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In many past epochs, problems arising from theoretical physics influenced the

development of mathematics, or structures that first arose in mathematics en-

tered in the development of physics. Famous twentieth century examples would
be the role of Riemannian geometry in facilitating the invention of general rel-
ativity or the mﬁuence of quantum mechanics in the development of functional
analysis. The above-cited examples, however, involve innovations in physics that
took place sixty or seventy years ago. In the last half century, mathematics and
Physics d:veloped in very different directions, and really significant interzciion
between the two disciplines became comparatively rare.

[

ssed into abstract reams

In part this happened because mathematics PIo
seemingly unre]ated to the humdrum world of the theoretical physicist. In par, it
resulted from the way that physics developed The two basic theories in twentieth
century physics are general relativity and quantum field theory. Their succeses
are in very different realms. General relativity — Einstein’s theory of graity
— has its successfy] applications to large scale astronomical phenomena, wiile
quantum field theory is the framework within which physicists have been le
to understand many properties of the elementary particles. General relatiity
Wwas put in its final form by Einstein in 1915, while quantum field theory las
been an open frontier since 1ts formulatlon in the late 1920’s. For half a centry,

the TeaHy fundamental advanceu in physics have mamly been developmentsin
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quantum field theory. In this period, it is quantum field theory which has been

the central arena for possible interaction between mathematics and physics.

For some decades after the invention of quantum field theory, this theory was
formulated in a rather technical and clumsy way, hard to work with even for-
physicists. It was not at all obvious that quantum field theory really exists as a
sound mathematical theory. Most important, in the first few decades of quantum

field theory, this subject did not give rise to very many interesting mathematical

structures.

The outlook changed in the mid-1970’s after non-abelian gauge theories
emerged as the quantum field theories most relevant to physics. In the context of
these theories, many significant physical problems lead to significant concepts in
modern mathematics. For example, the study of magnetic monopoles and instan-
tons involves the topological classification of vector bundles. The solution to the
‘U(1) ‘problem’ of quantum chromodynamics turned out to involve the Atiyah-
- Singer index theorem. The proper understanding of local and global ‘anomalies’
involves fairly subtle properties of families of .el_._l__iptic;r.--q,peratq»rﬁls,’.v_ \f'arious other

examples could be cited.

It certainly is charming to see ‘practical’ applications of some seemingly ab-
struse mathematics. In some of the cases I have mentioned, the solution of the
physics problem has actually required the uncovering of new mathematical the
orems. All the same, the mutual interaction of mathematics and physics would
remain rather limited, I believe, if it were only a question Bf quantum field theory.
The applications of modern mathematics to quantum field theory are fascinating
but relatively specialized; and the same can be said for the role that quantum
field theory has so far played in stimulating mathematical innovations. It is in
trying to go beyond the limitations of quantum field theory that physicists hawve

-really begun to meet mathematical frontiers.

The basic limitation of quantum field theory is that, as we noted earlier, il

is only one of.two:fundamental.theories in twentieth century physics, the second
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Being general relativity. Both of these theories play a role in describing the same
natural world, so a more compiete description of nature must efxcompass both of
them. It has been rather clear, however, since the early days of quantum field
theory that there are severé; difficulties in trying to combine quantum field theory
with general relativity. The formal attempt to quantize general relativity leadsto
nonsensical infinite formulas. In its early days, quantum field theory faced many
difficulties, of which this was only one. As the other difficulties were overcome
and quantum field theory emerged as an adequate framework for describing all of
the natural forces except gravity, the inconsistency between general relativity and

quantum field theory emerged clearly as the limitation of quantum field theory.

This problem is a theorists’ problem par ezcellence. Experiment provides lit-
tle guide except for the bare fact that quantum field theory and general relativity
both piay a role in the description of natural law. Unfortunately, gravitational
effects ‘are unmeasurably small in all feasible experiments in which quantum field
theory plays an observeable role — and vice-versa. All the same, fhe inconsistencym
between the two central fheories in physics is ;lear]y an important problem oﬁ
the logical plane. Indeed, the history of physics I xamp]es showing
how important such problems are. For example, general ‘reiativity was invented
in Einstein’s effort to resolve an inconsistency between two leading theories of
that time, namely special relativity and Newtonian gravity. Quantum field theory
was similarly born in an attempt to reconcile non-relativistic quantum mechanis

with special relativity.

In the discovery of general relativity, the logical framework came first. Ei-
stein first thought througvh tﬁe physial principles which the new theory shoud
embody, then found in Riemannian éeometry» the correct mathematical frame-
work, and finally formulated the theory. The development of quantum mechanis
~ and quantum field theory was quite different. There was no @ priort conceptul
insight;. ex-perimenta.]vc]ues played an extensive role. As I have indicated, expei-
~.ment is not likely to provide detailed guidance about the reconciliation of genenl

S ,.r:ela,tivity_.».,,}/v»i.:th,?qpahtum',,'.ﬁ-éldfaiiheor)?.i One might therefore believe that the only
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hope is to emulate the history of general relativity, inventing by sheer thought a
new mathematical framework whch will generalize Riemannian geometry and will
be capable of encompassing quantum field theory. Many ambitious theoretical

physicists have aspired to do such a thing, but little has come of such efforts.

Progress seems to have come, instead, in a rather different way. In the course
of attempting to understand the strong interactions, physicists were led in the
late 1960’s and early 1970°%s to investigate what came to be known as ‘string
theory.” String theory was originally.discovered by accident, or at least in an
exceedingly indirect way, starting with the ‘Veneziano model’ [30]. Surveys of
string theory can be found in [17 » 11,25,13]. As string theory was developed, a
remarkably rich mathematical structure emerged, but one which bore increas-
ingly little resemblance to strong interactions. By about 1973-4, a successful
theory of strong interactions emerged in the context of non-abelian gauge theory
The mathematical structure of string theory retained its fascination, however.
By around 1974, just as the original motivation for work on. string theory was

d

strong interactions but as a framework for reé&htililmg%’«ger’aw:tatzoﬂ with quantum

t as a theory of

fading, it was suggested that string theory sh_oul__d_;bfe_

mechanics [24]. This idea has many bizarre implications. For instance, it is nec-
essary to believe that (insofar as the conventional concepts of geometry are valid)
space-time is ten dimensional rather than four dimensional. After some years of
neglect, this idea has been revived in the 1980’s, and there are many indications

that this framework is close to the truth.

The roundabout path to the discovery of string theory has had a price. De-
spite learning much about this subject, we still do not know the logical fra.mework
in-which it has its proper home. It is roughly as if general relativity had been

-invented, in some peculiar formulation, without knowing about Riemannian ge-

ometry; the task would then arise of reconstructing Riemannian geometry as the

basic framework-behind general relativity. The idea of knowing about general

- relativity without knowing about Ri¢émannian geometry may sound outlandish,

.. but we, are.in_just.such an outlandish situation in string theory. We do not
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know what the basic logical setting for string theory will turn out to be. We can
say that some of the ingredienté in string theory are Riemann surfaces, modular
forms, and representation theory of infinite dimensional Lie algebras. These are
preliminaries for thinking ébout string theory just as a modicum of elementary
linear algebra is a prerequisite for Riemannian geometry and general relatiﬁty.
While we do not know the proper logical setting for string theory, it seems rather
clear that it will involve some fundamental generalization of the usual concepts
of geometry. This generalization of geometry is bound to have widespread reper-
cussions for mathematics as well as physics. The unearthing of it will entail a

new golden age in the interaction of mathematics and physics.

Very probably, in some suitable sense, the number of fundamental mathe-
matical problems is infinite. On the other hand, I personally believe that the
number of really fundamental physics problems is finite. If this is so, then there
will only be 2 finite number of episodes in the future in which mathematics and
physics will interact in a really fundamental way. It seems likely that the next

several decades will be one of those periods.

1 PARTICLE PHYSICS IN THE 1980°’S

This article is written in four sections. In this section, I will review the
basic ingredients in our present knowledge of fundamental physics. In the next
section, I will try to explain why the idea that space-time is ten dimensional
(this is one of the requirements of string theory) is not only compatible with
- everyday experience but even attractive. Surveys of the subjects treated in these
two sections can be found in [35,5,13]. In the third section, I will sketch a very
brief introduction to quantum field theory, emphasizing features that are relevant

to string theory. The last section will be devoted to string theory.

- A
We will begin our review of theoretical physics with general relativity. In
this theory, space-time is a pseudo-Riemannian manifold M , of signature (- +

...+)._In .this section, M is four.dimensional. I will denote local space-time
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coordinates as z',{ = 1...4. General relativity is governed by a variational

principle associated with the Lagrangian

SgR = T R . (1)

where R is the Ricci scalar of M and G is Newton’s constant. The variational

(Euler-Lagrange) equation derived from (1) is the equation
R;j=0 (2)

for vanishing of the Ricci tensor R;;. From the fundamental natural constants,
G, 1 (Planck’s constant), and ¢ (the speed of light), we can form a qua.ntltv with

dimensions of mass:

MPI (3)

This mass, called the Planck mass, is the really natural mass scale in physics. In

conventional units, its numerical value is roughly

Mp; ~ 1.02 x 10~° grams. (4) .

From the fundamental constants we can likewise construct a fundamental length

Rp; = ~ 10™% centimeters (5)

Mpjc

which is known as the Planck length, and a time
tp; =~ 10" % second (6)

called the Planck time. The constants 7‘1 ¢, and G are so fundamental in physics
that it is most natural to work in units m which A = ¢ = G = Mp; = Rp; =

tpr = 1. In such units,.any physical quantlty - any length, time, or mass - is

- _51mply a number



Now, the actual values of the fundamental mass, length, and time are very
strange. The Planck mass (4) is actually a macroscopic mass (the mass of a
bacterium, perhaps), and is totally off the scale of masses of known elemestary
particles. The electron mass is 10? times smaller than the Planck mass, and the
heaviest elementary particies that we are able to produce in accelerators are still
10'7 times lighter than the Planck mass. (5) and (6) are likewise completely off
the usual scale of elementary particle physics. Everything that we know about
quantum field theory comes from experiment probing length scales of at least
10~ cm or times of at least 10~26sec. Such lengths and times are very small
by ordinary standards, of course, but by an appropriate yardstick determied
by the fundamental quantities of physics they are very large. To make direct
experimental probes of how nature reconciles quantum mechanics with general
relativity would require experiments sensitive to processes that occur on times
of order ¢p; or lengths of order Rp;, or with individual elementary particles
accelerated to kinetic energies of order Mp;. This is regrettably out of reach
for the forseeable future. We can hope for indifect clues from experiment, but

progress. with quantum gravity will require a great. ftheoretical luck and

insight.

Actually, the large value of Mp; has consequences visible in everyday life.
Saying that Mp; is very large compared to the mass m of an ordinary particle is
the same as saying that Newton’s constant G is very tiny on a scale determined

by #, ¢, and m:

ke he
G= — << —=
2 m2

Pl

(7)

This smallness of Newton’s constant means that gravitational forces among indi-
vidual particles of mass m are very tiny. For interactions among ordinary atoms,
gravitation becomes signiﬁca.nz only when one considers an aggregation of matter
. so gigantic that the cumulative eﬁ\ect of gravitational forces among many parti-
cles overpowers the extreme weakness of gravity at the atomic level. This means

' that bodies - such as planets or stars — that form gravitationally out of ordinary
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atoms must be very large. The fact that the length scale of astronomy is so large
compared to the length scale of atoms has the same origin as the fact that the

length scale of atoms is so large compared to the Planck length. Both facts are
mysteries.

The ordinary masses are so small compared to the natural mass scale of
physics that there must be a natural idealization in which they are zero. One of

our goals in this section will be to elucidate this generalization.

I would now like to briefly discuss the physical content of general relativity.
In two space-time dimensions, the integral (1) is a topological invariant (the
Euler characteristic of space-time) and the theory determined by (1) alone does
not have much content. In three space-time dimensions, the variational equation.
R;; = 0 implies that space-time is flat (since on a three dimensional manifold
the whole Riemann tensor can be written in terms of the Ricci tensor). The
characteristic features of general relativity first appear in four dimensions. In
four dimensions, the Einstein equation R;; = 0 does not by any means imply
that space-time is flat. On the contrary, this equation has wave-like solutions; if

n:; is the flat space Lorentz metric (7 = diag — + en we can look for a

nearly flat solution
gi; = Nij + hij, (8)

with h considered small. To lowest order in h, the Einstein equations have plane
wave solutions
tk-z

hij = €;;¢""® + complex conjugate (9)

where k; and ¢;; are constants, obeying

k,‘ki = kifij = E:: = 0. (10)

"

The solution (9) is rather analogous to the plane wave solutions of Maxwell’s

.equations, which describe light waves. When the solution (8) of the linearized
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Einstein equations was discovered, immediately after the formulation of general
relativity, this was interpreted as a prediction of the existence of gravitational
waves — which should travel at the same speed as light waves because they are
both governed by k:k* = 0.  At the time, particles (or ‘matter’) and waves were
interpreted as two very different things, and it was definitely a new kind of wave,
not a new kind of particle, that was predicted by general relativity. Ten years
later, however, quantum mechanics was developed, and it became clear that
waves and particles are different sides of the same coin - the same basic entity
will appear as a wave or as a particle depending on the circumstances. Thus
general relativity is not only a theory of gravitational forces; it also describes a
definite kind of ‘matter.” On a conceptual plane this is a remarkable triumph.
Merely in trying to invent a theory of gravitational forces based on Riemannian
geometry, Einstein was forced to invent a unified theory of gravity and matter. A
few things are missing, however. General relativity does not seem to make sense
- as a quantum theory, and the forms of matter observed in nature are richer than

what is predicted by general relativity.

_Our next task, then, is to discuss some of the othérforms of matter {or
equivalently, some of the other types of wave) observed in nature. First of all,
we have non-abelian gauge forces. Thus, the space-time manifold M, apart from

a Riemannian metric, is endowed with additional structure. Over M we have a

X .
J/c—
M (11)

with a structure group G that is known by physicists as the ‘gauge group.’ Given

principal bundle X

any representation R of G, there is an associated vector bundle Vg, which will

* At the time this prediction was made, and for many decades t",éreafter, the prospect of
- actually testing this prediction experimentally seemed hopelessly remote — because of the
extreme weakness of the gravitational force. However, the invention of radio astronomy
and the discovery of radio pulsars has in the last few years made possible an indirect but
- .compelling ‘experimental test of the theory of gravitational waves. '
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play an important role in our story later. About G, we know experimentally
only that it contains SU(3) x SU(2) x U(1) as a subgroup, corresponding to
the strong, weak, and electromagnetic interactions, respectively.T Let A be a
connection on the bundle V and let F be the corresponding curvature two form.

The Yang-Mills action (Lagrangian) is then

1
S - —— F 2’
YM= "5 /| | (12)

where

|F|? = g% g7 (Fij| Faj). (13)

Here g;; is the space-time metric, and ( | ) is the Cartan-Killing form on the Lie
algebra of G. The constant e in (12) is called the Yang-Mills coupling constant. If
the group G is not simple, it is possible to generalize (12), introducing a separate

- coupling constant for each simple factor in the gauge group.

Of course, the metric g that appears in (12} is séipposed to be the same as
the one in (1), since all this is happening on a single space-time manifold M.
We should properly add the Einstein and Yang-Mills Lagrangians and study the

combined theory

S = Sgr+ Sypm. ‘ (14)

Upon deriving the Euler-Lagrange variational equations, we will find coupled
equations for the Yang-Mills and gravitational fields. This is the proper frame-
work for describing the deflection of light by the sun, and various more exotic

processes that unfortunately are undetectably weak.

t Experiment tells us more directly about the Lie algebra of G than about G itself. When I
say that G contains the subgroup SU(3) x SU(2) x U(1), I really mean only that the Lie
~ algebra of G contains that of SU(S) X SU(2) x U(1); there is no claim about the global form
of G. For the same reason, in later comments I will not be very precise in distinguishing
_different, ‘groups. that have the same Lie algebra.
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The next major step is to incorporate what physicists call ‘fermions,’ as
opposed to the Yang-Mills and gravitational fields which are ‘bosons.” To this
end, we introduce a Clifford algebra, that is, we introduce the ‘Dirac matrices’

T¥ i=1...n, obeying
T + T = —2¢7, 4{,57=1...n. (15)

For even n, the irreducible representation S of the Clifford algebra has dimension
2%/2 while for odd n it is 2("~1)/2, The Clifford module § automatically furnishes
a representation of the Lorentz group SO(1,n—1). The representation in question

is called the spinor representation, the Lorentz generators in this representation
being
g S
TV =-I"= Z[I",I‘J]. (16)
For odd n, S is an irreducible representation of the Lorentz group, but for even

n -~ the case that will interest us more - S decomposes as

S=5,®S5-. (17)
S, and S_ are the eigenspaces of the involution
T =i(~2/4pip2 | pm, (18)

In four dimensions, the representations S; and S_ are complex conjugates of

each other.

If the second Stiefel-Whitney class of M vanishes, we can define the ‘spin
bundle’ of M, which I will call §. It is essentially the vector bundle whose
bundle at a fiber p € M is the Clifford module specified in (15). A physical field
1 which is a section of S is called a ‘spin one half fermi field.” Leptons (such as. -
- electrons) and quarks (from which protons and neutrons are made) are important
examples. The phrase ‘spin one-half’ refers to the fact that the weights of the
..spinor-representation of SO(1, N-— 1) are half-integral.
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with
D_: n§+ - 5-, D+ S_ - S+. (22)

(In other words, D, maps sections of S to sections of §_, and vice-versa.) The

Dirac equation is thus

D—'Qb.i. = 0, D+¢.. =0. (23)

This actually is what we would usually call the ‘massless’ Dirac equation. It

makes sense to introduce an arbitrary complex constant A and write

D_'(b.{.. + A’(/J.. =0
Db+ A9y, =0

(24)

(In the second line, A* is simply the complex conjugate of A, so that the second
equation is the complex conjugate of the first.) While (23) describes massless

waves which travel at the speed of light just like electromagnetic or gravxtatlona.]

waves, (24) describes massive fermions, in fact fermi
I have explained, there are many important cases (like leptons and quarks) in
which the mass term is very tiny, less than 10717 in Planck units. More exactly,
the cases in which the mass term is absent to such enormous precision are the
only cases which we know about, since our technology does not enable us to

. discover fermions which have masses of order one, if there are any.

In the precise framework that we have been discussing - fermions that couple
to the gravitational field only — there is no natural explanation for why the A term
should be absent. To obtain such an explanation — and describe one of the really
central observations in physics ~ we must reintroduce the nonabelian gauge fields
that we have temporarily been suppressing. LF‘tmg R be any representation of

-the gauge group G, there is an associated vector bundle Vg. If R is the dual or
complex conjugate representation of R, then Vj is the dual bundle to Vz. Vg is

canomically isomorphic to Vi if R is real or pseudo-real, but not if R is complex.
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It makes sense now to consider fermi fields which are sections not of S; but of
Wi = S, ®Vg. (25)

If we do introduce ‘right-handed’ fermions ¥, which are sections of W, then
in four dimensions the CPT theorem requires us to also introduce ‘left-handed’

fermions which are sections of the complex conjugate bundle
W_=5_® V. (26)

Now, since Vg and Vj are endowed with their Yang-Mills connections, we can

write Dirac equations,
D— . W+ g W._

Dy W W, (27)
Here
W_=8_®Vg Wiy=58,0V; (28)
Formally, the Dirac equation takes the same form as
O0=D_v¢, =Dyt (29)

with now the combined Levi-Civita plus Yang-Mills connection. There is a big
difference, though, between (29) and the analogous equation (23) in the absence
of Yang-Mills fields. The difference is that if the representation R is complex,

then we cannot add a mass term to (29). The equation
7?77 0=D_v4 + A- (30)

only makes sense if the representation R is isomorphic to its dual, since D_t).
is a section of S_ ® Vg, while ¥.; is a section of S5_® V5. Therefore, if fermions
transform in a complex representation of the gauge group G, thér\'i' (‘e can natu-
rally understand why they are so extremely light compared to the natural scale,

» ‘the Planck scale.
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This is precisely what is observed, and it is believed by most physicists to be
the proper explanation for why the observed fermions are so very light. Actually,
a more precise statement is necessary, since in fact in nature the observed repre-
sentation R is far from being irreducible. The decomposition of R into irreducible
representations of the gauge group SU(3) x SU (2) x U(1) seems to contain at

least fifteen pieces:

=0k (31)

I will not give an explicit description of the R; now, since this can be done more
economically when we discuss ‘grand unification’ presently. It follows, of course,

from (31) that
R;. (32)
Now, if there were ¢ and 7 with R; ~ RJ, then the corresponding fermions Wiy

and v¢;_ could have masses, since (30) would make sense. However, the observed
_,ther,-.?fa.cts sketched above,

fermions all have R; = R , and this, together w1th the

explains why they are so light.

Now, let us shift our point of view slightly. There is no reason at all to
believe that the fermions that have been discovered experimentally are all of
those which exist. Very probably there are many, perhaps even infinitely many,
fermions with masses ‘of order one,’ that is, of order Mp;. Such fermioms, of
course, must transform in real representations of G. And conversely, fermions in

- real representations will very plausibly have masses of order one. Let U and U
be the G representations of fundamental right and left handed fermions in some
underlying theory of nature. Of course, they are duals of one another. In the
spirit of K theory, form the formal difference of representations:

A=UgsU. (33)

- .In-addition to observed‘right handed fermions which transform as R, U may
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contain additional right handed fermions transforming in some representation Uy
U=Uy®oR (34)

which must be real since the Up particles have gotten mass. (34) implies

-

U= Uo® R. (35)

Therefore, when we form the representation difference (33), Uy will cancel out:

A=UeU=RoR (36)

We conclude, then, that R-© 1~?,, which we can -determine at- accelerators, is the
same as the underlying representation difference (33) which is a property of the
fundamental theory. This is why the quantum numbers of the low energy fermions

are so important.

A few questions arise here. First of all, one might fee thatwehave done
too good 2 job of explaining why the light fermions are light. The quark and
lepton masses are not zero; they range from about 102 to perhaps 10~ in

the natural units I descrlbed earlier. The framework we have sketched might
appear to force the quark and lepton masses to be strictly zero, since a mass
term in (30) is strictly impossible. The answer to this involves something called
symmetry breaking.’ If we are presented with a vector bundle V' with structure
group G, it might happen that under some conditions the structure group of V
can be reduced to a subgroup Gy. This phenomenon has an analogue in particle
Physics; it is called gauge symmetry breaking and plays a central role in the
Weinberg-Salam-Glashow model of weak interactions For the moment, I will
simply assume that to a mathematical audience it is plaublble that there can be

a ‘physical’ counterpart of reducing the structure group of 2 vector bundle to a

. subgroup.
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At 2 mass scale of order 10“17Mp1, the gauge group SU(3) x Sy 2 xU (1)
is reduced to SU (B) x U(1)* At this point, some of the gauge fields become
massive (these being the W and Z particles which were discovered at CERN

several years ago - the heaviest elementary Particles that have been discovered).

compared to the natura] mass scale Mp;, It is, however; pretty clear from oyr

the spinor Tepresentation S into spinors S of positive and negative chirality, the

distinction between S+ and S_isa matter of convention. Under a change of the

orientation of Space-time, called a parity transformation by physicists, S+ and S_

If we assume that the laws of nature are invariant under parity, then R ang R
must be isomorphic. Ourvexplanatior of the lightness of the fermijops therefore
TN

|
|
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discovered that the weak interactions violate parity. On the other hand, parity is
conserved by strong and electromagnetic interactions; this is the statement that

R and R are isomorphic as representations of SU(3) x U(1).

One we realize that symmetry breaking plays an important role in explaining
why the light fermions are not strictly massless, it is natural to carry this thought
a step further. We know that the gauge group of nature contains at least G =
SU(3) x SU(2) x U(1). We also know that at very low energies this is reduced to
a subgroup Go = SU(3) x U(1). Looking up to higher energies, might the gauge
group G which we observe at accessible energies be itself a reduction of a larger
group G which is relevant at higher energies? It would be far more satisfying
to describe nature not by the ungainly product SU(3) x SU(2) x U(1) but by a
more simple structure. This is the goal of so-called ‘grand unified theories.” The

-most obvious example of a simple group that contains SU(3) x SU(2) x U(1)

is SU(5). The embedding of SU(3) x SU(2) in 5 x 5 matrices of SU(5) can be

(SU(’)(?») SUO(z))' S (37)

indicated as follows:

‘We then take the U(1) generator to be the unique traceless 5 x 5 matrix which

commutes with the above embedding of SU(3) x SU(2), namely
diag(1,1,1,-3/2,-3/2). (38)

If we are to embed the observed gauge group SU(3)xSU(2)xU(1) in SU(5), then
the representation difference A = R & R must have a natural interpretation as an
difference of SU(5) representations. Indeed it does, and here I will write down
for the first time an explicit formula for the representation difference observed in
nature; this w. uld have been rather clumsy at the SU(3) x SU(2) x U(1) level.
Let 5 be the fundamental five dimensional representation of SU(5), and let 5 be
its dual. Let 10 be the antisymmetric part of the tensor product 5 ® 5, and let

10 be its dual. _Then the fermions that we observe in nature come in three copies
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of a basic structure usually called a ‘generation.’ The left-handed fermions of
a given generation are observed to transform as 5 @ 10, while the right-handed
fermions transform as thg dual of this or 5 @ 10. In nature we observe three

copies of this, so in other words the representation difference which we observe
is |

A=3(5010650610). (39)

When one contemplates extending the observed gauge group G to a larger group
G,itis important to understand that this would entail predicting new forces. In
the case of SU(5), and most other grand unified theories, the new forces have
a dramatic consequence: they cause the proton (which is otherwise absolutely
stable), to be unstable, with a lifetime typically in the range of 1032 — 104
years, depending on which grand unified theory one considers. In 10* tons of
- water, roughly the largest quantity in a feasible experiment, there are about
.10* protons, so assuming that an event rate of one proton decay per year is

detectable, the lower part of the interesting range can be probed experzmen‘cally

- So far proton decay has not been observed.

(39) is much nicer than the corresponding formula at the SU (3) x SU(2) x
U(1) level, and this is one of the main reasons to believe that the SI (5) model
probably has some truth in it. However, it is natural to wonder whether there
are groups beyond SU(5) that would be as good or better. One group that works
very nicely is SO(10), with the unique non-trivial embedding of SU (5) in SO(10).
(The fundamental .vector of SO(10), which we will call 10, decomposes under
SU(5) as 5®5.) SO(10) has two complex conjugate spinor representations of 16
dimensions each; let us call them 16 and 16. Under SU (5) the 16 decomposes
- as 1@ 5 & 10, where 1 is the trivial representation of SU(5). This is, of course,
. a real representatior-l. The 16 decomposes, of course, as the complex conjugate

of the 16, or 1 @ 5 & 10. Therefore, at the S O(10) level, we can rewrite (39) as

A =3(16 © 16). " (40)
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This is about as simple as a non-trivial representation difference can be, except
that the fa,ctér of three is rather peculiar; we will discuss some attempts to explain
it in the next section. It is natural, though, to ask whether there are any examples
of groups beyond SO(10) that work just as nicely. It turns out that there is one,
namely the exceptional grodp Es. The smallest non-trivial representation of Eg
is a complex representation which we will call the 27, this being its dimension; its
dual will be denoted as the 27. E¢ has an SO(10) subgroup, the decomposition
of the 27 under SO(10) being 27 = 16 ® 10® 1, with 16 and 10 being as before
the spinor and vector of SO(10). At the E¢ level, we can then write

A = 3(27 ©27). (41)

This is the third and last example of a group that seems suitable for grand
unification in four dimensions. Having found a hint that E¢ can play a role, it is
natural to wonder whether one can go further and base a grand unified theory on
the biggest exceptional group Es. This runs into the problem that Eg only has
real representations, and so would automatically lead to-A.=0. Tt is possible to

try to use Es for grand unification, but this requires some additional ingredients,

which we will discuss in the next section.

If one wants to summarize our knowledge of physics in the briefest possi-
ble terms, there are three really fundamental observations: (i) Space-time is a
pseudo-Riemannian manifold M, endowed with a metric tensor and governed by
geometrical laws. (ii) Over M is a vector bundie X with a nonabeli:«in gauge
group G. (iii) Fermions are sections of (S+®Vr) @ (5-® Vz). R and R are
not isomorphic; their failure to be isomofphic explains why the light fermions
are light and presumably has its origins in a representation difference A in some
underlying theory. All of this must be supplemented with the understanding
that the geometrical laws obeyed by the metric tensor, the gauge fields, and the

fermions are to be interpreted in quantum mechanical terms.
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2 PHyYSsICS IN TEN DIMENSIONS

The standard model of physics which we have just surveyed has many suc-
cesses, but leaves many qué;stions open. Surely we would like to find a natural .
explanation for the peculiar factor of three in (40) and (41). We do not want to
merely assume that nature is based on three copies of 16 ©16 of SO(10) or three
copies of 27 © 27 of Es. There must be some more economical structure at a
more elementary level. Also, it is very peculiar to study a chain that passes from
SU(5) to SO(10) to Ee without finding some way to extend this to Es. We would
like some natural understanding of the symmetry breaking steps along this chain.
Finally, the fact that all we observe in experiment is the character difference (33)
or (36) is a warning that the true underlying structure may be far richer than
is apparent. The underlying representation U may even be infinite dimensional;
of course, in this case there will have to be some suitable regularization in the

definition of the character difference A =U 6 U.

I will now describe an approach to some of these questions. Let us assume

jan manifold, but has

‘that space-time is not a2 four dimensional pseudO—"Rieﬁiﬁ. 4
a higher dimension; in fact, the case of ten dimensions is favored in string theory.
We consider thus a ten dimensional manifold M, oriented, with a spin struc-
ture, and with a metric of signature (— + + +...+). One ingredient in the ten

dimensional theory will be the Einstein action,

1 ’ e
Scr=— — /R. (42)
167G /.
M .

At first sight, one might believe that it is preposterous to imagine that the world
is ten dimensional. The world seems to be ‘obviously’ four dimensional (if one
includes time along with the three obvious space dimensions). The following
is crucial, however. We tend to take for granted that there is some notion of
‘empty space’ and that any other physical state is obtained by adding particles

g 1o ‘empty space.” In reality, though, what we interpret-as empty space is just
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some solution of the underlying physical equations which plays a special role in
our experience. The reason that there is a solution playing such a special role
is largely that the energy scales of our experiments are so small compared to
the Planck mass Mp;. The'tools at our disposal are so feeble that we can bring
about only minor disturbances in whatever solution of the underlying equations
we happen to have been born into. Just to make this discussion more concrete,
suppose that the ten dimensional Einstein equations derived from (42) are the
fundamental equations of physics. Let M4 be flat four dimensional Minkowskj
space, and let K be some compact Ricci-flat six manifold. Suppose that the

‘vacuum state’ of the ten dimensional world is

M=M*xK. | (43)

Suppose finally that the radius of X (by which I mean any characteristic Ineasure

of the size of K) is comparable to the typical length scale of physics, namely Rp;.

This is so tiny compared to the length scales of our observations that K will
be indistinguishable from a point; the existence of éxtr:;' dimensions will not
be obvious in everyday life, or even in accelerator experiments. Thus, M will
be indistinguishable from four dimensional Minkowski space; likewise, we could

imitate a four dimensional cosmological model.

This may seem reasonable intuitively. To make things more precise, we will
now discuss an important aspect of ten dimensional physics, namely the ten di-

mensional Dirac equation. We thus introduce the ten dimensional Dirac operator

10
Do) = ZI"D,‘. (44)
=1 T
$)
We can write it as
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where D4y is the four dimensional Dirac operator

4
D= ZI“.D,' | (46)

=1
and D gy is the Dirac operator of K,

10
Dk =) _I'D;. | (47)

=5

We would now like to analyze the ten dimensional Dirac equation
y 0= Do) %(z’, ) (48)

where z° and y, { = 1...4, j = 5...10 are coordinates of M*, and ¥ is a spinor

field in ten dimensions.

Let us first briefly discuss just what kind of spinor ¥ will be. The irre-

ducible representation of the Clifford algebra in ten s :':d-‘ecomposes as

. the sum of two irreducible representations of the Lorentz ‘group S0(1,9). They

are distinguished by the eigenvalue of
r0 = rip2 110, | (49)

In ten dimensions, unlike four dimensions, the two irreducible spin representa-
tions of SO(1,9), which I will call 5” and §U%, are both real. So the CPT
“theorem permits us to consider a theory in which the spinor field ¥ transforms

according to one definite spin representation, say S_S_lo). In other words
ro0y = 4 g, (50)

Actually, ten dimensional supersymmetry and string theory force us to consider

_this case. If we are-interested in thinking about four dimensional physics; we
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should decompose the spinor representation of SO(1,9) under SO(1,3) x SO(6),
where SO(1,3) is the Lorentz group of M* and SO(6) is the structure group of
the tangent bundle of K. In this decomposition, only spinor representations of
50(1,3) and SO(6) will appear, since the representation spaée for a ten dimen-
sional Clifford algebra certainly represents the four dimensional and six dimen-
sional Clifford subalgebras. The precise decomposition is easily worked out by

introducing the operators analogous to (49):
r® = rir2...r4, r®) = 5181 (51)

(The factors of *¢ are conventional and ensure that the eigenvalues of I'4) and

T'K are +1.) These matrices obey the obvious relation

]_"(10) —_ I‘(4) . I‘K. (52)

Therefore, in an irreducible representation of SO(1, 9.)5;,3;1411‘(::}1,}135,1#(1,0) = -

“and TX are equal,

r) =k, (53)

This means that the decomposition of the SO(1,9) spinor representation S_(i_lo)

of positive ‘chirality’ under SO(1,3) x SO(6) is
509 = (sWe sK) & (sW e sK). (54)

Here S:(:) and S f are the positive and negative chirality spin representations of

SO(1,3) and SO(6), respectively.

: G
Going back to our problem, we want to solve (48) by separation of variables,
using the decomposition (45). Since D4y and Dg do not commute, but anticom-

- mute, the standard procedure-of separation of variables needs slight modification.
i P ’
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It is convenient to introduce

D, =TWpg (55)

which does commute with D(y). D}{ is unitarily equivalent to Dy, and so has
the same spectrum (since the matrices T(91J, 7 = 5...10 obey the same Clifford
algebra as I/, and the irreducible representation of this algebra is known to be

unique). Introduce a complete set of eigenfunctions x,, of D",

DiXm = AmXm- (56)
We then write
V(z'y) = D ¢mlz’) ® xm(t?) (57)
m
‘whereupon (48) reduces to
0= (D +TN\n)om (58)

‘or equivalently

0= (DEQ + Am)¥m (59)

where we have introduced

( ) = I‘( )D(4) (60)

( " is unitarily equivalent to D 4) (since T')T? generate a Clifford algebra). (59)
is equivalent to the Dirac equation for a massive fermion introduced in (24).

We have thus learned the following important lesson. The eigenvalues ),, of
the Dirac operator Dg on the compact manifold K correspond in four dimen-
sional terms to the masses ¢, the fermions ¥y,. Of course, there are an infinite

number of such eigenvalues. But as Dk is an elliptic operator on a compact

-manifold, there are only a finite number of zero eigenvalues - the eigenvalue zero
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only appears with a finite multiplicity. The non-zero eigenvalues of Dx will be of
order 1/ R, with R being the radius of K. Since we are assuming that the radius
of K is of order the Planck length (5), the non-zero eigenvalues of Dg will corre-
spond to fermions with'Pla.nckié.n masses — fermions that we would certainly not
be able to &iscover experifnentally. Experimentally accessible four dimensional
physics will be determined by the zero eigenvalues of D, corresponding to mass-
less particles in four dimensions. As there are only finitely many of these, the
ten dimensional theory will look for all practical purposes like a four dimensional
theory with a finite number of fermi fields. This is just the sort of structure that
we discussed in the last section, so we have achieved our goal of showing that a
theory that is really ten dimensional can look four dimensional to an observer

whose experiments are limited to low energies.

What is more, it is very interesting that in this framework the observed
fermions in four dimensions originate as zero modes of the Dirac operator Dk.
Zero eigenvalues of elliptic operators such as the Dirac operator do not arise by
accident; they arise when they are related to suitable topological invariants. So

‘here (and in many other instances) basic physical:;;:;Q‘)ﬁé’s‘ﬁ‘ons lead to questions

about the topology of K.

The simplest topological invariant that can predict the existence of zero
modes of an elliptic operator is the indez of the operator. Let n. and n_ be
the number of zero eigenvalues of Dx of positive and negative chirality, respec-
tively (i.e., Tx = #1). Then the difference n, —n_ is called the indez of thé
Dirac operator, and is easily shown to be a topological invariant. We have so
far been tacitly considering a ten dimensional Dirac equation for a spinor field
coupled to the space-time geometry only — no Yang-Mills vector bundle. In this
case, it is easily seen from the Atiyah-Singer index theorem, or on various more
elementary grounds, that in six dimensions (and more generally in 4k + 2 dimen-
sions) the ;ndex of the Dirac operator vanishes. This should come as no surprise;
in the last section we found-a rationale for the existence of massless fermions in

four dimensions only in-the case in-which there is a Yang-Mills group. Let us
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therefore generalize our discussion and reintroduce the Yang-Mills gauge fields.

The preceding considerations are rather general. The case favored by devel-
opments of the last few years [12,14] in string theory is a ten dimensional theory
with gauge group Eg x Es. For brevity I will consider only a single Es. The
fermions will be in the adjoint representation of Fs. In a ten dimensional theory
which has Yang-Mills fields as well as the gravitational field, to describe the vac-
uum state it is not enough to specify the vacuum manifold. It is also necessary

to specify an Eg vector bundle X over space-time, endowed with a connection A.

What would be a natural choice of X?" Whenever we discuss a six manifold
K, there is one vector bundle that is always present — the tangent bundle T.
This of course is endowed with the Levi-Civita connection. The structure group
of T is - in the generical case - SO(6). Any embedding of SO(6) in Ej gives
a canonical way to construct an Eg bundle with connection from the tangent
bundle T with its Riemannian connection. There is one embedding of SO(6) in

Eg which is in a sense minimal among such embeddings. It comes from the chain

SO(6) x SO(10) € SO(16) € B (61)

- Here SO(16) is a2 maximal subgroup of of Eg, and SO(6) x SO(10) is 2 maximal

subgroup of S O(16).‘r The embedding (61) turns out to lead to an interesting

picture of four dimensional physics.

At this point we encounter the notion of gauge symmetry breaking, alluded -
to in the last section. What will 2 low energy physicist interpret as the gauge
group? A low energy physicist is ‘trapped’ in a world with an Eg bundle X and
some particular connection A, and is not able to disturb this world very much.
An FEg gauge transformation that does not leave A invariant is not a symmetry of

this particular world but relates it to another world with some other connection

* The following construction was considered in [31,4}.
1 Recall that we. are. really working at the Lie algebra level, and not specifying the global
_-structure of the various groups. SO(16) in (61) is really spin(16)/2,, etc.
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A'. Probing such a gauge transformation would involve exciting the very massive
degrees of freedom whose inaccéssibility to the low energy observer is the reason
that the world is apparently four dimensional. What the low energy physicist
interprets as the gauge groi_xp is the subgroup of EFg that acts on the bundle X,
leaving the connection A invariant. For a generical choice of X and A, this group
would be trivial. If, however, X is constructed from the tangent bundle via the
embedding (61) of SO(6) in Ejg, then the subgroup of gauge transformations that
leaves the connection invariant is the group G = SO(10) that commutes with

50(6).

This is a promising development, because although Eg is a not a suitable
gauge group for a four dimensional theory (it only has real representations and
so would lead to A = 0), SO(10) is one of the natural candidates, as we learned
in the last section. Let us now compute the character difference A which will
emerge in the present framework. To do so, it is necessary to decompose the
adjoint representation of Es under SO(6) x SO(10). The adjoint representation
of Eg, which we will call the 248, decomposes under;:$Q(6) x SO(10) in the

general form

248=Y L;® R (62)

where L; and R; are certain representations of SO(6) and SO(10), respectively.
For each L,, there is a corresponding Dirac operator D;? = Df{‘ acting on
fermions that transform as L; under SO(6). Massless fermions in four dimensions
that transform as R; under SO(10) originate as zero modes of D;?. In view of
(53), zero eigenvalues of Dg) with TX = +1 (or —1) have I'¥) = +1 (or —1). Let
&; be the index of Dg)._ 1t is. the difference between the number of zero eigenvalues
of DE,? with T'¥ = +1 or equivalently the difference between the number of zero

eigenvalues of D;? with 1"(4) = #1. Therefore, in the basic character difference

A of the massless. fermions, the § O(10) representation R; will appear with the
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coefficient §;. Altogether, the _chéracter difference A will be

A= Z 6;R;. (63)

We will now evaluate (63) in detail. Let us adopt some conventions. H
M is an SO(6) representation and N is an SO(10) representation, the tensor
product M ® N will be denoted (M, N). Representations of SO(6) and 50O(10)
will be labeled by their dimension. The relevant repfesenta.tions of SO(6) are
the adjoint, 15, the vector, 6, and the two spinor representations, 4 and 4. The
relevant representations of SO(10) are the adjoint, 45, the vector 10, and the two
spinor representations 16 and 16. The adjoint representation of Ejs decomposes

under SO(6) x SO(10) as

248 = (15,1) © (1,45) © (6,10) @ (4,16) & (4, 16). (64)

T T

If L; is a real representation of SO(6), then (from the A¥iyalisSitiger-index the-
orem or various more elementary considerations) the index §; is zero. What is
' more, if L; and L; are complex conjugate representations, then §; = —6;.. The
only complex representations of SO(6) in (64) are the 4 and 4. So (63) reduces

to

A = 6,(18 —16). (65)
Comparing to (40), we see that this is of the correct form to agree with observa-

. . . . *
tion, with 64 being +3 in nature as far as we can see.

As for the actual value of 84, it is one of the most fundamental topological
invariants of a six manifold. The de Rham complex of differential forms can

be built from the tensor product of two spin bundles. Since the 4 of SO(6) is

* We cannot determine the sign, since-the difference between 16 and 16 of S O(10) is a matter
.- ~of convention. ' -
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one of the two spinbr-repr&sentations, a spinor on K with values in the 4 of
50(6) is equivalent to a certain collection of differential forms. 64 can therefore
be related to the Euler chara.cteristic x and the Hirzebruch signature o, which
are the topological invariants that can be made from an index problem in the de -

- Rham complex Actually, o = 0 in six (or 4k + 2) dimensions, and

64 = X/Z. (66)

)

Thus, we have seen how the observed character difference A can be related to
something more fundamental, namely the topology of K. Although we have not
succeeded in explainiﬁg the peculiar number 3 in (40), we have perhaps removed
some of the mystery from this. The reason that nature seems to repeat herself,
with several ‘fermion generations,’ is.simply that there is no reason for a six
dimensional manifold to have Euler characteristic +2. A suitable K, starting as
we have done with a single spinor field ¥ in ten dimensions, can give rise to any

- desired number of fermion generations in four dimensions.

1 have tried to give the flavor of how properties; of four dmensidnél physics
can be extracted from geometric and topological properties of K. There are
various .other examples, but these should suffice as illustrations. I would like
to emphasize, though, that while we have supposed the vacuum to be a product
M*x K, the general physical)disturba.nces do not preserve this product. structure.
The basic laws-are supposed to be ten dimeﬁsioﬁal laws, governed by (42) or (more
likely) some much more reﬁ;ie_d_ ten dimensional theory, and an approximate four
dimensional picture: arises only bééause the ‘vacuum’ admits four dimensional
‘but not ten dimensional Poincaré symmetry. Why this is, and what K should

be, remain mysteries.
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3 QUANTUM FIELD THEORY ON A RIEMANN SURFACE

In the last two sections, we have sketched some of the key ingredients in
physics in classical terms. Buried in the fine print was the proviso that Yang-
Mills theory, etc., should actually be reinterpreted quantum mechanically. This

in fact leads to a vastly richer and more formidable structure.

Quantum field theory has not yet emerged as an important tool in pure
mathematics. But there are indications that this will change in the coming
period. Both in the theory of affine Lie algebras and in algebraic geometry,
structures that are familiar in quantum field theory have recently come to play
a major role. (‘We will hear about the latter subject from G. Faltings in the
next lecture.) In trying here to give a very brief introduction to quantum field
theory, I will emphasize those aspects of this subject which are necessary for
understanding string theory, and which are likely to be related to the areas of

mathematics which I have just mentioned.

Let £ be a Riemann surface, perhaps with boundary, and let ¢ be a real

valued function on L, that is, a map from T to R (the ‘.:«i%i?:::;mrbzers). Let

16) =3 [ d6nwas. (67)
=z

This is called ‘the action functional of free boson field theory.” Let f be a real
valued function on 80X (the boundary of T), and let 2;(Z) be the space of con-

tinuous real-valued functions

$:C—R — (68)

whose restriction to 8T coincides with f.

If we are given an actual metric or L .(and not just 2 conformal class of

metrics), then the affine space 4(Z) acquires a natural Riemannian metric. For

* S.ee,;e._g.,v[lﬁ, 10] for introductions..
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¢, ¢' € 04(Z), one defines

e-dt= [6-#n (69

z

In finite dimensions, a Riemannian metric always induces a measure (‘the square
root of the determinant of the metric’). Hoping that this still works in infinite

dimensions, we can try to define

7,(5) = / 1), (70)
Q(Z) '

Let us see what is involved in.trying to.define (70). I(¢) is a quadratic func-
tional of ¢, so the integral that we are trying to do is rather similar to a finite -

dimensional Gaussian integral

o0

Z(A) = /d¢1d¢2...d¢n e—éw’

-=00

(71)
Here ¢; are coordinates in an n dimensional Euclidean space, and A is a positive
definite quadratic form in n variables. It is well known that the value of (71) is

2(4) = (2m)} dei <= 0[] (72)

with A; being the eigenvalues of A. Trying to generalize (72) to infinite dimen-
sions, the factor of (27)% does not look very promising for n — co. For this
reason, and becausé\‘of the difficulty in defining the determinant det A in infinite
dimensions, we will not be able to define the integral Z;(Z) for given f and T,

_ but ratios such as Zy,(Z1)/Zy,(Z2) will make sense.
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What is the analogue of A in (70)? Evidently, J(¢) as defined in (67) is
equivalent to ' :
1
16) =3 [ #a4, (73)
. z
where A = *d *d is the usual Laplacian. Let us consider first the case in which I

has no boundary. Then A is a positive definite operator with a discrete spectrum
Ady= A, 1 =1,2,3.... (74)

There is one zero eigenvalue, corresponding to the constant function one, and
the others are positive. The integral in (70) should then be precisely an infinite

dimensional analogue of (71), so we have to define a regularized version of

H A7 (75)

Before trying to define this infinite product, it is necessary to remove the zero

eigenvalue. We try to define

/\.'#0 L ‘5, [
This may be done with zeta function regularization. Let |
6) = Y0 A (77)
Ai#0
The series converges if the real part of s is large enough. It defines a meromorphic

function of s which can be shown to be regular at s = 0. Then we define

T] 37 = exp(s'(0))- (78)

Ai#0

For 0L = 0, we define then
2(5) = exp(c'(0))- (79)

Now, let us work out.a formula analogous to (79) for the more general case

7 0L # 0. The first case to consider is f = 0. This hardly presents any novelty. If
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f =0, then (70) involves an integral over functions ¢ that vanish on 9X. With
the boundary condition ¢|ag = 0, the Laplacian A has a discrete spectrum of

positive eigenvalues, so we define as before
Z;=o(T) = exp(¢'(0))- | - (80)

With 8T # 0, and boundary conditions that ¢ = 0 on 0L, the operator A is
strictly positive definite, so there is no need to remove zero eigenvalues in defining
(80). It remains to generalize (80) to f # 0. To accdmplish this, we recall the
classical theorem that the functional I(¢) has a unique extremum subject to the
boundary condition ¢|sy = f. Denote the extremizing function as ¢, and write
¢ = ¢o+ ¢'. Since I(¢) is a quadratic functional of ¢, and stationary at ¢ = ¢y,

we have

1(¢) = I(o) + 1(¢)- (81)

" If ¢ and ¢p are in N4(Z), then ¢ =¢d—¢doisin QO(Z). So looking back to
(70), the change of variables from ¢ to ¢' converts anmtegral over (17(Z) into

an integral over (o(ZL), giving
Z4(Z) = e71#9). Z5(T) = e—1(#0)gg'0) (82)

Of course, as we have formulated things, (79) and (82) are just definitions. They

become theorems only in the context of a suitable infinite dimensional integration

theory.

Now, a variety of comments are in order here. First of all, in the above we
have_?-bee‘n discussing: real-valued functions on T - that is, maps & — R. More
geﬁuer;iﬁy, we could pick a Riemannian manifold X, with metric tensor v, and
consider maps from T to X. Fixing a map f : 5 — X, let Q¢(Z; X) be the

_space of continuous. maps-from I to X whose restriction to 8T coincides with f.
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Picking local coordinates ¢; on X, a map ® : £ — X can be described locally in

terms of real-valued functions ¢’ on . We generalize (67) to

j(@): / 7i;(®)dd* A xdg’. (83)
5 o

Instead of (70), we want to define

Z(5: X) = / e 1. (84)
0,(Z:X)

Now, (70) was an integral over an affine space, and could be defined explicitly as
in (79) and (82). (70) is one way of defining what physicists call (bosonic) free
field theory. If X is notflat, (84) is an'integral over a nonlinear space, and is
rather difficult to deal with. (84) is an example of what physicists would call an’
interacting or nonlinear quantum field theory. The quantum field theory defined
in (84) is known as the nonlinear sigma model, and isﬂ_‘Barticular]y important in
string theory. To define (84) requires much more than the ¢ function regular-
ization that we used in free field theory. In fact, (84) cannot be satisfactorily
defined for arbitrary X. Generally speaking, (84) can be defined for manifolds
X of positive or zero Ricci tensor but not for manifolds of negative Ricci tensor.
Much is known about the nonlinear sigma model, though not much of this has
" been proved. Unfortunately, to explain here what is known about (84) would
require a lengthy explanation of the renormalization group, the 1/N expansion,

factorizable S matrices, etc.

- Now, the action function (67) and the integrand in (70) depend only on the
conformal class of the metric tensor of £ — in other words, they depend only
on the complex structui<’ of\jE. However, to define even formally an integration
measure in (70). we needed to give ¥ an actual Riemannian structure, not just a
conformal class of Riemannian structures. Therefore, our eventual answer (79)

is not. a-function on the moduli space of Riemann surfaces £ - it is not invariant
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under a conformal rescaling of the metric of T. However, (79) can be shown to
transform rather simply under a conformal rescaling of the metric tensor of L.
It has been interpreted by Quillen as defining a metric on a certain holomorphic
line bundle over moduli space [23]; this structure plays a significant role in the

developments we will hear about from F altings in the next lecture.

The next major step in explaining what quantum field theory is as understood
by physicists is to explain the relation between the Feynman path integrals which
we have been describing and the older Hilbert space interpretation of quantum
field theory. If the boundary of T is not empty, it consists of several disjoint
circles S;. Let us consider the case of a single circle S. Let £1(S) be the space of
continuous real-valued functions on S. As in our discussion of T, a Riemannian
structure on S induces a2 Riemannian structure and therefore a measure on {(S).
Given such a measure, we.can speak of square.integrable complex valued functions

on (}(S), that is, functions ¢ with

WP < 0. (85)
a(s) T

Of course, it is necessary here to define precisely the measure on {1(S), just as
we needed zeta function (or some other) regularization in discussing integrals on
(). While this can easily be made precise (at least in the case of free field
theory), I will just proceed formally. Let us denote the Hilbert space of square
integrable functions on (S) as Hg. It is known as the Hilbert space of the

quantum field theory that we are discussing.

Now I would like to define a certain linear operator on Hg known as the

‘Hamiltonian’ of the theory in question. Let us consider a Feynman path integral

. (70) on a very special Riemann surface ¥ with boundary — a cylinder with a

“ standard, flat metric (figure (1)). The boundary consists of two components; 5
. and S,. We will think of S; and S; as two copies of the ‘same’ circle, displaced

" in the vertical direction through a distance (‘proper time’) 3. When desired we
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will feel free therefore to identify the function spaces 2(S;) and £2(S;) as well as
the Hilbert spaces Hg, and Hs;. So for 1 € Hg, and ¥2 € Hg, we have an inner
product

(2lth) = /’Kb;'ﬁl-

" (S)

A real-valued function f on the boundary of ¥ is the same as a pair of
functions f; and f; on the boundary components; we write f = (fs, f1). We have

already discussed in (70) the Feynman path integral on ¥ with given boundary

values:

Z(f,,m)(Z) = / e’ (87)

Qsa.01)

Now we will go a step further and- define a bilinear functional on the Hilbert

spaces Hg, and Hg,. Given 9; € Hg, and 92 € Hg,, we define

R(2,91) = / V2" (f2) / 1!’1_(f1) Z(fl,fz)(z) (88)

(Sz) Q(S1)

R(2,%1) is obviously linear in 9; and antilinear in %3, so it has the general form

R(v3,91) = (2|Tpl¢1) (89)

for some linear operator Ts. (Recall that f, indicated in figure (1), is the ‘height’
of the cylinder I.)

T is simply that linear operator on ((S) whose kernel is

Oy Tp(f2, 1) = Z(5,,1)(E)- (90)

Now, suppose that, as in figure (2), we glue together two cylinders T; and Z; of

: . thickness (3; and (;-along a-.common boundary component S to make a cylinder
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Y. of thickness 8 = B; + Bz. The boundary of I; consists of two components, say
S; and S, and the boundary of T, consists of two components, say S and Sz.
Suppose we fix real-valued functions fi, f2, and f on 51,52, and S, respectively,

and look at the product

T, (f2, ) Tp,(f+ 1) = Z(5,,1)(Z2) Z(5,1,)(T1)- (91)

The product (91) is an integral over real valued functions on I that have pre-
scribed values on the three circles Sy, S, and S (functions, in other words, whose .
restriction to S, Sg, or S coincides with fi, f3, or f ). If we do not wish to spec-
ify the values on S , we can avoid this by integrating (91) over 2(S). We thus

consider

/Tﬁz(f2’f)Tﬁ1(f’fl)= / Z(fz,f)(z2)z(f,f;)(zl)' (92)

Q(s) Q(8)

Here we are integrating over real-valued functions on £ whose values are specified
only on 3 - in other words, we are considering our basic integral (70). Thus, (92)
coincides with the kernel T4(f2, f1) associated accordingto (90) with integration

over real-valued functions on the cylinder T of height g = B1 + Ba:

Tp,+6.(f2, /1) = / Tp,(F2, £)Tp,(f5 f1)- (93)

a(s)

This equation is a semigroup law:
Tp,+p. = Tp.Tps- - (94)

(94) means that

Ty = e PE (95)

for some linear operator H. H is known as the ‘Hamiltonian’ of the quantum field

theory. In the free field theory that we have been discussing, an explicit formula
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for H is easily written. The reasoning by which we have given a Hilbert space
interpretation to the Feynman path integral (70) and extracted a Hamiltonian

is, however, far more general.

We would now like to éompute the trace of the operator e PH = T,g'. This is

done, of course, by integrating the kernel Tg(f2, f 1) along the diagonal:

TrePH = / Ts(f, f)- (96)

In fact, (96) is simply an integral over real valued functions on the cylinder T
of figure (1) with the boundary values on the two components identified but
otherwise unrestricted. By identifying the boundary components of T one forms.
a Riemann surface (without boundary) of genus one, which we may call T. (96)

is simply the path integral of (70) carried out over T

TrePH = / et (97)

Q(T)

Before discussing the significance of (97), we need a generalization. We return
to the Hilbert space Hg associated with a circle S. The operation of rotating
the circle by an angle § obviously acts in a natural way on real-valued functions
0(S) and therefore also on the Hilbert space Hg. We thus have a linear operator
R, representing the action of the rotation on Hg. (We will use the same symbol
Ry to denote the action of this rotation on {(S).) We again obviously have a

semigroup law, Ry, 4, = R, Rg,, 50
Ry = "% (98)
- ) \. .
where £ is some linear operator, known as the momentum operator of the quan-

tum field theory. Again, there is no difficulty in writing down explicit formulas

for P. It is easy.to see that it commutes with H. We now wish to generalize
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(97) and calculate the trace of the operator Ty, = ¢—PH+#P_ The kernel of this

operator is simply

Tp,6(f2, /1) = Tp(f2, Ro f1)- (99)

Here Tp(f2, f1) is the kernel of e PH which we have discussed at length already,
and the formula (99) holds because in e~PHHP — o—BH . (P the effect of ef”
is just to replace f; with Ryf;. Again constructing the trace by integrating the

kernel along the diagonal, we have

Tre PH+YP - f T5(f, Rof). (100)
Q(s)

As in our previous discussion of the case § = 0, (100) has a simple interpretation.

The right hand side of (100) is, in the terminology of (70),

/ 205 2= / / (101)

0(s) Q(s) Q. n,n(z)

This is easily described in words. The right hand side of (101) is a path integral
on the cylinder of figure (1). The integral ranges over all real valued functions
whose values on the boundary components S; and Ss coincide after rotating S
through an angle §. Thus, if we take our cylinder T of height 8, and glue the
two components together after rotating through an angle #, we form a Riemann
surface of genus one without boundary. We will call this surface (f,6). Our

conclusion is
Tr e PH+UF — / et (102)
' Q(z(8,9))

(102) is a very general formula in quantum field theory. However, it is par-
~ ticularly interesting in the case in which the action functional I is conformally

invariant —independent of a conformal rescaling of the metric of . Such theories
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are said to be conformal field theories. For example, free boson field theory is a
conformal field theory. In the case of a conformal field theory, the right hand side
of (102) might appear at first sight to define a conformal invariant, depending
only on the conformal structure of the surface Z(B,6). This is not quite true,
because there is no conformally invariant way to define the measure in the inte-
gral over {}(Z). Nevertheless, it is possible to construct simple formulas for the
deviation from conformal invariance of the right hand side of (102). For mathe-
maticians, these formulas involve the theory of the determinant line bundle; for

physicists, they have involved the theory of anomalies.

It is well known that every Riemann surface of genus one is isomorphic to

Z(B,0) for some values of 3,4 in the range-
0<f<00,0<0<2n (103)

The correspondence is not one-to-one. If we introduce the complex variable

7= (0 +:f)/27, then the group SL(2, Z) acts on r by .

ar + b

, 04
cT+d (2 )

T —

where a,b,c, and d are integers with ad — be = 1. Riemann surfaces with values
of 7 that are related by (104) are isomorphic. In the theory of modular forms it

is standard to introduce ¢ = 27", If we define

Hi = HxP (105)
2 .
then (102) amounts to
Tr g%+g%- = / e . (106)
Q(2(7))

Conformal field theories in which H_ = 0 are said to be chiral theories. The free

_.boson.theory (67) is not-chiral. ‘The simplest example of a chiral theory is the
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theory of free chiral fermions, but I will not explain this here. In a chiral theory,
the right hand side of (106) defines a holomorphic function of ¢ or in other words
2 modular form. In any case, in conformal field theories, whether chiral or not,
one can obtain simple formulas for the transformation of (106) under conformal

transformations, by using the theory of the determinant line bundle or the theory
of anomalies [32, 9]. ‘

For example, in the theory of affine Lie algebras, it is known that the char-
acters of the integrable highest weight modules transform in a simple way under
SL(2,Z). (See [18] for a survey.) At first sight this comes as something of 2
surprise; SL(2,Z) does not enter the structure of these algebras in any obvious
way; it is certainly not a group of automorphisms of them. However, it is known
that the highest weight modules of affine Lie algebras have a natural descrip-
tion in terms of quantum field theory. For the level one modules of most of the
affine Lie algebras this can be done using free bosons or free fermions [6,20,26,
7]. In general, arbitrary integrable highest weight modules of affine Lie algebras
have quantum field theory realizations, albeit more complicated [33]. The quan-
tum field theories in question are conformal field thégi?}iés‘, so the appearance of
SL(2,Z) in the theory of affine Lie algebras is a special case of our assertion that

SL(2,Z) has a simple action on (106).

Most of the work on affine Lie algebras has been done in the context of the
Hamiltonian formulation of quantum field theory. As we have just seen, the role
of SL(2,Z) becomes clear only in the path integral formulation. The discussion
has made it clear that the Hamiltonian perspective is related to path integrals
on a cylinder. In and of itself the Hamiltonian perspective seems self-contained.
The path integral approach suggests the obvious generalization to other Riemann
surfaces, which would scarcely occur to us if we think in Hamiltonian terms only.
Given a quantum field theory whose path integral on a cylinder constructs a

highest weight module of an affine Lie algebra, what is the mathematical sig-
nificance of the same path integral on, say, a Riemann surface of genus g7 1

_-cannot propose-an.answer to this question. One reason I hope that this question
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will attract interest is that a proper answer might well shed some light on string
theory. '

The path integrals that we have discussed until now are by no means the
most general ones that are.usually cofxsidered in quantum field theory. In fact,
we have only considered very special cases of the usual structures. Usually one
defines what are known as local operators. Consider, for instance, the free boson
field theory which we have given as a simple example of quantum field theory. Let
¥ be a Riemann surface. Let P be 2 point on T, and let z* be local coordinates
near P. In studying free boson field theory, we are integrating over real-valued
functions ¢ : © — R. By a local operator at P we mean a functional O of ¢
which depends only on ¢(P) and the derivatives of ¢ at P. More specifically,
O is required to have only a polynomial dependence on the derivatives of ¢(P).
Thus, examples of local operators would be
o)

dzidzi’ (107)

F(P), F6(P) o5 FI(6(P)

where F, F', F/ are arbitrary real valued functions of #(P). (In string theory
‘the case F = e¢*%, A € R, is particularly importarif.)“f?What do we do with such
local operators? Let P; be some points on ¥, and let O; be local operators at F;.

Then we generalize (70) to consider

2;(05%) = / e~ T] 0:(P). (108)
Q4(Z) ¢
This would be described as a pat.h integral on the surface £ with insertion of the

operators O;(P;). One usually defines the ‘correlation function’

_ Z7(03%)

(01(P1)O3(Ps) - .- On(Pn)) = Z;(%) (109)

For the significant choices of the O; (for example, the operators (107) with
3

F = ei’\‘-”), it is possible to work out quite explicit formulas for such correla:
tion functions, which depend only on the Green function of the Laplacian A. 1

.. will not enter into this here.
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It remains to explain why the local functionals O(P) are called local oper-
ators. Indeed, they correspond to operators in the Hamiltonian formulation of
quantum field theory. Consider again a path integral on our familiar cylinder
¥, but now with an insertidn‘pf the operator O(P) at the point P. Let 8; and 8,

be the distance from P to S; and Sy, respectively. Generalizing (88), we consider

the integral

R(O(P);%, "»bl) = / | ¢2‘(f2) / ¢1(f1) ’ Z(fl.fz)(O; E) (110)

0(S2) Q(51)

As in our previous case, linearity In the ¥; ensures that (110) is of the form
(1h2|Ulthy) for some operator U in the Hilbert space Hg of the quantum field
theory. In fact, one defines a linear operator. O(P) by

R(O(P)i 2, 91) = (2le P HO(P)e™ [y} ()

This a canonical correspondence between local functionals O(P) that can be
inserted in the path integral and local operators O(P) in the Hilbert space. (The
precise sense in which the Hilbert space operator O(P) is:local’ is something I will
not enter into here.) Local operators O(P) are crucxal in physical applications

of quantum field theory, and suitable local operators are the natural tools for

describing the highest weight modules of affine Lie algebras.

There is in addition an important correspondence between operators and
vectors in Hilbert space. Consider the simplest Riemann surface with boundary,
namely a disc D. Fix a point P in the interior of £. We have a Hilbert space
Hg associated with real valued functions on the boundary S of D. We also have
local operators at P; they form a vector space Hp. 1 will describe a natural map
from Hp to Hs. Let O(P) be a local operator at P. We wish to construct an

element of Hg. Let f be a real-valued function on S, and let
O "’
vo(f) = Z7(0; D). (112)

»The;corres.,pond‘ence O__-‘-’_ﬁ_bb(.f_) ,givés the desired map Hp — Hgs. In conformal
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field theory, this correspondence is an isomorphism between Hg and Hp, and is
of special importance.

One local operator of particular importance is the following. Under an in-
finitesimal change in the metric g;; of I, the change in the action I of a quantum

field theory is _
s1= [ o691y, (113)
z

where the symmetric tensor Tj; is known as the energy-momentum tensor. A
conformal field theory is precisely one in which gvT ;7 = 0. In a conformal field
theory on a Riemann surface, T:; has only two independent non-zero components,
which transform as differentials of type (2,0) and (0, 2), respectively. Let us call
these T and T, respectively. Letting o be an angular variable on our canonical

circle S, we define

L, = / e™ T (o), Ly (114)
S
These can be shown to obey
[Lm Lm] = (m - n)Lm+n + C5m+n(m3 - m)
[Lpy L) =0

where ¢ and ¢ are constants; é,, is one for n = 0 and otherwise zero. Restricting
ourselves to the L’s, (115) is the so-called Virasoro algebra, a central extension
of the Lie algebra of diffeomorphisms of 'S. The latter algebra is generated by
the vector fields

D, = —ie™ — (116)

which are easily seen to obey [Dy, Dp] = (m — n) Dpin; the first line in (115) is

| a central extension of (116).. A representation of the Virasoro algebra is called
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a highest weight representation if Lo is bounded above; a highest weight vector
is one annihilated by the L, for n > 0. Conformal field theories lead to highest
weight representations of the Virasoro algebra, a special case of this being the
assertion that the highest Weight representations of affine Lie a.lgebraé can be

extended to the semi-direct product with the Virasoro algebra.

The introduction to quantum field theory that I have given has been very
sketchy to say the least. Quantum field theory is a rather rich and complex
subject, and I have only explained a few generalities. Describing quantum field
theory as a mathematical theory will become far easier and more natural once
some of its characteristic mathematical applications begin to emerge. There are

grounds for believing that — after sixty years — this time may be nearly at hand.

4 STRING THEORY

Finally, I would like to briefly describe what string theory is. String theory is
a subject even more vast than those that we have considered previously, and my
treatment will be even sketchier. Let us return to-gemeral relativity, described

by the action functional

-1
e / R, (117)
M

with R being the Ricci scalar of a Riemannian metric g on a space-time manifold
M. Treating (117) as a quantum theory would mean the following. Fixing the
topology of M , let A be the space of metrics on M modulo diffeomorphisms. The

quantization of general relativity would involve defining integrals such as

Z='/ e~ (118)

A

'
"y

as well as generalizations with insertions of operators, modifications of boundary
~conditions if M # 0, etc. While there is no rigorous theorem here, all the

-indications -a.rev_tha_xzt_‘;there,:is no satisfactory way to make sense of the integration
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measure in (118). This is one way of expressing the inconsistency between general
relativity and quantum mechanics which was cited in the introduction as a central

problem in theoretical physics.

Before discussing the string theory generalization of (118), let us discuss the
perturbative expansion of general relativity. Let 5;; be the metric tensor of flat

Minkowski space, and expand the metric tensor g;; as

gij = Mij + hij (119)
where h;; is the metric disturbance. In an expansion near flat space, one can
think of h,; as taking values in a linear space Ap. If the action function I is

written in terms of h, the linear term vanishes because flat Minkowski space is a

solution of the Einstein equations. The quadratic term-is of the general form

hALh, (120)

where Ay is a certain linear operator known as the Lichnerowicz Laplacian. The
solutions of Ak = 0 are the linearized gravitational waves discussed in section
(1). The cubic term is

1

Sz = —
3 167G

®3(h), (121)

with ®3(h) being a complicated cubic expression, the details of which need not
concern us. On substituting in (118) the expansion S = S3+ S3 + ... of the
action, one can try to develop a perturbation expansion, viewing h as a small
quantity. The starting point, discarding all terms beyond S», gives a Gaussian
integral similar to those discussed in the las‘t section. The correction terms can be
_ computed but, in the case of general ;elé‘zivity, one runs into nonsensical infinite
formulas. This is one major aspect of why we believe that general relativity does

not ma‘kei sense as.a .quantum theory.
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In theories that do make sense as quantum theories, a major aspect of our
understanding is the ﬁerturbative expansion analogous to the above. Such per-
turbative expansions are not beautiful. The beauty, if any, of 2 quantum field
theory is to be found in the basic formulas, analogous to (117), not in the nitty-
gritty of a perturbati\;e expansion. Nevertheless, in the case of string theory, it
is the perturbation expansion that we know. We do not know the basic formulas
like (117), or the basic logical concepts that should play in string theory the role

played by metrics, connections, and curvature in general relativity.

I will therefore explain in turn some of the ingredients which in sfring theory
are analogous to k, Ag, Iz, and I3. First of all, the linear space A is replaced by
the Hilbert space of a certain quantum field theory. Our discussion of quantum
field theory in the last section was rather formal, and we did not discuss the
physical interpretation -of the Riemann surface T or the quantum field ¢. In
traditional applications of quantum field theory, T plays the role of space-time,

‘and ¢ is 2 field (analogous to the electromagnetic field) propagating in space-
time. In string theory, the interpretation is reversed; the Riemann surface T is
an auxiliary object, and ¢ is replaced by a map @ »Dis M, with M interpreted

 as space-time. Thus, let M be a flat manifold of dimension D, with standard

coordinates X', = 1...D. Themap ® : £ — M is specified by giving D

real-valued functions X* on . The action functional is thus
1

I= 5;_/ ngjdXi/\ «dX7. (122)
)

Clearly, (122) is invariant under D dimensional Poincaré transformations of the
X .

-Now, in the linearized theory of general relativity, the main ingredients are
the linear spa::e 2 of metric disturbances and the quadratic action functional Se

_on this space. What are the analogues of these in string theory? The analogue of

Ao is the Hilbert space Hg of the. quantum field theory (122). The replacement of
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Ao by Hg is really a quite drastic step, since H s is 2 quite infinite space compared
to Ag. An element of A, is, concretely, a finite collection of functions

, hij(zk),” e . U (123) _

withz* k=1... D, being the coordinates of the space-time manifold M. What
is an element of Hg? Letting o be an angular parameter on the circle S , we
defined in the last section the space {lg of maps from S to M. Such a map
is concretely given by specifying real-valued functions X* (o) for which we will
make a Fourier expansion

X o) = 2F Y ek, - (124)

n#0

We have separated out the zeroth Fourier component, which is known as the ‘cen-
ter of mass of the string.” We would like to think of zF in (124) as corresponding
to the z* in (123). Of course, z£ is the complex conjugate of z* . An element

of Hg is a real-valued function on N S, Or concretely a function

®(z* zil, .ol (125)

Thus, & depends on an infinity of variables besides the center of mass coordi-
nates zF which appear already in (123). The sense in which string theory has
field theory as an approximation is that if the zf in (125) can be considered as
small, then & reduces, in the first instance, to a function of the z* just like the
gravitational field or any other field normally considered in physics. To be some-
what more precise about this, suppose that the zE for n # 0 are small enough
that it is appropriate to make a Taylor series expansion about zF = 0. The form

of the expansion would be*

®(z%; 27) = ¢(z*) + z1B:(2*) + ziad B (zH) 4 ... (126)

In this expansion, the #(z*), B; (zF), héj, etc., are ordinary functions of the center

= % This is not Precisely the right ‘expansion-to make, but it will do for our purposes here.
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b'f mass coordinates, that is, ordinary functions on M. The first point here is that
we can think of ® as an infinite collection of functions on space-time. General
relativity is based on certain nonlinear partial differential equations for h;;. In
string theory, we will likewise write down nonlinear partial differential equations
for & (or a somewhat largef set of variables). Concretely, 2 nonlinear equation
for ® can be understood as a system of coupled nonlinear equations for an infinite
set of variables in spacetime. The second major point about (126) is that there
is a very definite sense in which & should be viewed as a generalization of (123).
In (126), there appears the tensor field h:.j, and this should be viewed as the
analogue of h;;. The nonlinear equation that one studies in string theory has the
property that, when restricted to h:.]., it reduces approximately to. the Einstein

equations obeyed by k;;, on length scales large compared to the Planck length.

Having explained what is the string theoretic analogue of Ao, the next step is
to explain what is the analogue in string theory of the quadratic action functional
Sonf the linearized theory of general relativity. Roughly Speaking, the analogue

of Ss is just

s(e)=(elHR) (127)

where H is the Hamiltonian of the quantum field theory (122). This isn’t quite
the right definition, but must be supplemented by a restriction to highest weight

vectors of the Virasoro algebra. However, it will do for the moment.

What is the analogue in string theory of the nonlinear terms Ss, etc., of
general relativity? The right approach involves a simple elaboration of ideas
from the last section. Consider a Riemann surface £ whose boundary consists of
three circles S;, Sz, and Sz, as in figure (4). A simple variant of constructions
in the last section is to consider a path integral on ¥ in which the boundary

¢’ ndition-on each boundary component is determined by &:

]

ss@= [ o) [ a(s [ 29 Zppm®. 29)

_(5)  a(S) Q(Ss)
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This is then roughly the analogue of the cubic term in the Einstein action S;(k).

It can obviously be generalized 'to a case with n boundary components.

There is, however, another language for thinking about this. At the end of the
last section we noted that in conformal field theory there is a natural isomor;;hism.
Hp ~ Hg between local operators O(P) that can be inserted at a point P and
vectors ¥ o in the Hilbert space Hg. The state @ in (128) corresponds under this
isomorphism to some operator Vg (called the vertex operator of ®). Henceforth
we will refer to Vp merely as V. According to (112), the relation between & and

V is that if we introduce for i = 1,2;3 a disc D; with boundary S;, then
&(f:) = Z5(V; Dy). - (129)

Suppose that we compactify the surface T of figure (4) by gluing in the disc D;

along each boundary component S;, for « = 1,2,3. Let us call the resulting closed

surface X.

We want to reexpress (128) as a path integral on T. In (128), ® has been
used to define the boundary condition on each S;. According to (129), defining
the boundary condition on S; by @ is the same as gluing in the disc D; with the
operator V inserted on a point P; of D;. Thus, (128) is really equivalent to a

path integral on T with insertions of the vertex operator V at the three points

Py, P;, and Ps:

S3(®) = Z(V(P1),V(P2),V (Ps); X). (130)

In (130) we have not been too particular about explaining which three points
Py, Py, and P3; have been chosen. There is a definite sense in which this does
not matter. The Riemann surface T is isomorphic to the Riemann sphere. It
is well known that the group SL(2,C) acts transitively on the configuration of
three disjoint points on tﬁe Riemann sphere, so there is no conformal invariant
‘associated with the choice of the P;. If, however, we want to define not S3(®)

~ but an analogous object S, (@) for n > 3, we face the question of choosing points
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P;. The correct prescription, as articulated by Polyakov [22], is to integrate over
the moduli of conﬁgurations' of n points on X: .

Mo

Here M, is the space of moduliof n ‘disjoint-lj:ointsﬂ on the Riemann sphere: This

integral is indicated in figure (5) for the case of five points.

In fact, (131) is not just the string theorgtic generaliza.tior; of the Einstein .-

action, but contains more informatjon. (131) is the string theoretic analogue not
Just of (117) but of the perturbation series constructed from (117) in defining the
‘tree approxima.tioh’ to genera] relativity. The physical interpretation of (131) is
that it gives the probability for scatteriﬁg of n ‘pa.rticles of tyj)e ®. Unfortunately,
to explain the latter remark would require a considera.ble—eﬁlargehlent' of the brief

introduction to quantum field theory in section (3).

Now, in (131) T is a Riemann surface of genus zero, because we are led
to genus zero in the course of irying to find a string theory analogue of (117).
However, in the mathematica] sense, (131) has a very naturs] generalization
(figure (6)) with T replaced by 2 Riemann surface of genus greater than zero,
This generalization is of central importance in string theory. I have remarked
that if we try to interpret (117) as the Lagrangian of a quantum theory, we
run into severe difficulties. The attempt to calculate quantum corrections to the
classical theory of general relativity gives rise to infinities. On the other hand, in

string theory there is a meaningful and well-defined prescription for calculating

 quantum corrections to classical answers. One simply replaces by a Riemann

surface ¢ of genus £ > 0, Thus., if we want to calculate the probability of
scattering of n particles of type &, then in string theory the classical answer,

valid for & = 0, is given by (131). If we want to calculate a quantum correction

" to (131) of order A% then we calculate not (131) but

/ 2([Iv (), 5). (132)
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Here £ has genus k, and M k,n is the moduli space of Riemann surfaces of genus
k with n marked points. In this wa)", physicists have become interested in the
moduli space of Riemann surfaces and in path inf.egfa.ls ové_r _this sfpacé. The
integrals in (132) actually have remarkably bééutiful prﬁperﬁes, some of which

| 1 were described on Tu'e.'sday"by Yu. Manin. 'But even if (132) were not beauvti_ful;v

- the fact that it is free of the ultraviolet divergences that‘plagu‘e the a.né.logéus

formulas in the q_u_antum theory of general relativity would be enough to givé it

a far-reaching importance in physics.

There are many major gaps in this exposition. A much nicer Eiescription can

be given if one considers not the space Hg but a certain highest weight cohomol- .

ogy theory of the Virasoro algebra with values in & 5. The cohomology theory in
question [3,29,19,8] has ‘been presented at this confereﬁce by L. Frenkel, and I will
not enter into it here. Also,.I have avoided the question of what vertex operators
V we are using in (131) and (132). These formulas are actually limited to vertex
operators V that transform on the Riemann surface like differential forms of type
(1,1); they correspond, under our canonical correspondence between operators
and vectors in Hg, to highest weight vectors of the Vira.sd%' a.I'gebfa. The highest
weight cohomology theory that I just mentioned is the proper framework for for-
mulating the quadratic action S2(®) [27,1,28] and is also very useful in what little
Wwe can say about the nonlinear theory which has the perturbative exXpansion we
have discussed [34,15,21]. | - '

I have tried to make it plausible that path integrals on Riemann surfaces
| can be used to formulate a generalization of general relativity. What is more,
the resulting generalization is (especially in its Supersymmetric forms) free of the
ailments that plague quantum general relativity. If the logic has seemed a bit
thin, it is at least in part because almost all we know in string theory is a trial and
error constriction of a perturbative expansion. (131) and (132) are probably the
most beauti-i:ﬁI' ;brmulas that we now know of in string theory, yet these formulas
are merely a perturbative expansion (in powers of & and %) of some underlying

structure. Uncovering that structure is a vital problem if ever there was one.
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- FIGURE CAPTIONS

1) A cylinder with a standard, flat metric. The boundary consists of two
' components 51 a.nd Sz of cu'cumference 2x. The ‘height’ of the cylinder is
labeled as ﬂ _ U 3 :
2) A cyhnder of helght 51 + ﬂz, made by glumg together cyhnders X and I
of height #; and 52, respectlvely The boundary of T, consxsts of the two
circles S; and S, and the boundary of £, consists of the two circles S and

Sz.
3) A pa.th integfal on a cvlinder T with insertion of a loca] opera.tc;r O(P).
The boundary of T again consists of the two circles S; and Ss.

4) A Riemann surface with three boundary components..

5) Integration over moduli of configurations of several points on the Riemann

sphere.

6) A path integral on a Riemann surface of genus two, with insertions of several

vertex operators.
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