data $claimed_issp]

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

179

https://www.intel.com/content/www/us/en/programmable/documentation/bhc1411109490717.html#bhc1411109292871
https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

As an example, you can define the following procedure to extract an individual probe
line's data:

proc get_probe_line_data {all_probe_data index} {
 set line_data [expr { ($all_probe_data >> $index) & 1 }]
 return $line_data
}
set initial_all_probe_data [issp_read_probe_data $claim_issp]
set initial_line_0 [get_probe_line_data $initial_all_probe_data 0]
set initial_line_5 [get_probe_line_data $initial_all_probe_data 5]
...
set final_all_probe_data [issp_read_probe_data $claimed_issp]
set final_line_0 [get_probe_line_data $final_all_probe_data 0]

Similarly, the Intel Quartus Prime software writes source data as a single bitstring of
length equal to the source width:

set source_data 0xDEADBEEF
issp_write_source_data $claimed_issp $source_data

You can also retrieve the currently set source data:

set current_source_data [issp_read_source_data $claimed_issp]

As an example, you can invert the data for a 32-bit wide source by doing the
following:

set current_source_data [issp_read_source_data $claimed_issp]
set inverted_source_data [expr { $current_source_data ^ 0xFFFFFFFF }]
issp_write_source_data $claimed_issp $inverted_source_data

7.5.4.1. In-System Sources and Probes Commands

Note: The valid values for ISSP claims include read_only, normal, and exclusive.

Table 39. In-System Sources and Probes Commands

Command Arguments Function

issp_get_instance_info <service-path> Returns a list of the configurations of the In-System Sources and Probes
instance, including:
instance_index

instance_name

source_width

probe_width

issp_read_probe_data <service-path> Retrieves the current value of the probe input. A hex string is returned
representing the probe port value.

issp_read_source_data <service-path> Retrieves the current value of the source output port. A hex string is
returned representing the source port value.

issp_write_source_data <service-path>
<source-value>

Sets values for the source output port. The value can be either a hex
string or a decimal value supported by the System Console Tcl
interpreter.

Related Information

System Console and Toolkit Tcl Command Reference Manual

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

180

https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.5.5. Using the Monitor Service

The monitor service builds on top of the host service to allow reads of Avalon memory-
mapped interface agents at a regular interval. The service is fully software-based. The
monitor service requires no extra soft-logic. This service streamlines the logic to do
interval reads, and it offers better performance than exercising the host service
manually for the reads.

Example 17. Monitor Service

1. Determine the host and the memory address range that you want to poll:

set master_index 0
set master [lindex [get_service_paths master] $master_index]
set address 0x2000
set bytes_to_read 100
set read_interval_ms 100

With the first host, read 100 bytes starting at address 0x2000 every 100
milliseconds.

2. Open the monitor service:

set monitor [lindex [get_service_paths monitor] 0]
set claimed_monitor [claim_service monitor $monitor mylib]

The monitor service opens the host service automatically.

3. With the monitor service, register the address range and time interval:

monitor_add_range $claimed_monitor $master $address $bytes_to_read
monitor_set_interval $claimed_monitor $read_interval_ms

4. Add more ranges, defining the result at each interval:

global monitor_data_buffer
set monitor_data_buffer [list]

5. Gather the data and append it with a global variable:

proc store_data {monitor master address bytes_to_read} {\
 global monitor_data_buffer
monitor_read_data returns the range of data polled from the running \
 design as a list
#(in this example, a 100-element list).
 set data [monitor_read_data $claimed_monitor $master $address \
 $bytes_to_read]
Append the list as a single element in the monitor_data_buffer \
 global list.
 lappend monitor_data_buffer $data
}

Note: If this procedure takes longer than the interval period, the monitor service
may have to skip the next one or more calls to the procedure. In this case,
monitor_read_data returns the latest polled data.

6. Register this callback with the opened monitor service:

set callback [list store_data $claimed_monitor $master $address
$bytes_to_read]
monitor_set_callback $claimed_monitor $callback

7. Use the callback variable to call when the monitor finishes an interval. Start
monitoring:

monitor_set_enabled $claimed_monitor 1

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

181

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Immediately, the monitor reads the specified ranges from the device and invokes
the callback at the specified interval. Check the contents of
monitor_data_buffer to verify this. To turn off the monitor, use 0 instead of 1
in the above command.

7.5.5.1. Monitor Commands

You can use the Monitor commands to read many Avalon memory-mapped interface
agent memory locations at a regular interval.

Under normal load, the monitor service reads the data after each interval and then
calls the callback. If the value you read is timing sensitive, you can use the
monitor_get_read_interval command to read the exact time between the
intervals at which the data was read.

Under heavy load, or with a callback that takes a long time to execute, the monitor
service skips some callbacks. If the registers you read do not have side effects (for
example, they read the total number of events since reset), skipping callbacks has no
effect on your code. The monitor_read_data command and
monitor_get_read_interval command are adequate for this scenario.

If the registers you read have side effects (for example, they return the number of
events since the last read), you must have access to the data that was read, but for
which the callback was skipped. The monitor_read_all_data and
monitor_get_all_read_intervals commands provide access to this data.

Table 40. Monitoring Commands

Command Arguments Function

monitor_add_range <service-path>
<target-path>
<address>
<size>

Adds a contiguous memory address into the
monitored memory list.
<service path> is the value returned when
you opened the service.
<target-path> argument is the name of a
host service to read. The address is within
the address space of this service. <target-
path> is returned from [lindex
[get_service_paths master] n] where
n is the number of the host service.
<address> and <size> are relative to the
host service.

monitor_get_all_read_intervals <service-path>
<target-path>
<address>
<size>

Returns a list of intervals in milliseconds
between two reads within the data returned
by monitor_read_all_data.

monitor_get_interval <service-path> Returns the current interval set which
specifies the frequency of the polling action.

monitor_get_missing_event_count <service-path> Returns the number of callback events
missed during the evaluation of last Tcl
callback expression.

monitor_get_read_interval <service-path>
<target-path>
<address>
<size>

Returns the milliseconds elapsed between
last two data reads returned by
monitor_read_data.

continued...

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

182

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

monitor_read_all_data <service-path>
<target-path>
<address>
<size>

Returns a list of 8-bit values read from all
recent values read from device since last Tcl
callback. You must specify a memory range
within the range in monitor_add_range.

monitor_read_data <service-path>
<target-path>
<address>
<size>

Returns a list of 8-bit values read from the
most recent values read from device. You
must specify a memory range within the
range in monitor_add_range.

monitor_set_callback <service-path>
<Tcl-expression>

Specifies a Tcl expression that the System
Console must evaluate after reading all the
memories that this service monitors.
Typically, you specify this expression as a
single string Tcl procedure call with
necessary argument passed in.

monitor_set_enabled <service-path>
<enable(1)/disable(0)>

Enables and disables monitoring. Memory
read starts after this command, and Tcl
callback evaluates after data is read.

monitor_set_interval <service-path>
<interval>

Defines the target frequency of the polling
action by specifying the interval between two
memory reads. The actual polling frequency
varies depending on the system activity.

Related Information

System Console and Toolkit Tcl Command Reference Manual

7.5.6. Using the Device Service

The device service supports device-level actions.

Example 18. Programming

You can use the device service with Tcl scripting to perform device programming:

set device_index 0 ; #Device index for target
set device [lindex [get_service_paths device] $device_index]
set sof_path [file join project_path output_files project_name.sof]
device_download_sof $device $sof_path

To program, all you need are the device service path and the file system path to
a .sof. Ensure that no other service (e.g. host service) is open on the target device
or else the command fails. Afterwards, you may do the following to check that the
design linked to the device is the same one programmed:

device_get_design $device

7.5.6.1. Device Commands

The device commands provide access to programmable logic devices on your board.
Before you use these commands, identify the path to the programmable logic device
on your board using the get_service_paths.

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

183

https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 41. Device Commands

Command Arguments Function

device_download_sof <service_path>
<sof-file-path>

Loads the specified .sof to the device specified by the path.

device_get_connections <service_path> Returns all connections which go to the device at the specified path.

device_get_design <device_path> Returns the design this device is currently linked to.

Related Information

System Console and Toolkit Tcl Command Reference Manual

7.5.7. Using the Design Service

You can use design service commands to work with Intel Quartus Prime design
information.

Example 19. Load

When you open System Console from the Intel Quartus Prime software, the current
project's debug information is sourced automatically if the .sof file is present. In
other situations, you can load the .sof manually.

set sof_path [file join project_dir output_files project_name.sof]
set design [design_load $sof_path]

System Console is now aware of the .sof loading.

Example 20. Linking

Once a .sof loads, System Console automatically links design information to the
connected device. The link persists and you can unlink or reuse the link on an
equivalent device with the same .sof.

You can perform manual linking as follows:

set device_index 0; # Device index for our target
set device [lindex [get_service_paths device] $device_index]
design_link $design $device

Manual linking fails if the target device does not match the design service.

Linking fails even if the .sof programmed to the target is not the same as the
design .sof.

7.5.7.1. Design Service Commands

Design service commands load and work with your design at a system level.

Table 42. Design Service Commands

Command Arguments Function

design_load <quartus-
project-path>,
<sof-file-path>,

Loads a model of an Intel Quartus Prime design into System
Console. Returns the design path.

continued...

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

184

https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

or <qpf-file-
path>

For example, if your Intel Quartus Prime Project File (.qpf) is in
c:/projects/loopback, type the following command:
design_load {c:\projects\loopback\}

design_link <design-path>
<device-service-
path>

Links an Intel Quartus Prime logical design with a physical device.
For example, you can link an Intel Quartus Prime design called
2c35_quartus_design to a 2c35 device. After you create this
link, System Console creates the appropriate correspondences
between the logical and physical submodules of the Intel Quartus
Prime project.

design_extract_debug_files <design-path>
<zip-file-name>

Extracts debug files from a .sof to a zip file which can be
emailed to Intel FPGA Support for analysis.
You can specify a design path of {} to unlink a device and to
disable auto linking for that device.

design_get_warnings <design-path> Gets the list of warnings for this design. If the design loads
correctly, then an empty list returns.

Related Information

System Console and Toolkit Tcl Command Reference Manual

7.5.8. Using the Bytestream Service

The bytestream service provides access to modules that produce or consume a stream
of bytes. Use the bytestream service to communicate directly to the IP core that
provides bytestream interfaces, such as the JTAG UART or the Avalon Streaming JTAG
interface Intel FPGA IP.

Example 21. Bytestream Service

The following code finds the bytestream service for your interface and opens it:

set bytestream_index 0
set bytestream [lindex [get_service_paths bytestream] $bytestream_index]
set claimed_bytestream [claim_service bytestream $bytestream mylib]

To specify the outgoing data as a list of bytes and send it through the opened service:

set payload [list 1 2 3 4 5 6 7 8]
bytestream_send $claimed_bytestream $payload

Incoming data also comes as a list of bytes:

set incoming_data [list]
while {[llength $incoming_data] ==0} {
 set incoming_data [bytestream_receive $claimed_bytestream 8]
}

Close the service when done:

close_service bytestream $claimed_bytestream

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

185

https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.5.8.1. Bytestream Commands

Table 43. Bytestream Commands

Command Arguments Function

bytestream_send <service-path>
<values>

Sends the list of bytes to the specified bytestream service. Values argument is
the list of bytes to send.

bytestream_receive <service-path>
<length>

Returns a list of bytes currently available in the specified services receive
queue, up to the specified limit. Length argument is the maximum number of
bytes to receive.

Related Information

System Console and Toolkit Tcl Command Reference Manual

7.5.9. Using the JTAG Debug Service

The JTAG Debug service allows you to check the state of clocks and resets within your
design.

The following is a JTAG Debug design flow example.

1. To identify available JTAG Debug paths:

get_service_paths jtag_debug

2. To select a JTAG Debug path:

set jtag_debug_path [lindex [get_service_paths jtag_debug] 0]

3. To claim a JTAG Debug service path:

 set claim_jtag_path [claim_service jtag_debug$jtag_debug_path mylib]

4. Running the JTAG Debug service:

jtag_debug_reset_system $claim_jtag_path
jtag_debug_loop $claim_jtag_path [list 1 2 3 4 5]

7.5.9.1. JTAG Debug Commands

JTAG Debug commands help debug the JTAG Chain connected to a device.

Table 44. JTAG Debug Commands

Command Argument Function

jtag_debug_loop <service-path>
<list_of_byte_val
ues>

Loops the specified list of bytes through a loopback of tdi
and tdo of a system-level debug (SLD) node. Returns the
list of byte values in the order that they were received. This
command blocks until all bytes are received. Byte values
have the 0x (hexadecimal) prefix and are delineated by
spaces.

jtag_debug_sample_clock <service-path> Returns the clock signal of the system clock that drives the
module's system interface. The clock value is sampled
asynchronously; consequently, you must sample the clock
several times to guarantee that it is switching.

continued...

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

186

https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Argument Function

jtag_debug_sample_reset <service-path> Returns the value of the reset_n signal of the Avalon-ST
JTAG Interface core. If reset_n is low (asserted), the value
is 0 and if reset_n is high (deasserted), the value is 1.

jtag_debug_sense_clock <service-path> Returns a sticky bit that monitors system clock activity. If
the clock switched at least once since the last execution of
this command, returns 1. Otherwise, returns 0.. The sticky
bit is reset to 0 on read.

jtag_debug_reset_system <service-path> Issues a reset request to the specified service. Connectivity
within your device determines which part of the system is
reset.

Related Information

System Console and Toolkit Tcl Command Reference Manual

7.6. On-Board Intel FPGA Download Cable II Support

System Console supports an On-Board Intel FPGA Download Cable II circuit via the
USB Debug Master IP component. This IP core supports the master service.

7.7. MATLAB and Simulink* in a System Verification Flow

You can test system development in System Console using MATLAB and Simulink*,
and set up a system verification flow using the Intel FPGA Hardware in the Loop (HIL)
tools. In this approach, you deploy the design hardware to run in real time, and
simulate the system's surrounding components in a software environment. The HIL
approach allows you to use the flexibility of software tools with the real-world
accuracy and speed of hardware. You can gradually introduce more hardware
components to the system verification testbench. This technique gives you more
control over the integration process as you tune and validate the system. When the
full system is integrated, the HIL approach allows you to provide stimuli via software
to test the system under a variety of scenarios.

Advantages of HIL Approach

• Avoid long computational delays for algorithms with high processing rates

• API helps to control, debug, visualize, and verify FPGA designs all within the
MATLAB environment

• FPGA results are read back by the MATLAB software for further analysis and
display

Required Tools and Components

• MATLAB software

• DSP Builder for Intel FPGAs software

• Intel Quartus Prime software

• Intel FPGA

Note: The DSP Builder for Intel FPGAs installation bundle includes the System Console
MATLAB API.

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

187

https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 124. Hardware in the Loop Host-Target Setup

Related Information

Hardware in the Loop from the MATLAB Simulink Environment white paper

7.7.1. Supported MATLAB API Commands

You can perform the work from the MATLAB environment, and read and write to hosts
and agents through the System Console. The supported MATLAB API commands do
not require launching the System Console GUI. The supported commands are:

• SystemConsole.refreshMasters;

• M = SystemConsole.openMaster(1);

• M.write (type, byte address, data);

• M.read (type, byte address, number of words);

• M.close

Example 22. MATLAB API Script Example

SystemConsole.refreshMasters; %Investigate available targets
M = SystemConsole.openMaster(1); %Creates connection with FPGA target
%%%%%%%% User Application %%%%%%%%%%%%
....
M.write('uint32',write_address,data); %Send data to FPGA target
....
data = M.read('uint32',read_address,size); %Read data from FPGA target
....
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
M.close; %Terminates connection to FPGA target

7.7.2. High Level Flow

1. Install the DSP Builder for Intel FPGAs software, so you have the necessary
libraries to enable this flow

2. Build the design using Simulink and the DSP Builder for Intel FPGAs libraries.

DSP Builder for Intel FPGAs helps to convert the Simulink design to HDL

3. Include Avalon memory mapped components in the design (DSP Builder for Intel
FPGAs can port non-Avalon memory mapped components)

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

188

http://www.altera.com/literature/wp/wp-01208-hardware-in-the-loop.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Include Signals and Control blocks in the design

5. Separate synthesizable and non-synthesizable logic with boundary blocks.

6. Integrate the DSP system in Platform Designer

7. Program the Intel FPGA

8. Interact with the Intel FPGA through the supported MATLAB API commands.

7.8. System Console Examples and Tutorials

Intel provides examples for performing board bring-up, creating a simple toolkit, and
programming a Nios II processor. The System_Console.zip file contains design files
for the board bring-up example. The Nios II Ethernet Standard .zip files contain the
design files for the Nios II processor example.

Note: The instructions for these examples assume that you are familiar with the Intel
Quartus Prime software, Tcl commands, and Platform Designer.

Related Information

On-Chip Debugging Design Examples Website
Contains the design files for the example designs that you can download.

7.8.1. Nios II Processor Example

This example programs the Nios II processor on your board to run the count binary
software example included in the Nios II installation. This is a simple program that
uses an 8-bit variable to repeatedly count from 0x00 to 0xFF. The output of this
variable is displayed on the LEDs on your board. After programming the Nios II
processor, you use System Console processor commands to start and stop the
processor.

To run this example, perform the following steps:

1. Download the Nios II Ethernet Standard Design Example for your board from the
Intel website.

2. Create a folder to extract the design. For this example, use C:\Count_binary.

3. Unzip the Nios II Ethernet Standard Design Example into C:\Count_binary.

4. In a Nios II command shell, change to the directory of your new project.

5. Program your board. In a Nios II command shell, type the following:

nios2-configure-sof niosii_ethernet_standard_<board_version>.sof

6. Using Nios II Software Build Tools for Eclipse, create a new Nios II Application and
BSP from Template using the Count Binary template and targeting the Nios II
Ethernet Standard Design Example.

7. To build the executable and linkable format (ELF) file (.elf) for this application,
right-click the Count Binary project and select Build Project.

8. Download the .elf file to your board by right-clicking Count Binary project and
selecting Run As ➤ Nios II Hardware.

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

189

http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• The LEDs on your board provide a new light show.

9. Type the following:

system-console; #Start System Console.

#Set the processor service path to the Nios II processor.
set niosii_proc [lindex [get_service_paths processor] 0]

set claimed_proc [claim_service processor $niosii_proc mylib]; #Open the
service.

processor_stop $claimed_proc; #Stop the processor.
#The LEDs on your board freeze.

processor_run $claimed_proc; #Start the processor.
#The LEDs on your board resume their previous activity.

processor_stop $claimed_proc; #Stop the processor.

close_service processor $claimed_proc; #Close the service.

• The processor_step, processor_set_register, and
processor_get_register commands provide additional control over the
Nios II processor.

Related Information

• Nios II Ethernet Standard Design Example

• Nios II Gen2 Software Developer's Handbook

7.8.1.1. Processor Commands

Table 45. Processor Commands

Command (2) Arguments Function

processor_download_elf <service-path>
<elf-file-path>

Downloads the given Executable and Linking Format File
(.elf) to memory using the master service associated with the
processor. Sets the processor's program counter to the .elf
entry point.

processor_in_debug_mode <service-path> Returns a non-zero value if the processor is in debug mode.

processor_reset <service-path> Resets the processor and places it in debug mode.

processor_run <service-path> Puts the processor into run mode.

processor_stop <service-path> Puts the processor into debug mode.

processor_step <service-path> Executes one assembly instruction.

processor_get_register_names <service-path> Returns a list with the names of all of the processor's accessible
registers.

processor_get_register <service-path> Returns the value of the specified register.

continued...

(2) If your system includes a Nios II/f core with a data cache, it may complicate the debugging
process. If you suspect the Nios II/f core writes to memory from the data cache at
nondeterministic intervals; thereby, overwriting data written by the System Console, you can
disable the cache of the Nios II/f core while debugging.

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

190

http://www.altera.com/support/examples/nios2/exm-net-std-de.html
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2gen2.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command (2) Arguments Function

<register_name>

processor_set_register <service-path>
<register_name>
<value>

Sets the value of the specified register.

Related Information

Nios II Processor Example on page 189

7.9. Running System Console in Command-Line Mode

You can run System Console in command line mode and either work interactively or
run a Tcl script. System Console prints the output in the console window.

• --cli—Runs System Console in command-line mode.

• --project_dir=<project dir>—Directs System Console to the location of
your hardware project. Also works in GUI mode.

• --script=<your script>.tcl—Directs System Console to run your Tcl script.

• --help— Lists all available commands. Typing --help <command name>
provides the syntax and arguments of the command.

System Console provides command completion if you type the beginning letters of a
command and then press the Tab key.

Related Information

System Console and Toolkit Tcl Command Reference Manual

7.10. Using System Console Commands

You can use System Console commands to control hardware debug and testing with
the command-line or scripting. Use System Console commands to identify a System
Console service by its path, to open and close a connection, add a service, and a
variety of other System Console controls.

Note: For a complete reference of currently supported System Console and toolkit
commands, refer to the System Console and Toolkit Tcl Command Reference Manual.

The following steps show initiation of a simple service connection:

1. Identify a service by specifying its path with the get_service_paths command.

2. Open a connection to the service with the claim_service command.

3. Use Tcl and System Console commands to test the connected device.

4. Close a connection to the service with the close_service command

(2) If your system includes a Nios II/f core with a data cache, it may complicate the debugging
process. If you suspect the Nios II/f core writes to memory from the data cache at
nondeterministic intervals; thereby, overwriting data written by the System Console, you can
disable the cache of the Nios II/f core while debugging.

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

191

https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

System Console and Toolkit Tcl Command Reference Manual

7.11. Using Toolkit Tcl Commands

For advanced users, System Console also supports Tcl commands that allow you to
define and operate your own custom toolkits.

You can use the Toolkit Tcl commands to add and set the toolkit requirements and
properties, and to retrieve accessible toolkit modules, systems, and services at the
command-line or with scripting.

Note: For a complete reference of currently supported System Console and toolkit
commands, refer to the System Console and Toolkit Tcl Command Reference Manual.

Related Information

System Console and Toolkit Tcl Command Reference Manual

7.12. Analyzing and Debugging Designs with the System Console
Revision History

The following revision history applies to this chapter:

Document Version Intel Quartus
Prime Version

Changes

2021.06.21 21.2 • Moved System Console and Toolkit Tcl command descriptions to System
Console and Toolkit Tcl Command Reference Manual and provided links
to this new comprehensive document.

• Replaced non-inclusive terms with "host" and "agent" inclusive terms
for Avalon memory mapped interface descriptions and related GUI
elements.

• Added toolkit definition to Introduction to System Console topic.
• Revised System Console Tools figure.
• Revised wording of Autosweep View topic for clarity.
• Added details to explanation of legacy toolkits in Available System

Debugging Toolkits
• Added ISSP service to Common Services for System Console table.
• Added link to download center.

2021.03.29 21.1 • Added link to Introduction to System Console topic.

2020.09.28 20.3 • Revised "Introduction to System Console" wording and block diagram.
• Revised "Starting System Console" to consolidate all methods.
• Revised "Toolkit Explorer Pane" to refer to launching toolkits.
• Revised "Autosweep View" to account for use with or without toolkit

and export and import of settings.
• Added new "Launching a Toolkit in System Console" topic.
• Added new "Available System Debugging Toolkits" topic.
• Added new Toolkit Tcl Commands section.
• Reordered some topics and updated outdated screenshots.

2019.09.30 19.3 Made the following updates in the Analyzing and Debugging Designs with
System Console chapter:

continued...

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

192

https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
https://www.intel.com/content/www/us/en/programmable/documentation//mrd1619722126381.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

• Updated System Console GUI and System Explorer Pane topics to
describe the new framework.

• Added the following new topics to describe various panes and views
added to the System Console:
— System Console Default Panes
— Toolkit Explorer Pane
— Filtering and Searching Interactive Instances
— Creating Collections from the Toolkit Explorer
— System Console Views
— Main View
— Link Pair View
— Autosweep View
— Dashboard View
— Eye View

• Removed Working with Toolkit section completely since it was now
outdated due to the implementation of new System Console
framework.

2018.05.07 18.0.0 Removed obsolete section: Board Bring-Up with System Console Tutorial.

2017.05.08 17.0.0 • Created topic Convert your Dashboard Scripts to Toolkit API.
• Removed Registering the Service Example from Toolkit API Script

Examples, and added corresponding code snippet to Registering a
Toolkit.

• Moved .toolkit Description File Example under Creating a Toolkit
Description File.

• Renamed Toolkit API GUI Example .toolkit File to .toolkit Description
File Example.

• Updated examples on Toolkit API to reflect current supported syntax.

2016.10.31 16.1.0 • Implemented Intel rebranding.

2015.11.02 15.1.0 • Edits to Toolkit API content and command format.
• Added Toolkit API design example.
• Added graphic to Introduction to System Console.
• Deprecated Dashboard.
• Changed instances of Quartus II to Intel Quartus Prime.

October 2015 15.1.0 • Added content for Toolkit API
— Required .toolkit and Tcl files
— Registering and launching the toolkit
— Toolkit discovery and matching toolkits to IP
— Toolkit API commands table

May 2015 15.0.0 Added information about how to download and start System Console
stand-alone.

December 2014 14.1.0 • Added overview and procedures for using ADC Toolkit on MAX 10
devices.

• Added overview for using MATLAB/Simulink Environment with System
Console for system verification.

June 2014 14.0.0 Updated design examples for the following: board bring-up, dashboard
service, Nios II processor, design service, device service, monitor service,
bytestream service, SLD service, and ISSP service.

November 2013 13.1.0 Re-organization of sections. Added high-level information with block
diagram, workflow, SLD overview, use cases, and example Tcl scripts.

June 2013 13.0.0 Updated Tcl command tables. Added board bring-up design example.
Removed SOPC Builder content.

continued...

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

193

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

November 2012 12.1.0 Re-organization of content.

August 2012 12.0.1 Moved Transceiver Toolkit commands to Transceiver Toolkit chapter.

June 2012 12.0.0 Maintenance release. This chapter adds new System Console features.

November 2011 11.1.0 Maintenance release. This chapter adds new System Console features.

May 2011 11.0.0 Maintenance release. This chapter adds new System Console features.

December 2010 10.1.0 Maintenance release. This chapter adds new commands and references for
Qsys.

July 2010 10.0.0 Initial release. Previously released as the System Console User Guide,
which is being obsoleted. This new chapter adds new commands.

7. Analyzing and Debugging Designs with System Console

683819 | 2021.10.13

Intel Quartus Prime Pro Edition User Guide: Debug Tools Send Feedback

194

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. Intel Quartus Prime Pro Edition User Guide Debug
Tools Archives

If the table does not list a software version, the user guide for the previous software version applies.

Intel Quartus Prime
Version

User Guide

21.2 Intel Quartus Prime Pro Edition User Guide Debug Tools

21.1 Intel Quartus Prime Pro Edition User Guide Debug Tools

20.3 Intel Quartus Prime Pro Edition User Guide Debug Tools

19.3 Intel Quartus Prime Pro Edition User Guide Debug Tools

18.1 Intel Quartus Prime Pro Edition User Guide Debug Tools

18.0 Intel Quartus Prime Pro Edition User Guide Debug Tools

683819 | 2021.10.13

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/archives/ug-qpp-debug-21-2.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/archives/ug-qpp-debug-21-1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/archives/ug-qpp-debug-20-3.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/archives/ug-qpp-debug-19-3.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/archives/ug-qpp-debug-18-1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/archives/ug-qpp-debug-18-0.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

A. Intel Quartus Prime Pro Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Intel Quartus Prime Pro Edition FPGA design flow.

Related Information

• Intel Quartus Prime Pro Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Intel Quartus Prime
Pro Edition software, including managing Intel Quartus Prime Pro Edition
projects and IP, initial design planning considerations, and project migration
from previous software versions.

• Intel Quartus Prime Pro Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer, a system
integration tool that simplifies integrating customized IP cores in your project.
Platform Designer automatically generates interconnect logic to connect
intellectual property (IP) functions and subsystems.

• Intel Quartus Prime Pro Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Intel Quartus
Prime Pro Edition software. HDL coding styles and synchronous design
practices can significantly impact design performance. Following recommended
HDL coding styles ensures that Intel Quartus Prime Pro Edition synthesis
optimally implements your design in hardware.

• Intel Quartus Prime Pro Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Intel Quartus
Prime Pro Edition Compiler. The Compiler synthesizes, places, and routes your
design before generating a device programming file.

• Intel Quartus Prime Pro Edition User Guide: Design Optimization
Describes Intel Quartus Prime Pro Edition settings, tools, and techniques that
you can use to achieve the highest design performance in Intel FPGAs.
Techniques include optimizing the design netlist, addressing critical chains that
limit retiming and timing closure, optimizing device resource usage, device
floorplanning, and implementing engineering change orders (ECOs).

• Intel Quartus Prime Pro Edition User Guide: Programmer
Describes operation of the Intel Quartus Prime Pro Edition Programmer, which
allows you to configure Intel FPGA devices, and program CPLD and
configuration devices, via connection with an Intel FPGA download cable.

• Intel Quartus Prime Pro Edition User Guide: Block-Based Design
Describes block-based design flows, also known as modular or hierarchical
design flows. These advanced flows enable preservation of design blocks (or
logic that comprises a hierarchical design instance) within a project, and reuse
of design blocks in other projects.

683819 | 2021.10.13

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/documentation/spj1513986956763.html
https://www.intel.com/content/www/us/en/programmable/documentation/zcn1513987282935.html
https://www.intel.com/content/www/us/en/programmable/documentation/sbc1513987577203.html
https://www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html
https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html
https://www.intel.com/content/www/us/en/programmable/documentation/ftt1513991830769.html
https://www.intel.com/content/www/us/en/programmable/documentation/yrh1513988099640.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Intel Quartus Prime Pro Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

• Intel Quartus Prime Pro Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Siemens EDA, and Synopsys* that allow
you to verify design behavior before device programming. Includes simulator
support, simulation flows, and simulating Intel FPGA IP.

• Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Siemens EDA, and Synopsys*. Includes design flow steps, generated
file descriptions, and synthesis guidelines.

• Intel Quartus Prime Pro Edition User Guide: Third-party Logic Equivalence
Checking Tools

Describes support for optional logic equivalence checking (LEC) of your design
in third-party LEC tools by OneSpin*.

• Intel Quartus Prime Pro Edition User Guide: Debug Tools
Describes a portfolio of Intel Quartus Prime Pro Edition in-system design
debugging tools for real-time verification of your design. These tools provide
visibility by routing (or “tapping”) signals in your design to debugging logic.
These tools include System Console, Signal Tap logic analyzer, system
debugging toolkits, In-System Memory Content Editor, and In-System Sources
and Probes Editor.

• Intel Quartus Prime Pro Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Intel Quartus
Prime Pro Edition Timing Analyzer, a powerful ASIC-style timing analysis tool
that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology.

• Intel Quartus Prime Pro Edition User Guide: Power Analysis and Optimization
Describes the Intel Quartus Prime Pro Edition Power Analysis tools that allow
accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Intel Quartus Prime Pro Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Interface Planner to prototype
interface implementations, plan clocks, and quickly define a legal device
floorplan. Use the Pin Planner to visualize, modify, and validate all I/O
assignments in a graphical representation of the target device.

• Intel Quartus Prime Pro Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Siemens EDA
and Cadence*. Also includes information about signal integrity analysis and
simulations with HSPICE and IBIS Models.

• Intel Quartus Prime Pro Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Intel Quartus
Prime Pro Edition software and to perform a wide range of functions, such as
managing projects, specifying constraints, running compilation or timing
analysis, or generating reports.

A. Intel Quartus Prime Pro Edition User Guides

683819 | 2021.10.13

Send Feedback Intel Quartus Prime Pro Edition User Guide: Debug Tools

197

https://www.intel.com/content/www/us/en/programmable/documentation/tnc1513987819990.html
https://www.intel.com/content/www/us/en/programmable/documentation/gft1513990268888.html
https://www.intel.com/content/www/us/en/programmable/documentation/hjy1513988789394.html
https://www.intel.com/content/www/us/en/programmable/documentation/sth1529938337105.html
https://www.intel.com/content/www/us/en/programmable/documentation/sth1529938337105.html
https://www.intel.com/content/www/us/en/programmable/documentation/nfc1513989909783.html
https://www.intel.com/content/www/us/en/programmable/documentation/psq1513989797346.html
https://www.intel.com/content/www/us/en/programmable/documentation/osq1513989409475.html
https://www.intel.com/content/www/us/en/programmable/documentation/iqe1513988936192.html
https://www.intel.com/content/www/us/en/programmable/documentation/fnf1513989100686.html
https://www.intel.com/content/www/us/en/programmable/documentation/sbv1513989262284.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Debug%20Tools%20(683819%202021.10.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Intel Quartus Prime Pro Edition User Guide: Debug Tools
	Contents
	1. System Debugging Tools Overview
	1.1. System Debugging Tools Portfolio
	1.1.1. System Debugging Tools Comparison
	1.1.2. Suggested Tools for Common Debugging Requirements
	1.1.3. Debugging Ecosystem

	1.2. Tools for Monitoring RTL Nodes
	1.2.1. Resource Usage
	1.2.1.1. Overhead Logic
	1.2.1.1.1. For Signal Tap Logic Analyzer
	1.2.1.1.2. For Signal Probe
	1.2.1.1.3. For Logic Analyzer Interface

	1.2.2. Pin Usage
	1.2.2.1. For Signal Tap Logic Analyzer
	1.2.2.2. For Signal Probe
	1.2.2.3. For Logic Analyzer Interface

	1.2.3. Usability Enhancements
	1.2.3.1. Incremental Routing
	1.2.3.2. Automation Via Scripting

	1.3. Stimulus-Capable Tools
	1.3.1. In-System Sources and Probes
	1.3.1.1. Push Button Functionality

	1.3.2. In-System Memory Content Editor
	1.3.2.1. Generate Test Vectors

	1.3.3. System Console
	1.3.3.1. Test Signal Integrity
	1.3.3.2. Board Bring-Up and Verification
	1.3.3.3. Debug with Available Toolkits

	1.4. Virtual JTAG Interface Intel FPGA IP
	1.5. System-Level Debug Fabric
	1.6. SLD JTAG Bridge
	1.6.1. SLD JTAG Bridge Index
	1.6.2. Instantiating the SLD JTAG Bridge Agent
	1.6.3. Instantiating the SLD JTAG Bridge Host

	1.7. Partial Reconfiguration Design Debugging
	1.7.1. Debug Fabric for Partial Reconfiguration Designs
	1.7.1.1. Generation of PR Debug Infrastructure

	1.8. Preserving Signals for Debugging
	1.8.1. Preserve for Debug Overview
	1.8.2. Marking Signals for Debug
	1.8.2.1. Step 1: Enabling Preserve for Debug
	1.8.2.1.1. Enabling Preserve for Debug In Project Settings
	1.8.2.1.2. Enabling Preserve for Debug at Instance Level

	1.8.2.2. Step 2: Implement Preserve for Debug Assignments
	1.8.2.2.1. HDL Implementation
	1.8.2.2.2. Intel Quartus Prime Settings Implementation

	1.8.2.3. Step 3: Locate and Report Preserve for Debug Nodes
	1.8.2.3.1. Locating Preserve for Debug Nodes
	1.8.2.3.2. Reporting Preserve for Debug Nodes

	1.9. System Debugging Tools Overview Revision History

	2. Design Debugging with the Signal Tap Logic Analyzer
	2.1. Signal Tap Logic Analyzer Introduction
	2.1.1. Signal Tap Hardware and Software Requirements

	2.2. Signal Tap Debugging Flow
	2.3. Step 1: Add the Signal Tap Logic Analyzer to the Project
	2.3.1. Creating a Signal Tap Instance with the Signal Tap GUI
	2.3.1.1. Manging Signal Tap Instances

	2.3.2. Creating a Signal Tap Instance by HDL Instantiation
	2.3.2.1. Signal Tap Intel FPGA IP Parameters

	2.4. Step 2: Configure the Signal Tap Logic Analyzer
	2.4.1. Preserving Signals for Monitoring and Debugging
	2.4.2. Preventing Changes that Require Full Recompilation
	2.4.3. Specifying the Clock, Sample Depth, and RAM Type
	2.4.4. Specifying the Buffer Acquisition Mode
	2.4.4.1. Non-Segmented Buffer
	2.4.4.2. Segmented Buffer

	2.4.5. Adding Signals to the Signal Tap Logic Analyzer
	2.4.5.1. Adding Pre-Synthesis or Post-Fit Nodes
	2.4.5.2. Adding Simulator-Aware Signal Tap Nodes
	2.4.5.2.1. Add Simulator-Aware Node Finder Settings

	2.4.5.3. Adding Nios II Processor Signals with a Plug-In
	2.4.5.4. Signals Unavailable for Signal Tap Debugging

	2.4.6. Defining Trigger Conditions
	2.4.6.1. Basic Trigger Conditions
	2.4.6.2. Nested Trigger Conditions
	2.4.6.3. Comparison Trigger Conditions
	2.4.6.3.1. Specifying the Comparison Trigger Conditions

	2.4.6.4. Advanced Trigger Conditions
	2.4.6.4.1. Examples of Advanced Triggering Expressions

	2.4.6.5. Custom Trigger HDL Object
	2.4.6.5.1. Using the Custom Trigger HDL Object
	2.4.6.5.2. Required Inputs and Outputs of Custom Trigger HDL Module
	2.4.6.5.3. Custom Trigger HDL Module Properties

	2.4.6.6. Specify Trigger Position
	2.4.6.6.1. Post-fill Count

	2.4.6.7. Power-Up Triggers
	2.4.6.7.1. Enabling a Power-Up Trigger
	2.4.6.7.2. Configuring Power-Up Trigger Conditions
	2.4.6.7.3. Managing Signal Tap Instances with Run-Time and Power-Up Trigger Conditions

	2.4.6.8. External Triggers
	2.4.6.9. Trigger Condition Flow Control
	2.4.6.10. Sequential Triggering
	2.4.6.10.1. Configuring the Sequential Triggering Flow

	2.4.6.11. State-Based Triggering
	2.4.6.11.1. State-Based Triggering Flow Tab
	2.4.6.11.2. State Machine Pane
	2.4.6.11.3. Resources Pane
	2.4.6.11.4. State Diagram Pane
	2.4.6.11.5. Signal Tap Trigger Flow Description Language
	<state_label>
	<boolean_expression>
	<action_list>
	Buffer Control Actions
	State Transition Action

	Trigger that Skips Clock Cycles after Hitting Condition
	Storage Qualification with Post-Fill Count Value Less than m
	Resource Manipulation Action
	Buffer Control Actions
	State Transition Action

	2.4.6.11.6. State-Based Storage Qualifier Feature
	Storage Qualification Feature for the State-Based Trigger Flow

	2.4.6.12. Trigger Lock Mode

	2.4.7. Specifying Pipeline Settings
	2.4.8. Filtering Relevant Samples
	2.4.8.1. Input Port Mode
	2.4.8.2. Transitional Mode
	2.4.8.3. Conditional Mode
	2.4.8.4. Start/Stop Mode
	2.4.8.5. State-Based Mode
	2.4.8.6. Showing Data Discontinuities
	2.4.8.7. Disable the Storage Qualifier

	2.5. Step 3: Compile the Design and Signal Tap Instances
	2.5.1. Recompiling Only Signal Tap Changes
	2.5.2. Timing Preservation
	2.5.3. Performance and Resource Considerations
	2.5.3.1. Increasing Signal Tap Logic Performance
	2.5.3.2. Reducing Signal Tap Device Resources

	2.6. Step 4: Program the Target Hardware
	2.6.1. Ensure Compatibility Between .stp and .sof Files

	2.7. Step 5: Run the Signal Tap Logic Analyzer
	2.7.1. Changing the Post-Fit Signal Tap Target Nodes
	2.7.2. Runtime Reconfigurable Options
	2.7.3. Signal Tap Status Messages

	2.8. Step 6: Analyze Signal Tap Captured Data
	2.8.1. Viewing Capture Data Using Segmented Buffers
	2.8.2. Viewing Data with Different Acquisition Modes
	2.8.2.1. Continuous Mode and a Storage Qualifier Examples

	2.8.3. Creating Mnemonics for Bit Patterns
	2.8.3.1. Adding Mnemonics with a Plug-In

	2.8.4. Locating a Node in the Design
	2.8.5. Saving Captured Signal Tap Data
	2.8.6. Exporting Captured Signal Tap Data
	2.8.7. Creating a Signal Tap List File

	2.9. Other Signal Tap Debugging Flows
	2.9.1. Signal Tap and Simulator Integration
	2.9.1.1. Generating a Simulation Testbench from Signal Tap Data
	2.9.1.2. Create Simulation Testbench Dialog Box Settings

	2.9.2. Managing Multiple Signal Tap Configurations
	2.9.2.1. Data Log Pane
	2.9.2.2. SOF Manager

	2.9.3. Debugging Partial Reconfiguration Designs with Signal Tap
	2.9.3.1. Signal Tap Guidelines for PR Designs
	2.9.3.2. PR Design Setup for Signal Tap Debug
	2.9.3.2.1. Preparing the Static Region for Signal Tap Debugging
	2.9.3.2.2. Preparing the Base Revision for Signal Tap Debugging
	2.9.3.2.3. Preparing PR Personas for Signal Tap Debugging

	2.9.3.3. Performing Data Acquisition in a PR design

	2.9.4. Debugging Block-Based Designs with Signal Tap
	2.9.4.1. Signal Tap Debugging with a Core Partition
	2.9.4.1.1. Partition Boundary Ports Method
	2.9.4.1.2. Debug a Core Partition through Partition Boundary Ports
	2.9.4.1.3. Export a Core Partition with Partition Boundary Ports
	2.9.4.1.4. Signal Tap HDL Instance Method
	Debug a Core Partition Exported with Signal Tap HDL Instances

	2.9.4.1.5. Export a Core Partition with Signal Tap HDL Instances
	2.9.4.1.6. Debug a Core Partition Exported with Signal Tap HDL Instances

	2.9.4.2. Signal Tap Debugging with a Root Partition
	2.9.4.2.1. Export the Root Partition with SLD JTAG Bridge
	2.9.4.2.2. Debugging an Exported Root Partition and Core Partition Simultaneously using the SLD JTAG Bridge

	2.9.4.3. Compiler Snapshots and Signal Tap Debugging
	2.9.4.3.1. Add Post-Fit Nodes when Reusing a Partition Containing a Synthesis Snapshot

	2.9.5. Debugging Devices that use Configuration Bitstream Security
	2.9.6. Signal Tap Data Capture with the MATLAB MEX Function

	2.10. Signal Tap Logic Analyzer Design Examples
	2.11. Custom State-Based Triggering Flow Examples
	2.11.1. Trigger Example 1: Custom Trigger Position
	2.11.2. Trigger Example 2: Trigger When triggercond1 Occurs Ten Times between triggercond2 and triggercond3

	2.12. Signal Tap File Templates
	2.13. Running the Stand-Alone Version of Signal Tap
	2.14. Signal Tap Scripting Support
	2.14.1. Signal Tap Command-Line Options
	2.14.2. Data Capture from the Command Line

	2.15. Signal Tap File Version Compatibility
	2.16. Design Debugging with the Signal Tap Logic Analyzer Revision History

	3. Quick Design Verification with Signal Probe
	3.1. Signal Probe Debugging Flow
	3.1.1. Step 1: Reserve Signal Probe Pins
	3.1.2. Step 2: Assign Nodes to Signal Probe Pins
	3.1.3. Step 3: Connect the Signal Probe Pin to an Output Pin
	3.1.4. Step 4: Compile the Design
	3.1.5. (Optional) Step 5: Modify the Signal Probe Pins Assignments
	3.1.6. Step 6: Run Fitter-Only Compilation
	3.1.7. Step 7: Check Connection Table in Fitter Report

	3.2. Quick Design Verification with Signal Probe Revision History

	4. In-System Debugging Using External Logic Analyzers
	4.1. About the Intel Quartus Prime Logic Analyzer Interface
	4.2. Choosing a Logic Analyzer
	4.2.1. Required Components

	4.3. Flow for Using the LAI
	4.3.1. Defining Parameters for the Logic Analyzer Interface
	4.3.2. Mapping the LAI File Pins to Available I/O Pins
	4.3.3. Mapping Internal Signals to the LAI Banks
	4.3.4. Compiling Your Intel Quartus Prime Project
	4.3.5. Programming Your Intel-Supported Device Using the LAI

	4.4. Controlling the Active Bank During Runtime
	4.4.1. Acquiring Data on Your Logic Analyzer

	4.5. LAI Core Parameters
	4.6. In-System Debugging Using External Logic Analyzers Revision History

	5. In-System Modification of Memory and Constants
	5.1. IP Cores Supporting ISMCE
	5.2. Debug Flow with the In-System Memory Content Editor
	5.3. Enabling Runtime Modification of Instances in the Design
	5.4. Programming the Device with the In-System Memory Content Editor
	5.5. Loading Memory Instances to the ISMCE
	5.6. Monitoring Locations in Memory
	5.7. Editing Memory Contents with the Hex Editor Pane
	5.8. Importing and Exporting Memory Files
	5.9. Access Two or More Devices
	5.10. Scripting Support
	5.10.1. The insystem_memory_edit Tcl Package
	5.10.1.1. Getting Information about the insystem_memory_edit Package

	5.11. In-System Modification of Memory and Constants Revision History

	6. Design Debugging Using In-System Sources and Probes
	6.1. Hardware and Software Requirements
	6.2. Design Flow Using the In-System Sources and Probes Editor
	6.2.1. Instantiating the In-System Sources and Probes IP Core
	6.2.2. In-System Sources and Probes IP Core Parameters

	6.3. Compiling the Design
	6.4. Running the In-System Sources and Probes Editor
	6.4.1. In-System Sources and Probes Editor GUI
	6.4.2. Programming Your Device With JTAG Chain Configuration
	6.4.3. Instance Manager
	6.4.4. In-System Sources and Probes Editor Pane
	6.4.4.1. Reading Probe Data
	6.4.4.2. Writing Data
	6.4.4.3. Organizing Data

	6.5. Tcl interface for the In-System Sources and Probes Editor
	6.6. Design Example: Dynamic PLL Reconfiguration
	6.7. Design Debugging Using In-System Sources and Probes Revision History

	7. Analyzing and Debugging Designs with System Console
	7.1. Introduction to System Console
	7.1.1. IP Cores that Interact with System Console
	7.1.2. Services Provided through Debug Agents
	7.1.3. System Console Debugging Flow

	7.2. Starting System Console
	7.2.1. Customizing System Console Startup

	7.3. System Console GUI
	7.3.1. System Console Views
	7.3.1.1. Main View
	7.3.1.1.1. Link Pair View

	7.3.1.2. Autosweep View
	7.3.1.3. Dashboard View
	7.3.1.4. Eye Viewer

	7.3.2. Toolkit Explorer Pane
	7.3.3. System Explorer Pane

	7.4. Launching a Toolkit in System Console
	7.4.1. Available System Debugging Toolkits
	7.4.2. Creating Collections from the Toolkit Explorer
	7.4.3. Filtering and Searching Interactive Instances

	7.5. Using System Console Services
	7.5.1. Locating Available Services
	7.5.2. Opening and Closing Services
	7.5.3. Using the SLD Service
	7.5.3.1. SLD Commands

	7.5.4. Using the In-System Sources and Probes Service
	7.5.4.1. In-System Sources and Probes Commands

	7.5.5. Using the Monitor Service
	7.5.5.1. Monitor Commands

	7.5.6. Using the Device Service
	7.5.6.1. Device Commands

	7.5.7. Using the Design Service
	7.5.7.1. Design Service Commands

	7.5.8. Using the Bytestream Service
	7.5.8.1. Bytestream Commands

	7.5.9. Using the JTAG Debug Service
	7.5.9.1. JTAG Debug Commands

	7.6. On-Board Intel FPGA Download Cable II Support
	7.7. MATLAB and Simulink* in a System Verification Flow
	7.7.1. Supported MATLAB API Commands
	7.7.2. High Level Flow

	7.8. System Console Examples and Tutorials
	7.8.1. Nios II Processor Example
	7.8.1.1. Processor Commands

	7.9. Running System Console in Command-Line Mode
	7.10. Using System Console Commands
	7.11. Using Toolkit Tcl Commands
	7.12. Analyzing and Debugging Designs with the System Console Revision History

	8. Intel Quartus Prime Pro Edition User Guide Debug Tools Archives
	A. Intel Quartus Prime Pro Edition User Guides

