EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

The ALICE definition of primary particles

ALICE Collaboration*

Abstract

In this public note, we specify what we mean by the term *primary particle*. The definition is motivated by what is in principle measurable by ALICE and that event generators and other such theoretical considerations must be able to reproduce the same requirements. To this end, we also provide a Rivet projection to be used in ALICE Rivet analyses.

© 2017 CERN for the benefit of the ALICE Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

^{*}See Appendix E for the list of collaboration members

Contents

1	The	definition	3			
	1.1	Variations of the definition	3			
2	Som	e explanatory comments	3			
	2.1	Lifetime considerations	3			
	2.2	Decay radius considerations	4			
	2.3	Decay product considerations	4			
3	Algo	orithmic description	5			
4	Defi	nitions used in the past and by other collaborations	5			
	4.1	ALICE definition prior to 2017	5			
	4.2	ALICE definition prior to 2013	7			
	4.3	LPCC MB+UE working group's definition of primary particles	7			
	4.4	CMS definition of primary particles	7			
	4.5	ATLAS definition of primary particles	8			
5	Sum	mary	8			
A	Tabl	e of lifetimes	11			
B	ĿŦĘ	X code of the definition	16			
С	2 Rivet projection 1					
D	Code 2					
E	ALICE Collaboration 23					

1 The definition

The following sentence constitutes the ALICE definition what we consider a primary particle.

A primary particle is a particle with a mean proper lifetime τ larger than 1 cm/c, which is either a) produced directly in the interaction, or b) from decays of particles with τ smaller than 1 cm/c, restricted to decay chains leading to the interaction.

In the sentence above and else where in this note, except if otherwise indicated, the word "interaction" refers the interaction between the colliding partners.

All particles that do *not* meet the requirements are not primary particles and are therefore dubbed *sec-ondary* particles.

1.1 Variations of the definition

Alternatively, if the analysis presented concerns only charged, primary particles, we will write

A primary, charged particle is a charged particle with a mean proper lifetime τ larger than 1 cm/c, which is either a) produced directly in the interaction, or b) from decays of particles with τ smaller than 1 cm/c, restricted to decay chains leading to the interaction.

In some cases, we present measurements of identified particles that are not included in the above definition of a primary particle e.g., the π^0 . In such cases, the definition of what we mean by a primary particle of type X can be replaced by

A primary X is an X, which is either a) produced directly in the interaction; or b) from decays of particles with mean proper lifetime τ smaller than 1 cm/c, restricted to decay chains leading to the interaction.

Finally, in some manuscripts, the caveat "restricted to decay chains leading to the interaction" may be cumbersome. In those cases, we may write

A primary particle is a particle with a mean proper lifetime τ larger than 1 cm/c, which is either a) produced directly in the interaction, or b) from decays of particles with τ smaller than 1 cm/c, excluding particles produced in interactions with material.

It should be understood that the above sentence and the sentence given at the top of this Section are entirely equivalent and does not include or exclude more or less particles. The choice of exact phrase used in a given manuscript is a matter of preference.

2 Some explanatory comments

2.1 Lifetime considerations

The definition above requires that a particle is long-lived i.e., lives long enough that it may in principle be detected by the ALICE detectors. By long-lived particle, we mean a particle that has a mean proper lifetime larger than 1 cm/c. The particle species that fulfill this requirement according to the Particle Data Group [1], are given in Tab. 1. The particle species with the longest mean proper lifetime that falls outside of this cut is the B⁺ with $\tau = 0.049$ cm/c (see also Appendix A for a full list).

	Width Γ	Mean prop	er lifetime $ au$
Specie	(GeV)	(ps)	(cm/c)
p^+	0	∞	∞
γ	0	∞	~
K ⁰	0	∞	∞
e ⁻	0	∞	∞
n	$7.478 imes 10^{-28}$	$8.861 imes 10^{+14}$	$2.656 \times 10^{+13}$
μ_	$2.996 imes 10^{-19}$	$2.212 \times 10^{+06}$	$6.63 imes 10^{+04}$
K_L^0	$1.287 imes 10^{-17}$	$5.148 imes 10^{+04}$	1543
π^+	$2.528 imes 10^{-17}$	$2.621 \times 10^{+04}$	785.7
K ⁺	$5.317 imes 10^{-17}$	$1.246 imes 10^{+04}$	373.6
Ξ^0	$2.27 imes10^{-15}$	291.9	8.751
Λ	2.501×10^{-15}	264.9	7.943
Ξ-	$4.02 imes 10^{-15}$	164.8	4.941
Σ^{-}	$4.45 imes 10^{-15}$	148.9	4.464
K _S ⁰	$7.351 imes 10^{-15}$	90.14	2.702
Ω^{-}	$8.071 imes 10^{-15}$	82.1	2.461
Σ^+	8.209×10^{-15}	80.72	2.42

Table 1: Width (Γ) and mean proper lifetime (τ) of long-lived particles, sorted by descending mean proper lifetime [1]. Here, a zero width or " ∞ " mean proper lifetime signifies undetermined values and are presumed small or large, respectively.

2.2 Decay radius considerations

The choice of the mean proper lifetime cut–off of 1 cm/c is motivated by the capability of the ALICE detectors. That is, a particle produced in a decay close to the interaction can not be distinguished from particles produced directly in the interaction. As a rule-of-thumb a particle from decay can be unambiguously be identified as a non-primary particle when the decay occurs on average more than 1 cm away from the interaction. Furthermore, particles produced by inelastic collisions with the ALICE beam-pipe, with a radius of 2.98 cm [2]¹, sets a limit to how close to the interaction one can resolve decay vertices.

The mean proper lifetime of a given particle species defines the mean lifetime of particles of that species in the rest frame of the particle. In the laboratory frame, the average decay length is given by^2

$$\lambda_{\rm lab} = \tau \beta \gamma = \tau \frac{p}{m_0} \tag{1}$$

and as such depends on the momentum of the particle. Considering the longest lived particle species with a $\tau < 1 \text{ cm/c}$, the B⁺ with $\tau = 0.049 \text{ cm/c}$ and $m_o = 5.2793 \text{ GeV}$, we find that a particle of this type with a momentum of 10 GeV/c may on average travel $\approx 1 \text{ mm}$, but would require a momentum of > 350 GeV/c to live long enough to decay outside of the ALICE beam-pipe. For the less heavy D⁺ to decay outside the ALICE beam-pipe it would need a momentum larger than 180 GeV/c. For the shortest lived particle with $\tau > 1 \text{ cm/c}$, the Σ^+ , only a momentum of $\approx 2 \text{ GeV/c}$ would be needed.

2.3 Decay product considerations

The definition requires for a particle to be primary, that there are no long-lived particles in the decay chain that leads to that particle. This is illustrated in Fig. 1. For the K_S^0 and Ξ^- chains only the initial

¹In Run 3 of the LHC, the beam-pipe will be replaced with a smaller radius between 1.72 cm and 1.92 cm [3].

²The convention adopted by the ALICE collaboration is to set the speed of light c = 1 and hence leave it out of equations, *except* in units of measure where c is explicitly given.

Figure 1: Various decays. Particles defined as primaries are marked in red. In both the Ξ^- and K_S^0 decays, the initial particles are considered primary, since these particles are long-lived, while all the decay products are not considered primaries. In the B⁰ decay chain, the π 's, γ 's, and the K⁺ are all primary since they are the first long-lived particle in the decay chain leading back to the interaction.

particles are primaries because $\tau > 1 \text{ cm/c}$. In the B⁰ branch the charged π 's are primaries, since when tracking back to the initial B⁰ we meet no long lived particles. Similar considerations applies to the 2 γ 's and the K⁺. That is, we must be able to track back to the interaction and not find *any* long lived particles, but *without* considering branches of the decay tree that do not end up in the particle we are considering. Also, we require that all production processes in the chain are decays — that is, we exclude chains that contain inelastic interactions with material, hadronic interactions, and other such production mechanisms.

3 Algorithmic description

Figure 2 illustrates the algorithm used to determine if a given particle *p* is primary or not. If *p* is *neither* long-lived *nor* produced in a decay, *nor* directly in the collision, it is certainly *not* a primary. Next, we check to see if *p* has a mother particle *m*. If no such mother particle exists, we have a primary. If we can find an ancestor we step through each successive ancestor and check if the ancestor is *either* long-lived or *neither* from a decay *nor* from the interaction, then the particle under consideration *p* is *not* a primary. If we can continue this search back to the interaction i.e., we cannot find any more ancestors, then we *do* have a primary.

The algorithm shown in Fig. 2 is implemented into the ALICE simulation framework and is consistently used throughout all analysis that need to distinguish between primary and non-primary particles. The code is reproduced in Appendix D.

4 Definitions used in the past and by other collaborations

4.1 ALICE definition prior to 2017

Primary [charged] particles are defined as prompt [charged] particles produced in the collision, including their decay products, but excluding products of weak decays of muons and light flavour hadrons. Secondary [charged] particles are all other particles observed in the experiment e.g., particles produced through interactions with material and products of weak decays. [4] Parenthesis added.

The primary charged particles are defined as prompt particles produced in the collision including all decay products, except products from weak decays of light flavor hadrons and of muons. [5]

The above two definitions of (charged) primary particles has formed the basis in many ALICE publications so far. The definition can be construed to mean that *both* prompt (i.e., produced directly in the

Figure 2: Flow chart of deciding if a given particle is primary or not.

interaction) particles *and* the decay products counts as primary particles, thus leading to a double count of particles. For example, in this reading of the above definitions, the D^- decay in Fig. 1 would count as 5 (rather than 3) primary particles. Clearly, this is not the *intent* of the definition, and operationally no such double counting ever took place. The wording of the definition is the cause of the confusion. The current definition remedies the misunderstanding by explicitly requiring where in the decay chain primary particles may originate from.

The second part of the definition, which stipulates that decay products from weak decays of light flavour hadrons and muons are *not* considered primaries is entirely equivalent to current definitions requirement of mean proper lifetime larger than 1 cm/c and that possible parent particles must have a mean proper lifetime smaller than 1 cm/c. The known light flavour hadron with the shortest mean proper lifetime is the Σ^+ with a $\tau = 2.42 \text{ cm/c}$, and as such, under the current and previous definition none of its decay

products can never be primary.

The current definition, and the 3 quoted above are therefore entirely equivalent though the current definition clarifies the exact conditions and is therefore used by ALICE.

4.2 ALICE definition prior to 2013

Primary particles are defined as prompt particles produced in the collisions, including all decay products, with the exception of those from weak decays of strange particles. [6]

We define primary particles as prompt particles produced in the collision, including decay products, except those from weak decays of strange particles. [7]

Relative to the definitions presented in Section 4.1, these formulations would include decay products of μ^{\pm} and π^{\pm} . This was an oversight on the part of the formulation, since the operational definition has remained constant between 2013 and 2016. The reason for the oversight was that μ^{\pm} and π^{\pm} are so long lived that they rarely decay within the ALICE acceptance, and was simply ignored by the definition.

Bearing that oversight in mind, this definition of primary particles is entirely consistent with the current and those listed in Section 4.1.

4.3 LPCC MB+UE working group's definition of primary particles

We reiterated the definition of "charged particle" used in the common plots: this includes hadrons and leptons, with mean lifetime $\tau > 0.3 \times 10^{-10}$ s, produced directly or from decays of shorter-lifetime particles. No particle level correction (e.g. no correction to subtract Dalitz decays) [is used]. [8] *Parenthesis added.*

This definition adopted by the LHC Physics Center at CERN Minimum Bias and Underlying Event working group is identical to the definition adopted by ALICE.

4.4 CMS definition of primary particles

Primary [charged] particles are defined as all [charged] particles produced in the interaction with a proper lifetime τ of greater than 1 cm, including the products of strong and electromagnetic decays, but excluding particles originating from secondary interactions. The products of weak decays are only considered primary particles if they are the products of a particle produced in the interaction with a τ of less than 1 cm. [9]

Parenthesis added.

This definition can be construed to mean, that in the decay $\Lambda \rightarrow \pi^- + p$ we would count 3 particles (since all three species have a mean proper life time larger than 1 cm/c. However, the last part of the definition, which stipulates that mother particles in weak decays must have $\tau < 1 \text{ cm/c}$ for the decay products to be considered primary, rules this out and the definition only counts 1 particle, albeit it may not be immediately obvious to the reader.

The definition adopted by the ALICE collaboration *explicitly* rules out double counting. The above definition from the CMS collaboration and the one adopted by the ALICE collaboration are otherwise equivalent.

4.5 ATLAS definition of primary particles

A primary [charged] particle is defined as a [charged] particle with a mean lifetime $\tau > 300 \text{ps}[\approx 9 \text{ cm/c}]$, which is either directly produced in pp interactions or from decays of directly produced particles with $\tau < 30 \text{ ps}[\approx 0.9 \text{ cm/c}]$; particles produced from decays of particles with $\tau > 30 \text{ ps}[\approx 0.9 \text{ cm/c}]$ are considered as secondary particles and are thus excluded. [10]

Parenthesis and τ in length units added.

In this definition, if a particle has a mean proper lifetime between 30 and 300 ps (or 0.9 to 9 cm/c), it is not considered a primary particle, which excludes all hyperons and K_S^0 , nor are the decay products of these particles. If the particle has a lifetime shorter than 30 ps it is not a primary, but it decay products may be e.g., a *prompt* D⁺ decaying to N + π is counted as a single primary particle. Similarly all charmed baryons and mesons cannot be primary but their decay products may.

This definition obviously differs from the definition adopted by the ALICE collaboration, in particular for hyperons and K_S^0 which are never considered primary unless produced in the decay of much shorter lived particles. In the ALICE definition, prompt hyperons and K_S^0 are considered primaries.

5 Summary

The definition presented in Section 1 provides a clear method to distinguish what ALICE means by "primary". Operationally the definition is equivalent to previous definitions used, but has the advantage of clarity and reproducability.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC), China; Ministry of Science, Education and Sport and Croatian Science Foundation, Croatia; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research — Natural Sciences, the Carlsberg Foundation and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l'Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE) and Council of Scientific and Industrial Research (CSIR), New Delhi, India; Indonesian Institute of Science, Indonesia; Centro Fermi - Museo Storico della Fisica

e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation and National Research Centre Kurchatov Institute, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba, Ministerio de Ciencia e Innovacion and Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Spain; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Suranaree University of Technology (SUT) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.

References

- [1] **Particle Data Group** Collaboration, C. Patrignani *et al.*, "Review of Particle Physics," *Chin. Phys.* **C40** no. 10, (2016) 100001.
- [2] ALICE Collaboration, K. Aamodt *et al.*, "The ALICE experiment at the CERN LHC," *JINST* 3 (2008) S08002.
- [3] ALICE Collaboration, B. Abelev *et al.*, "Technical Design Report for the Upgrade of the ALICE Inner Tracking System," *J. Phys.* G41 (2014) 087002.
- [4] ALICE Collaboration, J. Adam *et al.*, "Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV," *Phys. Lett.* **B754** (2016) 373–385, arXiv:1509.07299 [nucl-ex].
- [5] ALICE Collaboration, J. Adam *et al.*, "Centrality dependence of the charged-particle multiplicity density at midrapidity in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$," *Phys. Rev. Lett.* **116** no. 22, (2016) 222302, arXiv:1512.06104 [nucl-ex].
- [6] ALICE Collaboration, J. Adam *et al.*, "Pseudorapidity and transverse-momentum distributions of charged particles in protonproton collisions at √s = 13 TeV," *Phys. Lett.* B753 (2016) 319–329, arXiv:1509.08734 [nucl-ex].
- [7] ALICE Collaboration, K. Aamodt *et al.*, "Charged-particle multiplicity density at mid-rapidity in central Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV," *Phys. Rev. Lett.* **105** (2010) 252301, arXiv:1011.3916 [nucl-ex].

- [8] LPCC MB+UA Working Group, "Conveners' meeting on the restart of activities for run 2," March, 2015. http://lpcc.web.cern.ch/LPCC/documents/mb_documents/ minutes-16-03-2015-final.pdf.
- [9] **CMS** Collaboration, K. Krajczr, "Transverse momentum and pseudorapidity dependence of charged particle production and nuclear modification factor in protonlead collisions at $\sqrt{s_{NN}} = 5.02$ TeV with CMS," *Nucl. Phys.* **A932** (2014) 174–178.
- [10] ATLAS Collaboration, G. Aad *et al.*, "Charged-particle distributions in *pp* interactions at $\sqrt{s} = 8$ TeV measured with the ATLAS detector," *Eur. Phys. J.* C76 no. 7, (2016) 403, arXiv:1603.02439 [hep-ex].
- [11] A. Buckley, J. Butterworth, L. Lonnblad, D. Grellscheid, H. Hoeth, J. Monk, H. Schulz, and F. Siegert, "Rivet user manual," *Comput. Phys. Commun.* 184 (2013) 2803–2819, arXiv:1003.0694 [hep-ph].

A Table of lifetimes

Width Γ		Mean proper lifetime $ au$		
S	pecie	(GeV)	(ps)	(cm/c)
p^+		$\ll 10^{-29}$	$\gg 10^{+15}$	$\gg 10^{+14}$
γ		$\ll 10^{-29}$	$\gg 10^{+15}$	$\gg 10^{+14}$
K ⁰		$\ll 10^{-29}$	$\gg 10^{+15}$	$\gg 10^{+14}$
e ⁻		$\ll 10^{-29}$	$\gg 10^{+15}$	$\gg 10^{+14}$
n		$7.478 imes 10^{-28}$	$8.861 imes10^{+14}$	$2.656 \times 10^{+13}$
μ_		$2.996 imes 10^{-19}$	$2.212 imes 10^{+06}$	$6.63 imes10^{+04}$
K ⁰ L		$1.287 imes 10^{-17}$	$5.148 imes10^{+04}$	1543
π^+		$2.528 imes 10^{-17}$	$2.621 imes 10^{+04}$	785.7
K ⁺		$5.317 imes 10^{-17}$	$1.246 imes 10^{+04}$	373.6
Ξ^0		$2.27 imes 10^{-15}$	291.9	8.751
Λ		$2.501 imes 10^{-15}$	264.9	7.943
Ξ^{-}		$4.02 imes 10^{-15}$	164.8	4.941
Σ^{-}		$4.45 imes 10^{-15}$	148.9	4.464
K _S ⁰		$7.351 imes 10^{-15}$	90.14	2.702
Ω^{-}		$8.071 imes 10^{-15}$	82.1	2.461
Σ^+		$8.209 imes 10^{-15}$	80.72	2.42
B^+		4.018×10^{-13}	1.649	0.04944
Ω_h^-		$4.2 imes 10^{-13}$	1.578	0.0473
Ξ_h^{-}		4.22×10^{-13}	1.57	0.04707
\mathbf{B}^{0}		$4.33 imes 10^{-13}$	1.53	0.04588
B_s^0		4.359×10^{-13}	1.52	0.04557
Λ_b		$4.49 imes 10^{-13}$	1.476	0.04424
Ξ_{h}^{0}		$4.5 imes 10^{-13}$	1.472	0.04414
D^+		$6.33 imes 10^{-13}$	1.047	0.03138
B_c^+		$1.298 imes 10^{-12}$	0.5105	0.0153
D_s^+		1.317×10^{-12}	0.5031	0.01508
Ξ_c^+		$1.49 imes 10^{-12}$	0.4447	0.01333
D^0		1.605×10^{-12}	0.4128	0.01238
τ^{-}		2.267×10^{-12}	0.2923	0.008762
Λ_c^+		3.3×10^{-12}	0.2008	0.00602
Ξ_c^0		5.9×10^{-12}	0.1123	0.003367
Ω_c^0		9.6×10^{-12}	0.06902	0.002069
π^0		$7.73 imes 10^{-09}$	8.572×10^{-05}	2.57×10^{-06}
η		1.31×10^{-06}	$5.058 imes 10^{-07}$	$1.516 imes 10^{-08}$
Σ^0		$8.9 imes 10^{-06}$	7.445×10^{-08}	2.232×10^{-09}
r	(3S)	2.03×10^{-05}	3.264×10^{-08}	9.785×10^{-10}
r	(2S)	3.2×10^{-05}	2.071×10^{-08}	6.208×10^{-10}
r	(1S)	5.4×10^{-05}	1.227×10^{-08}	3.679×10^{-10}
D* ⁺	(2010)	8.34×10^{-05}	7.945×10^{-09}	2.382×10^{-10}
J/ψ^0	(1S)	9.29×10^{-05}	7.132×10^{-09}	2.138×10^{-10}
η′	(958)	0.000197	3.363×10^{-09}	1.008×10^{-10}
ψ	(2S)	0.000296	2.239×10^{-09}	6.711×10^{-11}
h _c	(1P)	0.0007	9.466×10^{-10}	2.838×10^{-11}
χ^0_{c1}	(1P)	0.00084	$7.888 imes 10^{-10}$	2.365×10^{-11}
D_{s1}^+	(2536)	0.00092	7.202×10^{-10}	2.159×10^{-11}
Λ_c^+	(2625)	0.00097	6.831×10^{-10}	2.048×10^{-11}
B_{s2}^*	(5840)	0.00147	4.508×10^{-10}	1.351×10^{-11}
Σ_c^0	(2455)	0.00183	3.621×10^{-10}	1.085×10^{-11}
Σ_c^{++}	(2455)	0.00189	3.506×10^{-10}	1.051×10^{-11}
D_{s}^{*+}		0.0019	3.487×10^{-10}	1.045×10^{-11}
χ^0_{c2}	(1P)	0.00193	3.433×10^{-10}	1.029×10^{-11}

		Width Γ	Mean prope	er lifetime $ au$
S	pecie	(GeV)	(ps)	(cm/c)
$D*^0$	(2007)	0.0021	3.155×10^{-10}	9.459×10^{-12}
Λ_c^+	(2595)	0.0026	2.548×10^{-10}	7.64×10^{-12}
Ξ_{a}^{+}	(2645)	0.0026	$2.548 imes 10^{-10}$	7.64×10^{-12}
Ξ^0	(1690)	0.003	2.209×10^{-10}	6.621×10^{-12}
Ξ-	(1690)	0.003	2.209×10^{-10}	6.621×10^{-12}
D^+	(2460)	0.0035	1.893×10^{-10}	5.676×10^{-12}
Ξ^+	(2815)	0.0035	1.893×10^{-10}	5.676×10^{-12}
D_{c}^{*+}	(2317)	0.0038	1.744×10^{-10}	5.227×10^{-12}
ω_{s0}	(1020)	0.004266	1.553×10^{-10}	4.656×10^{-12}
Σ^+	(2455)	0.0046	1.555×10^{-10}	4.318×10^{-12}
Σ^{-}	(2133)	0.0049	1.352×10^{-10}	4.054×10^{-12}
$\frac{-2}{2}b$	(2645)	0.0015	1.332×10^{-10}	3.612×10^{-12}
Δ_c	(2880)	0.0058	1.203×10^{-10} 1.142 × 10 ⁻¹⁰	3.012×10^{-12}
\mathbf{T}_{c}	(2800)	0.0058	1.142×10^{-10}	3.056×10^{-12}
Σ^{*-}	(2013)	0.0005	8.835×10^{-11}	2.649×10^{-12}
Δ_b	(782)	0.0075	7.805×10^{-11}	2.049×10^{-12}
Ξ^0	(152)	0.00049	7.803×10^{-11}	2.34×10^{-12}
Σ^+	(1550)	0.0091	6.831×10^{-11}	2.103×10^{-12}
Σ_b	(1520)	0.0097	0.031×10^{-11}	2.048×10^{-12}
<u>ت</u> س0	(1330)	0.0099	0.093×10^{-11}	2.007×10^{-12}
χ_{c0}	(IP) (28)	0.0103	0.311×10 5.864 × 10 ⁻¹¹	1.692×10 1.758×10^{-12}
Γ_c	(23)	0.0115	5.804×10^{-11}	1.738×10 1.727×10^{-12}
Σ_b^+	(2700)	0.0113	5.702×10^{-11}	1.727×10^{-12}
Ξ_c	(2790)	0.012	5.522×10^{-11}	1.655×10^{-12}
Σ_c	(2520)	0.01478	4.483×10^{-11}	1.344×10^{-12}
Ξ_c°	(2790)	0.015	4.417×10^{-11}	1.324×10^{-12}
Σ_c°	(2520)	0.0153	4.331×10^{-11}	1.298×10^{-12}
Λ	(1520)	0.0156	4.247×10^{-11}	$1.2/3 \times 10^{-12}$
D_{s2}	(2573)	0.0169	3.921×10^{-11}	$1.1/5 \times 10^{-12}$
Σ_c	(2520)	0.017	3.898×10^{-11}	1.168×10^{-12}
王 二〇	(2030)	0.02	3.313×10^{-11}	9.932×10^{-13}
E° Ƴ	(2030)	0.02	3.313×10^{-11}	9.932×10^{-13}
1	(4S)	0.0205	3.232×10^{-11}	9.69×10^{-13}
프~	(1820)	0.024	2.761×10^{-11}	8.277×10^{-13}
<u>ت</u>	(1820)	0.024	2.761×10^{-11}	8.277×10^{-13}
χ_{c2}°	(2P)	0.024	2.761×10^{-11}	8.277×10^{-13}
I ₁	(1285)	0.0241	2.749×10^{-11}	8.243×10^{-13}
B_2^+	(5/4/)	0.0242	2.738×10^{-11}	8.208×10^{-13}
\mathbf{B}_{2}^{*}	(5/4/)	0.0242	2.738×10^{-11}	8.208×10^{-13}
ψ	(3770)	0.0272	2.436×10^{-11}	7.303×10^{-13}
D_{1}^{0}	(2420)	0.0317	2.09×10^{-11}	6.266×10^{-13}
η_c	(1S)	0.0318	2.084×10^{-11}	6.247×10^{-13}
Λ	(16/0)	0.035	1.893×10^{-11}	$5.6/6 \times 10^{-13}$
Σ^+	(1385)	0.036	1.841×10^{-11}	5.518×10^{-13}
Σ^0	(1385)	0.036	1.841×10^{-11}	5.518×10^{-13}
Σ^{-}	(1385)	0.0394	1.682×10^{-11}	5.042×10^{-13}
D_{2}^{*+}	(2460)	0.0467	1.419×10^{-11}	4.254×10^{-13}
K*	(892)	0.0474	1.398×10^{-11}	4.191×10^{-13}
D_2^*	(2460)	0.0477	1.389×10^{-11}	4.164×10^{-13}
Λ	(1405)	0.0505	1.312×10^{-11}	3.934×10^{-13}
$K*^+$	(892)	0.0508	1.304×10^{-11}	3.91×10^{-13}
η	(1405)	0.051	1.299×10^{-11}	3.895×10^{-13}
r	(10860)	0.054	1.227×10^{-11}	3.679×10^{-13}
f_1	(1420)	0.0549	1.207×10^{-11}	3.618×10^{-13}

		Width Γ	Mean prop	er lifetime $ au$
S	pecie	(GeV)	(ps)	(cm/c)
η	(1295)	0.055	1.205×10^{-11}	3.612×10^{-13}
Ω^{-}	(2250)	0.055	$1.205 imes 10^{-11}$	3.612×10^{-13}
Ξ^0	(1950)	0.06	1.104×10^{-11}	3.311×10^{-13}
f ₀	(980)	0.06	$1.104 imes 10^{-11}$	3.311×10^{-13}
Λ	(1690)	0.06	1.104×10^{-11}	3.311×10^{-13}
Ξ^{-}	(1950)	0.06	$1.104 imes 10^{-11}$	3.311×10^{-13}
Σ^0	(1670)	0.06	$1.104 imes 10^{-11}$	3.311×10^{-13}
Σ^+	(1670)	0.06	$1.104 imes 10^{-11}$	3.311×10^{-13}
Σ^{-}	(1670)	0.06	$1.104 imes 10^{-11}$	3.311×10^{-13}
r	(11020)	0.061	$1.086 imes 10^{-11}$	3.256×10^{-13}
ψ	(4415)	0.062	1.069×10^{-11}	3.204×10^{-13}
ψ	(4160)	0.07	9.466×10^{-12}	$2.838 imes 10^{-13}$
f' ₂	(1525)	0.073	9.077×10^{-12}	2.721×10^{-13}
a ₀	(980)	0.075	8.835×10^{-12}	2.649×10^{-13}
a_0^+	(980)	0.075	8.835×10^{-12}	2.649×10^{-13}
ψ	(4040)	0.08	8.283×10^{-12}	2.483×10^{-13}
Λ	(1820)	0.08	8.283×10^{-12}	2.483×10^{-13}
η	(1475)	0.085	7.795×10^{-12}	2.337×10^{-13}
φ3	(1850)	0.087	7.616×10^{-12}	2.283×10^{-13}
K_{1}^{+}	(1270)	0.09	7.362×10^{-12}	2.207×10^{-13}
Σ^0	(1750)	0.09	7.362×10^{-12}	2.207×10^{-13}
Σ^+	(1750)	0.09	7.362×10^{-12}	2.207×10^{-13}
Σ^{-}	(1750)	0.09	7.362×10^{-12}	2.207×10^{-13}
K ⁰ ₁	(1270)	0.09	7.362×10^{-12}	2.207×10^{-13}
Λ	(1830)	0.095	$6.9/5 \times 10^{-12}$	2.091×10^{-13}
\mathbf{K}_{2}	(1430)	0.0985	6.727×10^{-12}	2.017×10^{-13}
Σ^{-}	(1000)	0.1	6.020×10^{-12}	1.986×10^{-13}
Z N+	(1000)	0.1	6.626×10^{-12}	1.980×10^{-13}
N	(1710)	0.1	6.626×10^{-12}	1.986×10^{-13}
	(1710) (1890)	0.1	6.626×10^{-12}	1.986×10^{-13}
Σ^+	(1660)	0.1	6.626×10^{-12}	1.986×10^{-13}
a_2^+	(1320)	0.107	6.193×10^{-12}	1.856×10^{-13}
a	(1320)	0.107	6.193×10^{-12}	1.856×10^{-13}
K [*] 2	(1430)	0.109	6.079×10^{-12}	1.822×10^{-13}
f_0^2	(1500)	0.109	$6.079 imes 10^{-12}$	1.822×10^{-13}
N ⁺	(1520)	0.115	5.762×10^{-12}	1.727×10^{-13}
N	(1520)	0.115	5.762×10^{-12}	1.727×10^{-13}
Δ^{++}	(1232)	0.117	$5.663 imes 10^{-12}$	$1.698 imes 10^{-13}$
Δ^+	(1232)	0.117	$5.663 imes 10^{-12}$	$1.698 imes 10^{-13}$
Δ^0	(1232)	0.117	5.663×10^{-12}	1.698×10^{-13}
Δ^{-}	(1232)	0.117	5.663×10^{-12}	1.698×10^{-13}
Σ^0	(1915)	0.12	5.522×10^{-12}	1.655×10^{-13}
Σ^+	(1775)	0.12	5.522×10^{-12}	1.655×10^{-13}
Σ^0	(1775)	0.12	5.522×10^{-12}	1.655×10^{-13}
Σ^+	(1915)	0.12	5.522×10^{-12}	1.655×10^{-13}
Σ^{-}	(1775)	0.12	5.522×10^{-12}	1.655×10^{-13}
Σ^{-}	(1915)	0.12	5.522×10^{-12}	1.655×10^{-13}
N ⁺	(1680)	0.13	5.097×10^{-12}	1.528×10^{-13}
N	(1680)	0.13	5.097×10^{-12}	1.528×10^{-13}
t_0	(1/10)	0.139	4.707×10^{-12}	1.429×10^{-13}
Δ	(1020)	0.14	4.733×10^{-12}	1.419×10^{-13} 1.410×10^{-13}
Δ	(1020)	0.14	4.755 × 10 12	1.419 × 10

		Width Γ	Mean prop	er lifetime $ au$
S	pecie	(GeV)	(ps)	(cm/c)
Δ^{-}	(1620)	0.14	4.733×10^{-12}	1.419×10^{-13}
Δ^0	(1620)	0.14	4.733×10^{-12}	1.419×10^{-13}
N^+	(1650)	0.14	4.733×10^{-12}	1.419×10^{-13}
Ν	(1650)	0.14	4.733×10^{-12}	1.419×10^{-13}
b1	(1235)	0.142	4.666×10^{-12}	1.399×10^{-13}
b_1^+	(1235)	0.142	4.666×10^{-12}	1.399×10^{-13}
ρ ⁰	(770)	0.1491	4.444×10^{-12}	1.332×10^{-13}
ρ^+	(770)	0.1491	4.444×10^{-12}	1.332×10^{-13}
Λ	(1600)	0.15	4.417×10^{-12}	1.324×10^{-13}
φ	(1680)	0.15	4.417×10^{-12}	1.324×10^{-13}
Λ	(1810)	0.15	4.417×10^{-12}	1.324×10^{-13}
N^+	(1700)	0.15	4.417×10^{-12}	1.324×10^{-13}
Ν	(1700)	0.15	$4.417 imes 10^{-12}$	1.324×10^{-13}
N^+	(1675)	0.15	4.417×10^{-12}	1.324×10^{-13}
Ν	(1675)	0.15	$4.417 imes 10^{-12}$	1.324×10^{-13}
N^+	(1535)	0.15	4.417×10^{-12}	1.324×10^{-13}
Ν	(1535)	0.15	$4.417 imes 10^{-12}$	1.324×10^{-13}
f_2	(2300)	0.15	$4.417 imes 10^{-12}$	1.324×10^{-13}
K ₃ *	(1780)	0.159	4.167×10^{-12}	1.249×10^{-13}
K_{3}^{*+}	(1780)	0.159	4.167×10^{-12}	1.249×10^{-13}
ρ_3^+	(1690)	0.161	4.116×10^{-12}	1.234×10^{-13}
ρ_3^0	(1690)	0.161	4.116×10^{-12}	1.234×10^{-13}
ω_3	(1670)	0.168	3.944×10^{-12}	1.182×10^{-13}
K_1^0	(1400)	0.174	3.808×10^{-12}	1.142×10^{-13}
K_1^+	(1400)	0.174	3.808×10^{-12}	1.142×10^{-13}
Σ^{-}	(2030)	0.18	3.681×10^{-12}	1.104×10^{-13}
Σ^0	(2030)	0.18	3.681×10^{-12}	1.104×10^{-13}
Σ^+	(2030)	0.18	3.681×10^{-12}	1.104×10^{-13}
η_2	(1645)	0.181	3.661×10^{-12}	1.097×10^{-13}
K_2^+	(1770)	0.186	3.562×10^{-12}	1.068×10^{-13}
K_2^0	(1770)	0.186	3.562×10^{-12}	1.068×10^{-13}
f ₂	(1270)	0.1867	3.549×10^{-12}	1.064×10^{-13}
K_4^{*+}	(2045)	0.198	3.346×10^{-12}	1.003×10^{-13}
K ₄	(2045)	0.198	3.346×10^{-12}	1.003×10^{-13}
Λ	(2100)	0.2	3.313×10^{-12}	9.932×10^{-14}
t ₂	(2010)	0.2	3.313×10^{-12}	9.932×10^{-14}
Λ_0	(2110)	0.2	3.313×10^{-12}	9.932×10^{-14}
π°	(1800)	0.208	3.186×10^{-12}	9.55×10^{-14}
π	(1800)	0.208	3.186×10^{-12}	9.55×10^{-14}
ω	(1420)	0.215	3.082×10^{-12}	9.239×10^{-14}
Σ^{+}	(1940)	0.22	3.012×10^{-12}	9.029×10^{-14}
Σ^{-}	(1940)	0.22	3.012×10^{-12}	9.029×10^{-14}
L V	(1940)	0.22	3.012×10^{-12}	9.029×10^{-14}
К* К*+	(1410) (1410)	0.232	2.856×10^{-12}	8.502×10^{-14}
ГХ* f	(1410) (2050)	0.232	2.030×10^{-12}	8.302×10^{-14}
14 77 ⁺	(2030)	0.237	2.790×10^{-12}	8.362×10^{-14}
π^0	(1000)	0.24	2.761×10^{-12}	8.277×10^{-14}
n_1^+	(1000)	0.24	2.701×10^{-12}	7.946×10^{-14}
Р 0 ⁰	(1700)	0.25	2.05×10^{-12}	7.946×10^{-14}
P N	(1700)	0.25	2.65×10^{-12}	7.946×10^{-14}
N ⁺	(1720)	0.25	2.65×10^{-12}	7.946×10^{-14}
a_4^+	(2040)	0.257	2.578×10^{-12}	7.729×10^{-14}

		Width Γ	Mean prop	er lifetime $ au$
S	pecie	(GeV)	(ps)	(cm/c)
a ₄	(2040)	0.257	2.578×10^{-12}	7.729×10^{-14}
π_2^+	(1670)	0.26	$2.548 imes 10^{-12}$	$7.64 imes 10^{-14}$
Δ^{0}	(1920)	0.26	2.548×10^{-12}	$7.64 imes 10^{-14}$
Δ^{-}	(1920)	0.26	$2.548 imes 10^{-12}$	$7.64 imes 10^{-14}$
π^0_2	(1670)	0.26	2.548×10^{-12}	$7.64 imes 10^{-14}$
Δ^{++}	(1920)	0.26	2.548×10^{-12}	$7.64 imes 10^{-14}$
Δ^+	(1920)	0.26	2.548×10^{-12}	$7.64 imes 10^{-14}$
a ₀	(1450)	0.265	$2.5 imes 10^{-12}$	$7.496 imes 10^{-14}$
a_0^+	(1450)	0.265	$2.5 imes 10^{-12}$	7.496×10^{-14}
D ₀ *	(2400)	0.27	2.454×10^{-12}	$7.357 imes 10^{-14}$
K ₀ *	(1430)	0.27	2.454×10^{-12}	7.357×10^{-14}
K_{0}^{*+}	(1430)	0.27	$2.454 imes 10^{-12}$	$7.357 imes 10^{-14}$
D_0^{*+}	(2400)	0.27	2.454×10^{-12}	$7.357 imes 10^{-14}$
K ₂ ⁺	(1820)	0.276	$2.401 imes 10^{-12}$	7.197×10^{-14}
$K_2^{\overline{0}}$	(1820)	0.276	$2.401 imes 10^{-12}$	$7.197 imes 10^{-14}$
$\Delta^{ ilde{+}}$	(1950)	0.28	$2.366 imes 10^{-12}$	$7.094 imes 10^{-14}$
Δ^{++}	(1950)	0.28	2.366×10^{-12}	$7.094 imes 10^{-14}$
Δ^{-}	(1910)	0.28	$2.366 imes 10^{-12}$	$7.094 imes10^{-14}$
Δ^0	(1950)	0.28	2.366×10^{-12}	$7.094 imes 10^{-14}$
Δ^{++}	(1910)	0.28	$2.366 imes 10^{-12}$	$7.094 imes 10^{-14}$
Δ^+	(1910)	0.28	$2.366 imes 10^{-12}$	$7.094 imes 10^{-14}$
Δ^{-}	(1950)	0.28	$2.366 imes 10^{-12}$	$7.094 imes 10^{-14}$
Δ^0	(1910)	0.28	$2.366 imes 10^{-12}$	$7.094 imes 10^{-14}$
Δ^{++}	(1700)	0.3	$2.209 imes 10^{-12}$	$6.621 imes 10^{-14}$
Δ^+	(1700)	0.3	$2.209 imes 10^{-12}$	$6.621 imes 10^{-14}$
Δ^0	(1700)	0.3	$2.209 imes 10^{-12}$	$6.621 imes 10^{-14}$
Δ^{-}	(1700)	0.3	$2.209 imes 10^{-12}$	$6.621 imes 10^{-14}$
Λ	(1800)	0.3	$2.209 imes 10^{-12}$	$6.621 imes 10^{-14}$
ω	(1650)	0.315	2.104×10^{-12}	6.306×10^{-14}
Δ^+	(1600)	0.32	2.071×10^{-12}	$6.208 imes 10^{-14}$
K*	(1680)	0.32	2.071×10^{-12}	6.208×10^{-14}
K* ⁺	(1680)	0.32	2.071×10^{-12}	6.208×10^{-14}
f ₂	(2340)	0.32	2.071×10^{-12}	6.208×10^{-14}
Δ^{++}	(1600)	0.32	2.071×10^{-12}	6.208×10^{-14}
Δ^{-}	(1600)	0.32	2.071×10^{-12}	6.208×10^{-14}
Δ^0	(1600)	0.32	2.071×10^{-12}	6.208×10^{-14}
Δ^{-}	(1905)	0.33	2.008×10^{-12}	6.02×10^{-14}
π_1^0	(1400)	0.33	2.008×10^{-12}	6.02×10^{-14}
π_1^+	(1400)	0.33	2.008×10^{-12}	6.02×10^{-14}
Δ^0	(1905)	0.33	2.008×10^{-12}	6.02×10^{-14}
Δ^+	(1905)	0.33	2.008×10^{-12}	6.02×10^{-14}
Δ^{++}	(1905)	0.33	2.008×10^{-12}	6.02×10^{-14}
f ₀	(1370)	0.35	1.893×10^{-12}	5.676×10^{-14}
NT	(1440)	0.35	1.893×10^{-12}	5.676×10^{-14}
N	(1440)	0.35	1.893×10^{-12}	$5.6/6 \times 10^{-14}$
Δ^{++}	(1930)	0.36	1.841×10^{-12}	5.518×10^{-14}
Δ^+	(1930)	0.36	1.841×10^{-12}	5.518×10^{-14}
Δ^{0}	(1930)	0.36	1.841×10^{-12}	5.518×10^{-14}
	(1930)	0.36	1.841×10^{-12}	3.318×10^{-14}
n ₁	(11/0)	0.36	1.841×10^{-12}	3.318×10^{-14}
ρ'	(1450)	0.4	1.057×10^{-12}	4.906×10^{-14}
ρ°	(1450)	0.4	$1.03 / \times 10^{-12}$	4.900×10^{-14}
71	(1300)	0.4	1.037×10^{-12}	4.900 × 10

		Width Γ	Mean prop	er lifetime $ au$
S	pecie	(GeV)	(ps)	(cm/c)
π^0	(1300)	0.4	1.657×10^{-12}	4.966×10^{-14}
a_1^+	(1260)	0.42	1.578×10^{-12}	$4.73 imes 10^{-14}$
a1	(1260)	0.42	$1.578 imes 10^{-12}$	$4.73 imes 10^{-14}$
f ₂	(1950)	0.472	1.404×10^{-12}	4.209×10^{-14}
N ⁺	(2190)	0.5	1.325×10^{-12}	$3.973 imes 10^{-14}$
N	(2190)	0.5	1.325×10^{-12}	$3.973 imes 10^{-14}$
f ₀	(500)	0.55	$1.205 imes 10^{-12}$	$3.612 imes 10^{-14}$
t		1.41	4.699×10^{-13}	$1.409 imes 10^{-14}$
Н		1.7	$3.898 imes 10^{-13}$	$1.168 imes 10^{-14}$
W ⁺		2.085	3.178×10^{-13}	9.527×10^{-15}
Z ⁰		2.495	2.656×10^{-13}	$7.961 imes 10^{-15}$

Table A.1: Width (Γ), and mean proper lifetime (τ) of various particles, sorted by descending lifetime

B IAT_EX code of the definition

The definition given in Sect. 1 can be typeset in LATEX using the code below

A primary particle is a particle with a mean proper lifetime \$\tau\$ larger than \$1\,\mathrm{cm\kern-.03em/\kern-.05em c}\$, which is either a) produced directly in the interaction, or b) from decays of particles with \$\tau\$ smaller than \$1\,\mathrm{cm\kern-.03em/\kern-.05em c}\$, restricted to decay chains leading to the interaction.

The additional "kerning" used is to make the unit more compact and appear as a single entity. The spacing macro $\$, can be avoid if the units package is used.

C Rivet projection

The code below³ implements a Rivet [11] projection to project out primary particles according to the definition.

```
#ifndef ALICEPRIMARY_CC
#define ALICEPRIMARY_CC
#include <Rivet/Particle.hh>
#include <Rivet/Event.hh>
#include <Rivet/Tools/ParticleIdUtils.hh>
#include <Rivet/Projections/ParticleFinder.hh>
#include <Rivet/ParticleName.hh>
#include <Rivet/Tools/Cuts.hh>
#include <HepMC/GenParticle.h>
#include <HepMC/GenVertex.h>
namespace Rivet
{
  /**
   * A Rivet projection that projects out primary particles - according
   \ast to the ALICE definition - from an event. The projection filters
   \ast all charge states. If one needs to have only charged particles
   * one need to apply another projection on top of this one.
   * This version is for Rivet version 2 and higher, which allows for
   * the use of a Cut class and the base class ParticleFinder.
   */
  class AlicePrimary : public ParticleFinder
  {
  public:
    /**
     * Consturctor
     * Oparam cut If specified, use this cut when projecting
     * Cparam pdg If specified, check for this PDG rather than long-lived
     */
    AlicePrimary(const Cut& c=Cuts::open(),int pdg)
      : ParticleFinder(c), _pdg(pdg)
    {
      setName("AlicePrimary");
   }
    /**
    * Copy constructor
    *
    * @param o Object to copy from
     */
    AlicePrimary(const AlicePrimary& o) : ParticleFinder(o),_pdg(o._pdg) {}
    /**
     * Destructor
     */
    virtual ~AlicePrimary() {}
    /**
     * @{
     * Oname Projection interface
     */
    /**
     * Clone this projection object
     *
     * Oreturn Copy of this projection object allocated on the heap
     */
```

³The code presented here is for Rivet version 2 or higher. For earlier version minor changes has to be done. Current implementation can also be found at https://gitlab.cern.ch/cholm/alice-rivet.

```
virtual std::unique_ptr<Projection> clone() const
ſ
 return std::unique_ptr<Projection>(new AlicePrimary(*this));
}
/**
* Compare this projection to some other projection. If the other
* projection is also a AlicePrimary projection, then return @c 0,
 * otherwise @c -1.
 * Cparam p Projection to compare to
 *
 * Creturn O if Ca p is an AlicePrimary, Cc -1 otherwise
 */
virtual int compare(const Projection& p) const
{
  const AlicePrimary* o = dynamic_cast<const AlicePrimary*>(&p);
 if (!o || o->_pdg != _pdg) return UNDEFINED;
 return _cuts == o->_cuts ? EQUIVALENT : UNDEFINED;
7
/**
 * Project out the primary particles of the passed event record @a
 * e. This is the interface that does the actual projection.
 * Oparam e Event record.
 */
virtual void project(const Event& e)
ſ
  _theParticles.clear(); // Clear cache
  bool open = _cuts == Cuts::open();
  for (auto p : Rivet::particles(e.genEvent())) {
    if (isPrimary(p,_pdg) && (open || _cuts->accept(Particle(p))))
      _theParticles.push_back(Particle(*p));
  }
}
/* @} */
/**
* @{
 * Oname Internal functions used
*/
/**
* Check if a particle is a primary according to the ALICE
* definition.
 *
 * Oparam p Particle to test
 *
 * Creturn true if the particle is considered a primary, false
 * otherwise.
 */
static bool isPrimary(const HepMC::GenParticle* p)
{
          (_pdg != 0 && p->pdg_id() != pdg) return false;
  if
  else if (!isLongLived(p)) return false;
  if (!(isPrompt(p) || isDecay(p))) return false;
  const HepMC::GenParticle* m = p;
  while ((m = ancestor(m))) {
   if (m->status() == 4) return true; // found beam
   if (isLongLived(m)) return false;
   if (!(isDecay(m) || isDecau(m))) return false;
  }
  return true;
}
```

```
/**
 * Check if a particle is of a long-lived (i.e., @f$ \tau>1cm@f$)
 * species.
 * Oparam p Particle to test
 * Creturn true if the particle is of a long-lived species
 */
static bool isLongLived(const HepMC::GenParticle* p)
{
  int pdg = PID::abspid(p->pdg_id());
  // Check for nuclus
  if (pdg > 100000000) return true;
  switch (pdg) {
  case Rivet::PID::MUON:
  case Rivet::PID::ELECTRON:
  case Rivet::PID::GAMMA:
  case Rivet::PID::PIPLUS:
  case Rivet::PID::KPLUS:
  case Rivet::PID::KOS:
  case Rivet::PID::KOL:
  case Rivet::PID::PROTON:
  case Rivet::PID::NEUTRON:
  case Rivet::PID::LAMBDA:
  case Rivet::PID::SIGMAMINUS:
  case Rivet::PID::SIGMAPLUS:
  case Rivet::PID::XIMINUS:
  case Rivet::PID::XIO:
  case Rivet::PID::OMEGAMINUS:
  case Rivet::PID::NU_E:
  case Rivet::PID::NU_MU:
  case Rivet::PID::NU_TAU:
   return true;
  }
  return false;
}
/**
* Check if this is prompt
 *
 * Oparam p Particle to test
 \ast Oreturn true if the particle has no ancestors, or from a
 \ast quark or gluon. Some EGs (e.g., Pythia8) records the full
 * event tree, so we check if this has indeed been hadronised.
 */
static bool isPrompt(const HepMC::GenParticle* p)
ſ
  // Get mother
  const HepMC::GenParticle* m = ancestor(p);
  // If no mother, this is prompt
  if (!m) return true;
  // If mother is a quark or a gluon, consider daughter to be
  // prompt, irrespective of the generation status code - \ensuremath{\textit{Pythia8}} ,
  // for example, exports the full chain with "funny" status codes
  int mpdg = PID::abspid(m->pdg_id());
  switch (mpdg) {
  case Rivet::PID::DQUARK:
  case Rivet::PID::UQUARK:
  case Rivet::PID::SQUARK:
  case Rivet::PID::CQUARK:
  case Rivet::PID::BQUARK:
```

```
case Rivet::PID::TQUARK:
      case Rivet::PID::GLUON:
        return true;
      }
      return m->status() == 4; // Check mother is beam
    }
    /**
     * Check if a particle is either produced in a decay (Qc
     * status=2)
     * Oparam p Particle to test
     * Creturn true if either produced in the interaction or through
     * some decay
     */
    static bool isDecay(const HepMC::GenParticle* p)
    {
      // Get mother
      const HepMC::GenParticle* m = ancestor(p);
      // No mother, so prompt
      if (!m) return true;
      int mstatus = m->status();
      // true if mother decayed or mother is beam particle
      return mstatus == 2;
    }
    /**
     * Get the immediate ancestor of a particle
     * Oparam p The particle to get the ancestor for
     * Creturn Ancestor particle or null
     */
    static const HepMC::GenParticle* ancestor(const HepMC::GenParticle* p)
    ſ
      const HepMC::GenVertex* vtx = p->production_vertex();
      if (!vtx) return 0;
      HepMC::GenVertex::particles_in_const_iterator i =
       vtx->particles_in_const_begin();
      if (i == vtx->particles_in_const_end()) return 0;
      return *i;
    7
    /* @} */
 };
}
#endif
11
// EOF
11
```

Note, the projection AlicePrimary and FinalState are generally not equivalent.

To use this projection in an analysis, one should do

```
#include <Rivet/Projections/AlicePrimary.hh>
#include <Rivet/Analysis.hh>
namespace Rivet
{
    class AliceAnalysis : public Analysis
    {
    public:
        AliceAnalysis() {}
```

```
void init()
   {
     const AlicePrimary ap;
      addProjection(ap, "AP");
   }
   void analyse(const Event& event)
   {
     const AlicePrimary& ap = applyProjection<AlicePrimary>(event,"AP");
      // Loop over primaries - optionally pass a cut object to
      // AlicePrimary::particles
     for (auto p : ap.particles()) {
       // Process particle p of type Rivet::Particle&
   }
 };
  DECLARE_RIVET_PLUGIN(AliceAnalysis);
}
```

D Code

The code below checks if a particle is considered long-lived, i.e., has a proper lifetime $\tau > 1 \text{ cm/c}$. If so, it returns true, otherwise false.

```
Bool_t IsStable(const TParticle* p, Bool_t def=false) const
{
   if (!p) return def;
   Int_t pdg = TMath::Abs(p->GetPdgCode());
   // Check for nuclus
   if (pdg > 100000000) return true;
   Int_t stable[] = {
      kGamma,// 22PhotonkElectron,// 11ElectronkMuonMinus,// 13MuonkPiPlus,// 211PionkKPlus,// 321KaonkKOShort,// 310KOskKOLong,// 130KOlkProton,// 2212ProtonkNeutron,// 2112NeutronkLambdaO,// 3122Lambda_OkSigmaMinus,// 3112Sigma MinuskSigmaPlus,// 3222Sigma PluskXiMinus,// 3312Xi Minus3322,// Xi OkOmegaMinus,// 12Electron NeutrinokNuE,// 14Muon NeutrinokNuTau,// 16Tau Neutrino-1
                                             // 22 Photon
       kGamma ,
       -1
   };
   Int_t* ptr = stable;
   while ((*ptr) >= 0) {
       if (pdg == *ptr) return true;
       ptr++;
   }
   return false;
}
```

The following code checks if the particle production mechanism either corresponds to production in the interaction or a decay. The ALICE simulation framework stores the production identifier in the field accessed by GetUniqueID() of the TParticle objects.

```
Bool_t IsPrimaryProcess(TParticle* p) const
{
   switch (p->GetUniqueID()) {
   case kPDecay:
   case kPNoProcess:
   case kPNull:
   case kPPrimary:
    return true;
   }
   return false;
}
```

Finally, we have the code that checks if a given particle is a primary. The argument of type AliStack gives access to the full particle history of an event in the ALICE simulation framework.

```
Bool_t IsFirstStable(AliStack* stack, Int_t iTr)
{
 TParticle* p = stack->Particle(iTr);
  // Check if this particle is stable
 if (!IsStable(p)) return false;
 if (!IsPrimaryProcess(p)) return false;
 TParticle* m = p;
            mi = 0;
  Int t
  while ((mi = m->GetFirstMother()) >= 0) {
   m = stack->Particle(mi);
    // If there's no mother, break out
   if (!m) break;
    // If (grand) mother particle is stable, this is not primary
    if (IsStable(m)) return false;
    // If (grand)mother was produced neither in a decay nor directly
    // in the interaction (e.g., material interaction), then this
    // particle is not a primary.
    if (!IsPrimaryProcess(m)) return false;
 7
 // If we get here, then no (grand)mother was long-lived, and was
 // either produced in a decay or directly in the interaction
 return true;
}
```

To facilitate faster look-up, one may code up the above flagging particles as we search through the decay chains

```
TParticle MarkPrimary(TParticle* p, Bool_t primary)
{
   p->SetBit(kPrimarySet);
   if (primary) p->SetBit(kPrimaryBit);
                p->ClearBit(kPrimaryBit);
   else
   return p;
}
Bool_t IsFirstStable(AliStack* stack, Int_t iTr)
{
  TParticle* p = stack->Particle(iTr);
  if (p->Testbit(kPrimarySet)) return p->TestBit(kPrimaryBit);
  // Check if this particle is stable
  if (!IsStable(p) || !IsPrimaryProcess(p)) {
    MarkPrimary(p, false);
    return false;
```

```
}
  TParticle* m = p;
  Int t
           mi = 0;
  while ((mi = m->GetFirstMother()) >= 0) {
    m = stack->Particle(mi);
    // If there's no mother, break out
    if (!m) break;
    // If (grand) mother was flagged as primary, then this is not
    if ((m->Testbit(kPrimarySet) &&
         m->TestBit(kPrimaryBit))) {
     MarkPrimary(p, false);
     return false;
    7
    // If (grand)mother is long-lived or her production mechanism is
    // neither a decay nor the primary interaction (e.q., scattering
    // in material), then this particle is not primary
    if (IsStable(m) || !IsPrimaryProcess(m)) {
      MarkPrimary(p, false);
      return false;
    }
    // (Grand)mother is not a primary, mark it as such
    MarkPrimary(m,false);
  // If we get here, then all (grand)mothers was neither long-lived,
  // nor produced in by any means but decays or in the primary
  // interaction. Thus, we have a primary particle
 MarkPrimary(m,true);
  return true;
}
```

In this way, we do not need to fully traverse most of the decay chains.

E ALICE Collaboration

S. Acharya¹³⁹, D. Adamová⁹⁶, J. Adolfsson³⁴, M.M. Aggarwal¹⁰¹, G. Aglieri Rinella³⁵, M. Agnello³¹, N. Agrawal⁴⁸, Z. Ahammed¹³⁹, N. Ahmad¹⁷, S.U. Ahn⁸⁰, S. Aiola¹⁴³, A. Akindinov⁶⁵, S.N. Alam¹³⁹, J.L.B. Alba¹¹⁴, D.S.D. Albuquerque¹²⁵, D. Aleksandrov⁹², B. Alessandro⁵⁹, R. Alfaro Molina⁷⁵, A. Alici^{12,27,54}, A. Alkin³, J. Alme²², T. Alt⁷¹, L. Altenkamper²², I. Altsybeev¹³⁸, C. Alves Garcia Prado¹²⁴, C. Andrei⁸⁹, D. Andreou³⁵, H.A. Andrews¹¹³, A. Andronic¹⁰⁹, V. Anguelov¹⁰⁶, C. Anson⁹⁹, T. Antičić¹¹⁰, F. Antinori⁵⁷, P. Antonioli⁵⁴, R. Anwar¹²⁷, L. Aphecetche¹¹⁷, H. Appelshäuser⁷¹, S. Arcelli²⁷, R. Arnaldi⁵⁹, O.W. Arnold^{36,107}, I.C. Arsene²¹, M. Arslandok¹⁰⁶, B. Audurier¹¹⁷, A. Augustinus³⁵, R. Averbeck¹⁰⁹, M.D. Azmi¹⁷, A. Badalà⁵⁶, Y.W. Baek^{61,79}, S. Bagnasco⁵⁹, R. Bailhache⁷¹, R. Bala¹⁰³, A. Baldisseri⁷⁶, M. Ball⁴⁵, R.C. Baral⁶⁸, A.M. Barbano²⁶, R. Barbera²⁸, F. Barile^{33,53}, L. Barioglio²⁶, G.G. Barnaföldi¹⁴², L.S. Barnby⁹⁵, V. Barret⁸², P. Bartalini⁷, K. Barth³⁵, E. Bartsch⁷¹, M. Basile²⁷, N. Bastid⁸², S. Basu¹⁴¹, B. Bathen⁷², G. Batigne¹¹⁷, B. Batyunya⁷⁸, P.C. Batzing²¹, I.G. Bearden⁹³, H. Beck¹⁰⁶, C. Bedda⁶⁴, N.K. Behera⁶¹, I. Belikov¹³⁵, F. Bellini²⁷, H. Bello Martinez², R. Bellwied¹²⁷, L.G.E. Beltran¹²³, V. Belyaev⁸⁵, G. Bencedi¹⁴², S. Beole²⁶, A. Bercuci⁸⁹, Y. Berdnikov⁹⁸, D. Berenyi¹⁴², R.A. Bertens¹³⁰, D. Berzano³⁵, L. Betev³⁵, A. Bhasin¹⁰³, I.R. Bhat¹⁰³, A.K. Bhati¹⁰¹, B. Bhattacharjee⁴⁴, J. Bhom¹²¹, L. Bianchi¹²⁷, N. Bianchi⁵¹, C. Bianchin¹⁴¹, J. Bielčík³⁹, J. Bielčíková⁹⁶, A. Bilandzic^{36,107}, G. Biro¹⁴², R. Biswas⁴, S. Biswas⁴, J.T. Blair¹²², D. Blau⁹², C. Blume⁷¹, G. Boca¹³⁶, F. Bock^{35,84,106}, A. Bogdanov⁸⁵, L. Boldizsár¹⁴², M. Bombara⁴⁰, G. Bonomi¹³⁷, M. Bonora³⁵, J. Book⁷¹, H. Borel⁷⁶, A. Borissov¹⁹, M. Borri¹²⁹, E. Botta²⁶, C. Bourjau⁹³, L. Bratrud⁷¹, P. Braun-Munzinger¹⁰⁹, M. Bregant¹²⁴, T.A. Broker⁷¹, M. Broz³⁹, E.J. Brucken⁴⁶, E. Bruna⁵⁹, G.E. Bruno³³, D. Budnikov¹¹¹, H. Buesching⁷¹, S. Bufalino³¹, P. Buhler¹¹⁶, P. Buncic³⁵, O. Busch¹³³, Z. Buthelezi⁷⁷, J.B. Butt¹⁵, J.T. Buxton¹⁸, J. Cabala¹¹⁹, D. Caffarri^{35,94}, H. Caines¹⁴³, A. Caliva⁶⁴, E. Calvo Villar¹¹⁴, P. Camerini²⁵, A.A. Capon¹¹⁶, F. Carena³⁵, W. Carena³⁵, F. Carnesecchi^{12,27}, J. Castillo Castellanos⁷⁶,

A.J. Castro¹³⁰, E.A.R. Casula⁵⁵, C. Ceballos Sanchez⁹, P. Cerello⁵⁹, S. Chandra¹³⁹, B. Chang¹²⁸, S. Chapeland³⁵, M. Chartier¹²⁹, J.L. Charvet⁷⁶, S. Chattopadhyay¹³⁹, S. Chattopadhyay¹¹², A. Chauvin^{36,107}, M. Cherney⁹⁹, C. Cheshkov¹³⁴, B. Cheynis¹³⁴, V. Chibante Barroso³⁵, D.D. Chinellato¹²⁵, S. Cho⁶¹, P. Chochula³⁵, K. Choi¹⁹, M. Chojnacki⁹³, S. Choudhury¹³⁹, T. Chowdhury⁸², P. Christakoglou⁹⁴, C.H. Christensen⁹³, P. Christiansen³⁴, T. Chujo¹³³, S.U. Chung¹⁹, C. Cicalo⁵⁵, L. Cifarelli^{12,27}, F. Cindolo⁵⁴, J. Cleymans¹⁰², F. Colamaria³³, D. Colella^{35,66}, A. Collu⁸⁴, M. Colocci²⁷, M. Concas^{II,59}, G. Conesa Balbastre⁸³, Z. Conesa del Valle⁶², M.E. Connors^{III,143}, J.G. Contreras³⁹, T.M. Cormier⁹⁷, Y. Corrales Morales⁵⁹, I. Cortés Maldonado², P. Cortese³², M.R. Cosentino¹²⁶, F. Costa³⁵, S. Costanza¹³⁶, J. Crkovská⁶², P. Crochet⁸², E. Cuautle⁷³, L. Cunqueiro⁷², T. Dahms^{36,107}, A. Dainese⁵⁷, M.C. Danisch¹⁰⁶, A. Danu⁶⁹, D. Das¹¹², I. Das¹¹², S. Das⁴, A. Dash⁹⁰, S. Dash⁴⁸, S. De^{49,124}, A. De Caro³⁰, G. de Cataldo⁵³, C. de Conti¹²⁴, J. de Cuveland⁴², A. De Falco²⁴, D. De Gruttola^{12,30}, N. De Marco⁵⁹, S. De Pasquale³⁰, R.D. De Souza¹²⁵, H.F. Degenhardt¹²⁴, A. Deisting^{106,109}, A. Deloff⁸⁸, C. Deplano⁹⁴, P. Dhankher⁴⁸, D. Di Bari³³, A. Di Mauro³⁵, P. Di Nezza⁵¹, B. Di Ruzza⁵⁷, M.A. Diaz Corchero¹⁰, T. Dietel¹⁰², P. Dillenseger⁷¹, R. Divià³⁵, Ø. Djuvsland²², A. Dobrin³⁵, D. Domenicis Gimenez¹²⁴, B. Dönigus⁷¹, O. Dordic²¹, L.V.V. Doremalen⁶⁴, A.K. Dubey¹³⁹, A. Dubla¹⁰⁹, L. Ducroux¹³⁴, A.K. Duggal¹⁰¹, P. Dupieux⁸², R.J. Ehlers¹⁴³, D. Elia⁵³, E. Endress¹¹⁴, H. Engel⁷⁰, E. Epple¹⁴³, B. Erazmus¹¹⁷, F. Erhardt¹⁰⁰, B. Espagnon⁶², S. Esumi¹³³, G. Eulisse³⁵, J. Eum¹⁹, D. Evans¹¹³, S. Evdokimov¹¹⁵, L. Fabbietti^{36,107}, J. Faivre⁸³, A. Fantoni⁵¹, M. Fasel^{84,97}, L. Feldkamp⁷², A. Feliciello⁵⁹, G. Feofilov¹³⁸, J. Ferencei⁹⁶, A. Fernández Téllez², E.G. Ferreiro¹⁶, A. Ferretti²⁶, A. Festanti^{29,35}, V.J.G. Feuillard^{76,82}, J. Figiel¹²¹, M.A.S. Figueredo¹²⁴, S. Filchagin¹¹¹, D. Finogeev⁶³, F.M. Fionda^{22,24}, E.M. Fiore³³, M. Floris³⁵, S. Foertsch⁷⁷, P. Foka¹⁰⁹, S. Fokin⁹², E. Fragiacomo⁶⁰, A. Francescon³⁵, A. Francisco¹¹⁷, U. Frankenfeld¹⁰⁹, G.G. Fronze²⁶, U. Fuchs³⁵, C. Furget⁸³, A. Furs⁶³, M. Fusco Girard³⁰, J.J. Gaardhøje⁹³, M. Gagliardi²⁶, A.M. Gago¹¹⁴, K. Gajdosova⁹³, M. Gallio²⁶, C.D. Galvan¹²³, P. Ganoti⁸⁷, C. Gao⁷, C. Garabatos¹⁰⁹, E. Garcia-Solis¹³, K. Garg²⁸, C. Gargiulo³⁵, P. Gasik^{36,107}, E.F. Gauger¹²², M.B. Gay Ducati⁷⁴, M. Germain¹¹⁷, J. Ghosh¹¹², P. Ghosh¹³⁹, S.K. Ghosh⁴, P. Gianotti⁵¹, P. Giubellino^{35,59,109}, P. Giubilato²⁹, E. Gladysz-Dziadus¹²¹, P. Glässel¹⁰⁶, D.M. Goméz Coral⁷⁵, A. Gomez Ramirez⁷⁰, A.S. Gonzalez³⁵, V. Gonzalez¹⁰, P. González-Zamora¹⁰, S. Gorbunov⁴², L. Görlich¹²¹, S. Gotovac¹²⁰, V. Grabski⁷⁵, L.K. Graczykowski¹⁴⁰, K.L. Graham¹¹³, L. Greiner⁸⁴, A. Grelli⁶⁴, C. Grigoras³⁵, V. Grigoriev⁸⁵, A. Grigoryan¹, S. Grigoryan⁷⁸, N. Grion⁶⁰, J.M. Gronefeld¹⁰⁹, F. Grosa³¹, J.F. Grosse-Oetringhaus³⁵, R. Grosso¹⁰⁹, L. Gruber¹¹⁶, F. Guber⁶³, R. Guernane⁸³, B. Guerzoni²⁷, K. Gulbrandsen⁹³, T. Gunji¹³², A. Gupta¹⁰³, R. Gupta¹⁰³, I.B. Guzman², R. Haake³⁵, C. Hadjidakis⁶², H. Hamagaki^{86,132}, G. Hamar¹⁴², J.C. Hamon¹³⁵, M.R. Haque⁶⁴, J.W. Harris¹⁴³, A. Harton¹³, H. Hassan⁸³, D. Hatzifotiadou^{12,54}, S. Hayashi¹³², S.T. Heckel⁷¹, E. Hellbär⁷¹, H. Helstrup³⁷, A. Herghelegiu⁸⁹, G. Herrera Corral¹¹, F. Herrmann⁷², B.A. Hess¹⁰⁵, K.F. Hetland³⁷, H. Hillemanns³⁵, C. Hills¹²⁹, B. Hippolyte¹³⁵, J. Hladky⁶⁷, B. Hohlweger¹⁰⁷, D. Horak³⁹, S. Hornung¹⁰⁹, R. Hosokawa^{83,133}, P. Hristov³⁵, C. Hughes¹³⁰, T.J. Humanic¹⁸, N. Hussain⁴⁴, T. Hussain¹⁷, D. Hutter⁴², D.S. Hwang²⁰, S.A. Iga Buitron⁷³, R. Ilkaev¹¹¹, M. Inaba¹³³, M. Ippolitov^{85,92}, M. Irfan¹⁷, V. Isakov⁶³, M. Ivanov¹⁰⁹, V. Ivanov⁹⁸, V. Izucheev¹¹⁵, B. Jacak⁸⁴, N. Jacazio²⁷, P.M. Jacobs⁸⁴, M.B. Jadhav⁴⁸, J. Jadlovsky¹¹⁹, S. Jaelani⁶⁴, C. Jahnke³⁶, M.J. Jakubowska¹⁴⁰, M.A. Janik¹⁴⁰, P.H.S.Y. Jayarathna¹²⁷, C. Jena⁹⁰, S. Jena¹²⁷, M. Jercic¹⁰⁰, R.T. Jimenez Bustamante¹⁰⁹, P.G. Jones¹¹³, A. Jusko¹¹³, P. Kalinak⁶⁶, A. Kalweit³⁵, J.H. Kang¹⁴⁴, V. Kaplin⁸⁵, S. Kar¹³⁹, A. Karasu Uysal⁸¹, O. Karavichev⁶³, T. Karavicheva⁶³, L. Karayan^{106,109}, P. Karczmarczyk³⁵, E. Karpechev⁶³, U. Kebschull⁷⁰, R. Keidel¹⁴⁵, D.L.D. Keijdener⁶⁴, M. Keil³⁵, B. Ketzer⁴⁵, Z. Khabanova⁹⁴, P. Khan¹¹², S.A. Khan¹³⁹, A. Khanzadeev⁹⁸, Y. Kharlov¹¹⁵, A. Khatun¹⁷, A. Khuntia⁴⁹, M.M. Kielbowicz¹²¹, B. Kileng³⁷, B. Kim¹³³, D. Kim¹⁴⁴, D.W. Kim⁴³, D.J. Kim¹²⁸, H. Kim¹⁴⁴, J.S. Kim⁴³, J. Kim¹⁰⁶, M. Kim⁶¹, M. Kim¹⁴⁴, S. Kim²⁰, T. Kim¹⁴⁴, S. Kirsch⁴², I. Kisel⁴², S. Kiselev⁶⁵, A. Kisiel¹⁴⁰, G. Kiss¹⁴², J.L. Klay⁶, C. Klein⁷¹, J. Klein³⁵, C. Klein-Bösing⁷², S. Klewin¹⁰⁶, A. Kluge³⁵, M.L. Knichel¹⁰⁶, A.G. Knospe¹²⁷, C. Kobdaj¹¹⁸, M. Kofarago¹⁴², T. Kollegger¹⁰⁹, A. Kolojvari¹³⁸, V. Kondratiev¹³⁸, N. Kondratyeva⁸⁵, E. Kondratyuk¹¹⁵, A. Konevskikh⁶³, M. Konyushikhin¹⁴¹, M. Kopcik¹¹⁹, M. Kour¹⁰³, C. Kouzinopoulos³⁵, O. Kovalenko⁸⁸, V. Kovalenko¹³⁸, M. Kowalski¹²¹, G. Koyithatta Meethaleveedu⁴⁸, I. Králik⁶⁶, A. Kravčáková⁴⁰, M. Krivda^{66,113}, F. Krizek⁹⁶, E. Kryshen⁹⁸, M. Krzewicki⁴², A.M. Kubera¹⁸, V. Kučera⁹⁶, C. Kuhn¹³⁵, P.G. Kuijer⁹⁴, A. Kumar¹⁰³, J. Kumar⁴⁸, L. Kumar¹⁰¹, S. Kumar⁴⁸, S. Kundu⁹⁰, P. Kurashvili⁸⁸, A. Kurepin⁶³, A.B. Kurepin⁶³, A. Kuryakin¹¹¹,

25

S. Kushpil⁹⁶, M.J. Kweon⁶¹, Y. Kwon¹⁴⁴, S.L. La Pointe⁴², P. La Rocca²⁸, C. Lagana Fernandes¹²⁴, Y.S. Lai⁸⁴, I. Lakomov³⁵, R. Langoy⁴¹, K. Lapidus¹⁴³, C. Lara⁷⁰, A. Lardeux^{21,76}, A. Lattuca²⁶, E. Laudi³⁵, R. Lavicka³⁹, L. Lazaridis³⁵, R. Lea²⁵, L. Leardini¹⁰⁶, S. Lee¹⁴⁴, F. Lehas⁹⁴, S. Lehner¹¹⁶, J. Lehrbach⁴², R.C. Lemmon⁹⁵, V. Lenti⁵³, E. Leogrande⁶⁴, I. León Monzón¹²³, P. Lévai¹⁴², S. Li⁷, X. Li¹⁴, J. Lien⁴¹, R. Lietava¹¹³, B. Lim¹⁹, S. Lindal²¹, V. Lindenstruth⁴², S.W. Lindsay¹²⁹, C. Lippmann¹⁰⁹, M.A. Lisa¹⁸, V. Litichevskyi⁴⁶, H.M. Ljunggren³⁴, W.J. Llope¹⁴¹, D.F. Lodato⁶⁴, P.I. Loenne²², V. Loginov⁸⁵, C. Loizides⁸⁴, P. Loncar¹²⁰, X. Lopez⁸², E. López Torres⁹, A. Lowe¹⁴², P. Luettig⁷¹, M. Lunardon²⁹, G. Luparello^{25,60}, M. Lupi³⁵, T.H. Lutz¹⁴³, A. Maevskaya⁶³, M. Mager³⁵, S. Mahajan¹⁰³, S.M. Mahmood²¹, A. Maire¹³⁵, R.D. Majka¹⁴³, M. Malaev⁹⁸, L. Malinina^{IV,78}, D. Mal'Kevich⁶⁵, P. Malzacher¹⁰⁹, A. Mamonov¹¹¹, V. Manko⁹², F. Manso⁸², V. Manzari⁵³, Y. Mao⁷, M. Marchisone^{77,131}, J. Mareš⁶⁷, G.V. Margagliotti²⁵, A. Margotti⁵⁴, J. Margutti⁶⁴, A. Marín¹⁰⁹, C. Markert¹²², M. Marquard⁷¹, N.A. Martin¹⁰⁹, P. Martinengo³⁵, J.A.L. Martinez⁷⁰, M.I. Martínez², G. Martínez García¹¹⁷, M. Martinez Pedreira³⁵, A. Mas¹²⁴, S. Masciocchi¹⁰⁹, M. Masera²⁶, A. Masoni⁵⁵, E. Masson¹¹⁷, A. Mastroserio⁵³, A.M. Mathis^{36,107}, A. Matyja^{121,130}, C. Mayer¹²¹, J. Mazer¹³⁰, M. Mazzilli³³, M.A. Mazzoni⁵⁸, F. Meddi²³, Y. Melikyan⁸⁵, A. Menchaca-Rocha⁷⁵, E. Meninno³⁰, J. Mercado Pérez¹⁰⁶, M. Meres³⁸, S. Mhlanga¹⁰², Y. Miake¹³³, M.M. Mieskolainen⁴⁶, D. Mihaylov¹⁰⁷, D.L. Mihaylov¹⁰⁷, K. Mikhaylov^{65,78}, L. Milano⁸⁴, J. Milosevic²¹, A. Mischke⁶⁴, A.N. Mishra⁴⁹, D. Miśkowiec¹⁰⁹, J. Mitra¹³⁹, C.M. Mitu⁶⁹, N. Mohammadi⁶⁴, B. Mohanty⁹⁰, M. Mohisin Khan^{V,17}, E. Montes¹⁰, D.A. Moreira De Godoy⁷², L.A.P. Moreno², S. Moretto²⁹, A. Morreale¹¹⁷, A. Morsch³⁵, V. Muccifora⁵¹, E. Mudnic¹²⁰, D. Mühlheim⁷², S. Muhuri¹³⁹, M. Mukherjee⁴, J.D. Mulligan¹⁴³, M.G. Munhoz¹²⁴, K. Münning⁴⁵, R.H. Munzer⁷¹, H. Murakami¹³², S. Murray⁷⁷, L. Musa³⁵, J. Musinsky⁶⁶, C.J. Myers¹²⁷, J.W. Myrcha¹⁴⁰, B. Naik⁴⁸, R. Nair⁸⁸, B.K. Nandi⁴⁸, R. Nania^{12,54}, E. Nappi⁵³, A. Narayan⁴⁸, M.U. Naru¹⁵, H. Natal da Luz¹²⁴, C. Nattrass¹³⁰, S.R. Navarro², K. Nayak⁹⁰, R. Nayak⁴⁸, T.K. Nayak¹³⁹, S. Nazarenko¹¹¹, A. Nedosekin⁶⁵, R.A. Negrao De Oliveira³⁵, L. Nellen⁷³, S.V. Nesbo³⁷, F. Ng¹²⁷, M. Nicassio¹⁰⁹, M. Niculescu⁶⁹, J. Niedziela^{35,140}, B.S. Nielsen⁹³, S. Nikolaev⁹², S. Nikulin⁹², V. Nikulin⁹⁸, A. Nobuhiro⁴⁷, F. Noferini^{12,54}, P. Nomokonov⁷⁸, G. Nooren⁶⁴, J.C.C. Noris², J. Norman¹²⁹, A. Nyanin⁹², J. Nystrand²², H. Oeschler^{I,106}, S. Oh¹⁴³, A. Ohlson^{35,106}, T. Okubo⁴⁷, L. Olah¹⁴², J. Oleniacz¹⁴⁰, A.C. Oliveira Da Silva¹²⁴, M.H. Oliver¹⁴³, J. Onderwaater¹⁰⁹, C. Oppedisano⁵⁹, R. Orava⁴⁶, M. Oravec¹¹⁹, A. Ortiz Velasquez⁷³, A. Oskarsson³⁴, J. Otwinowski¹²¹, K. Oyama⁸⁶, Y. Pachmayer¹⁰⁶, V. Pacik⁹³, D. Pagano¹³⁷, P. Pagano³⁰, G. Paić⁷³, P. Palni⁷, J. Pan¹⁴¹, A.K. Pandey⁴⁸, S. Panebianco⁷⁶, V. Papikyan¹, G.S. Pappalardo⁵⁶, P. Pareek⁴⁹, J. Park⁶¹, S. Parmar¹⁰¹, A. Passfeld⁷², S.P. Pathak¹²⁷, V. Paticchio⁵³, R.N. Patra¹³⁹, B. Paul⁵⁹, H. Pei⁷, T. Peitzmann⁶⁴, X. Peng⁷, L.G. Pereira⁷⁴, H. Pereira Da Costa⁷⁶, D. Peresunko^{85,92}, E. Perez Lezama⁷¹, V. Peskov⁷¹, Y. Pestov⁵, V. Petráček³⁹, V. Petrov¹¹⁵, M. Petrovici⁸⁹, C. Petta²⁸, R.P. Pezzi⁷⁴, S. Piano⁶⁰, M. Pikna³⁸, P. Pillot¹¹⁷, L.O.D.L. Pimentel⁹³, O. Pinazza^{35,54}, L. Pinsky¹²⁷, D.B. Piyarathna¹²⁷, M. Płoskoń⁸⁴, M. Planinic¹⁰⁰, F. Pliquett⁷¹, J. Pluta¹⁴⁰, S. Pochybova¹⁴², P.L.M. Podesta-Lerma¹²³, M.G. Poghosyan⁹⁷, B. Polichtchouk¹¹⁵, N. Poljak¹⁰⁰, W. Poonsawat¹¹⁸, A. Pop⁸⁹, H. Poppenborg⁷², S. Porteboeuf-Houssais⁸², J. Porter⁸⁴, V. Pozdniakov⁷⁸, S.K. Prasad⁴, R. Preghenella⁵⁴, F. Prino⁵⁹, C.A. Pruneau¹⁴¹, I. Pshenichnov⁶³, M. Puccio²⁶, G. Puddu²⁴, P. Pujahari¹⁴¹, V. Punin¹¹¹, J. Putschke¹⁴¹, A. Rachevski⁶⁰, S. Raha⁴, S. Rajput¹⁰³, J. Rak¹²⁸, A. Rakotozafindrabe⁷⁶, L. Ramello³², F. Rami¹³⁵, D.B. Rana¹²⁷, R. Raniwala¹⁰⁴, S. Raniwala¹⁰⁴, S.S. Räsänen⁴⁶, B.T. Rascanu⁷¹, D. Rathee¹⁰¹, V. Ratza⁴⁵, I. Ravasenga³¹, K.F. Read^{97,130}, K. Redlich^{VI,88}, A. Rehman²², P. Reichelt⁷¹, F. Reidt³⁵, X. Ren⁷, R. Renfordt⁷¹, A.R. Reolon⁵¹, A. Reshetin⁶³, K. Reygers¹⁰⁶, V. Riabov⁹⁸, R.A. Ricci⁵², T. Richert⁶⁴, M. Richter²¹, P. Riedler³⁵, W. Riegler³⁵, F. Riggi²⁸, C. Ristea⁶⁹, M. Rodríguez Cahuantzi², K. Røed²¹, E. Rogochaya⁷⁸, D. Rohr^{35,42}, D. Röhrich²², P.S. Rokita¹⁴⁰, F. Ronchetti⁵¹, E.D. Rosas⁷³, P. Rosnet⁸², A. Rossi^{29,57}, A. Rotondi¹³⁶, F. Roukoutakis⁸⁷, A. Roy⁴⁹, C. Roy¹³⁵, P. Roy¹¹², A.J. Rubio Montero¹⁰, O.V. Rueda⁷³, R. Rui²⁵, B. Rumyantsev⁷⁸, A. Rustamov⁹¹, E. Ryabinkin⁹², Y. Ryabov⁹⁸, A. Rybicki¹²¹, S. Saarinen⁴⁶, S. Sadhu¹³⁹, S. Sadovsky¹¹⁵, K. Šafařík³⁵, S.K. Saha¹³⁹, B. Sahlmuller⁷¹, B. Sahoo⁴⁸, P. Sahoo⁴⁹, R. Sahoo⁴⁹, S. Sahoo⁶⁸, P.K. Sahu⁶⁸, J. Saini¹³⁹, S. Sakai^{51,133}, M.A. Saleh¹⁴¹, J. Salzwedel¹⁸, S. Sambyal¹⁰³, V. Samsonov^{85,98}, A. Sandoval⁷⁵, D. Sarkar¹³⁹, N. Sarkar¹³⁹, P. Sarma⁴⁴, M.H.P. Sas⁶⁴, E. Scapparone⁵⁴, F. Scarlassara²⁹, R.P. Scharenberg¹⁰⁸, H.S. Scheid⁷¹, C. Schiaua⁸⁹, R. Schicker¹⁰⁶, C. Schmidt¹⁰⁹, H.R. Schmidt¹⁰⁵, M.O. Schmidt¹⁰⁶, M. Schmidt¹⁰⁵, N.V. Schmidt⁷¹, S. Schuchmann¹⁰⁶, J. Schukraft³⁵, Y. Schutz^{35,117,135}, K. Schwarz¹⁰⁹, K. Schweda¹⁰⁹, G. Scioli²⁷, E. Scomparin⁵⁹,

R. Scott¹³⁰, M. Šefčík⁴⁰, J.E. Seger⁹⁹, Y. Sekiguchi¹³², D. Sekihata⁴⁷, I. Selyuzhenkov^{85,109}, K. Senosi⁷⁷, S. Senyukov^{3,35,135}, E. Serradilla^{10,75}, P. Sett⁴⁸, A. Sevcenco⁶⁹, A. Shabanov⁶³, A. Shabetai¹¹⁷, R. Shahoyan³⁵, W. Shaikh¹¹², A. Shangaraev¹¹⁵, A. Sharma¹⁰¹, A. Sharma¹⁰³, M. Sharma¹⁰³, M. Sharma¹⁰³, N. Sharma^{101,130}, A.I. Sheikh¹³⁹, K. Shigaki⁴⁷, Q. Shou⁷, K. Shtejer^{9,26}, Y. Sibiriak⁹², S. Siddhanta⁵⁵, K.M. Sielewicz³⁵, T. Siemiarczuk⁸⁸, D. Silvermyr³⁴, C. Silvestre⁸³, G. Simatovic¹⁰⁰, G. Simonetti³⁵, R. Singaraju¹³⁹, R. Singh⁹⁰, V. Singhal¹³⁹, T. Sinha¹¹², B. Sitar³⁸, M. Sitta³², T.B. Skaali²¹, M. Slupecki¹²⁸, N. Smirnov¹⁴³, R.J.M. Snellings⁶⁴, T.W. Snellman¹²⁸, J. Song¹⁹, M. Song¹⁴⁴, F. Soramel²⁹, S. Sorensen¹³⁰, F. Sozzi¹⁰⁹, E. Spiriti⁵¹, I. Sputowska¹²¹, B.K. Srivastava¹⁰⁸, J. Stachel¹⁰⁶, I. Stan⁶⁹, P. Stankus⁹⁷, E. Stenlund³⁴, D. Stocco¹¹⁷, M.M. Storetvedt³⁷, P. Strmen³⁸, A.A.P. Suaide¹²⁴, T. Sugitate⁴⁷, C. Suire⁶², M. Suleymanov¹⁵, M. Suljic²⁵, R. Sultanov⁶⁵, M. Šumbera⁹⁶, S. Sumowidagdo⁵⁰, K. Suzuki¹¹⁶, S. Swain⁶⁸, A. Szabo³⁸, I. Szarka³⁸, U. Tabassam¹⁵, J. Takahashi¹²⁵, G.J. Tambave²², N. Tanaka¹³³, M. Tarhini⁶², M. Tariq¹⁷, M.G. Tarzila⁸⁹, A. Tauro³⁵, G. Tejeda Muñoz², A. Telesca³⁵, K. Terasaki¹³², C. Terrevoli²⁹, B. Teyssier¹³⁴, D. Thakur⁴⁹, S. Thakur¹³⁹, D. Thomas¹²², F. Thoresen⁹³, R. Tieulent¹³⁴, A. Tikhonov⁶³, A.R. Timmins¹²⁷, A. Toia⁷¹, S. Tripathy⁴⁹, S. Trogolo²⁶, G. Trombetta³³, L. Tropp⁴⁰, V. Trubnikov³, W.H. Trzaska¹²⁸, B.A. Trzeciak⁶⁴, T. Tsuji¹³², A. Tumkin¹¹¹, R. Turrisi⁵⁷, T.S. Tveter²¹, K. Ullaland²², E.N. Umaka¹²⁷, A. Uras¹³⁴, G.L. Usai²⁴, A. Utrobicic¹⁰⁰, M. Vala^{66,119}, J. Van Der Maarel⁶⁴, J.W. Van Hoorne³⁵, M. van Leeuwen⁶⁴, T. Vanat⁹⁶, P. Vande Vyvre³⁵, D. Varga¹⁴², A. Vargas², M. Vargyas¹²⁸, R. Varma⁴⁸ M. Vasileiou⁸⁷, A. Vasiliev⁹², A. Vauthier⁸³, O. Vázquez Doce^{36,107}, V. Vechernin¹³⁸, A.M. Veen⁶⁴, A. Velure²², E. Vercellin²⁶, S. Vergara Limón², R. Vernet⁸, R. Vértesi¹⁴², L. Vickovic¹²⁰, S. Vigolo⁶⁴, J. Viinikainen¹²⁸, Z. Vilakazi¹³¹, O. Villalobos Baillie¹¹³, A. Villatoro Tello², A. Vinogradov⁹², L. Vinogradov¹³⁸, T. Virgili³⁰, V. Vislavicius³⁴, A. Vodopyanov⁷⁸, M.A. Völkl^{105,106}, K. Voloshin⁶⁵, S.A. Voloshin¹⁴¹, G. Volpe³³, B. von Haller³⁵, I. Vorobyev^{36,107}, D. Voscek¹¹⁹, D. Vranic^{35,109}, J. Vrláková⁴⁰, B. Wagner²², H. Wang⁶⁴, M. Wang⁷, D. Watanabe¹³³, Y. Watanabe¹³², M. Weber¹¹⁶, S.G. Weber¹⁰⁹, D.F. Weiser¹⁰⁶, S.C. Wenzel³⁵, J.P. Wessels⁷², U. Westerhoff⁷², A.M. Whitehead¹⁰², J. Wiechula⁷¹, J. Wikne²¹, G. Wilk⁸⁸, J. Wilkinson^{54,106}, G.A. Willems⁷², M.C.S. Williams⁵⁴, E. Willsher¹¹³, B. Windelband¹⁰⁶, W.E. Witt¹³⁰, S. Yalcin⁸¹, K. Yamakawa⁴⁷, P. Yang⁷, S. Yano⁴⁷, Z. Yin⁷, H. Yokoyama^{83,133}, I.-K. Yoo^{19,35}, J.H. Yoon⁶¹, V. Yurchenko³, V. Zaccolo^{59,93}, A. Zaman¹⁵, C. Zampolli³⁵, H.J.C. Zanoli¹²⁴, N. Zardoshti¹¹³, A. Zarochentsev¹³⁸, P. Závada⁶⁷, N. Zaviyalov¹¹¹, H. Zbroszczyk¹⁴⁰, M. Zhalov⁹⁸, H. Zhang^{7,22}, X. Zhang⁷, Y. Zhang⁷, C. Zhang⁶⁴, Z. Zhang^{7,82}, C. Zhao²¹, N. Zhigareva⁶⁵, D. Zhou⁷, Y. Zhou⁹³, Z. Zhou²², H. Zhu²², J. Zhu⁷, X. Zhu⁷, A. Zichichi^{12,27}, A. Zimmermann¹⁰⁶, M.B. Zimmermann^{35,72}, G. Zinovjev³, J. Zmeskal¹¹⁶, S. Zou⁷

Affiliation Notes

^I Deceased

^{II} Also at: Dipartimento DET del Politecnico di Torino, Turin, Italy

^{III} Also at: Georgia State University, Atlanta, Georgia, United States

^{IV} Also at: M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia

^V Also at: Department of Applied Physics, Aligarh Muslim University, Aligarh, India

^{VI} Also at: Institute of Theoretical Physics, University of Wroclaw, Poland

Collaboration Institutes

¹ A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia ² Benemérita Universidad Autónoma de Puebla, Puebla, Mexico

³ Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine

⁴ Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India

⁵ Budker Institute for Nuclear Physics, Novosibirsk, Russia

⁶ California Polytechnic State University, San Luis Obispo, California, United States

⁷ Central China Normal University, Wuhan, China

⁸ Centre de Calcul de l'IN2P3, Villeurbanne, Lyon, France

⁹ Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba

¹⁰ Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

¹¹ Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico

¹² Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi', Rome, Italy

¹³ Chicago State University, Chicago, Illinois, United States

¹⁴ China Institute of Atomic Energy, Beijing, China

¹⁵ COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan

¹⁶ Departamento de Física de Partículas and IGFAE, Universidad de Santiago de Compostela, Santiago de Compostela, Santiago

de Compostela, Spain

¹⁷ Department of Physics, Aligarh Muslim University, Aligarh, India

¹⁸ Department of Physics, Ohio State University, Columbus, Ohio, United States

¹⁹ Department of Physics, Pusan National University, Pusan, Republic of Korea

²⁰ Department of Physics, Sejong University, Seoul, Republic of Korea

²¹ Department of Physics, University of Oslo, Oslo, Norway

²² Department of Physics and Technology, University of Bergen, Bergen, Norway

²³ Dipartimento di Fisica dell'Università 'La Sapienza' and Sezione INFN, Rome, Italy

²⁴ Dipartimento di Fisica dell'Università and Sezione INFN, Cagliari, Italy

²⁵ Dipartimento di Fisica dell'Università and Sezione INFN, Trieste, Italy

²⁶ Dipartimento di Fisica dell'Università and Sezione INFN, Turin, Italy

²⁷ Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Bologna, Italy

²⁸ Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Catania, Italy

²⁹ Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Padova, Italy

³⁰ Dipartimento di Fisica 'E.R. Caianiello' dell'Università and Gruppo Collegato INFN, Salerno, Italy

³¹ Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy

³² Dipartimento di Scienze e Innovazione Tecnologica dell'Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy

³³ Dipartimento Interateneo di Fisica 'M. Merlin' and Sezione INFN, Bari, Italy

³⁴ Division of Experimental High Energy Physics, University of Lund, Lund, Sweden

³⁵ European Organization for Nuclear Research (CERN), Geneva, Switzerland

³⁶ Excellence Cluster Universe, Technische Universität München, Munich, Germany

³⁷ Faculty of Engineering, Bergen University College, Bergen, Norway

³⁸ Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia

³⁹ Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic

⁴⁰ Faculty of Science, P.J. Šafárik University, Košice, Slovakia

⁴¹ Faculty of Technology, Buskerud and Vestfold University College, Tonsberg, Norway

⁴² Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany

⁴³ Gangneung-Wonju National University, Gangneung, Republic of Korea

⁴⁴ Gauhati University, Department of Physics, Guwahati, India

⁴⁵ Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany

- ⁴⁶ Helsinki Institute of Physics (HIP), Helsinki, Finland
- ⁴⁷ Hiroshima University, Hiroshima, Japan
- ⁴⁸ Indian Institute of Technology Bombay (IIT), Mumbai, India
- ⁴⁹ Indian Institute of Technology Indore, Indore, India
- ⁵⁰ Indonesian Institute of Sciences, Jakarta, Indonesia
- ⁵¹ INFN, Laboratori Nazionali di Frascati, Frascati, Italy
- ⁵² INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy
- ⁵³ INFN, Sezione di Bari, Bari, Italy
- ⁵⁴ INFN, Sezione di Bologna, Bologna, Italy
- ⁵⁵ INFN, Sezione di Cagliari, Cagliari, Italy
- ⁵⁶ INFN, Sezione di Catania, Catania, Italy
- ⁵⁷ INFN, Sezione di Padova, Padova, Italy
- ⁵⁸ INFN, Sezione di Roma, Rome, Italy
- ⁵⁹ INFN, Sezione di Torino, Turin, Italy
- ⁶⁰ INFN, Sezione di Trieste, Trieste, Italy
- ⁶¹ Inha University, Incheon, Republic of Korea
- ⁶² Institut de Physique Nucléaire d'Orsay (IPNO), Université Paris-Sud, CNRS-IN2P3, Orsay, France
- ⁶³ Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
- ⁶⁴ Institute for Subatomic Physics of Utrecht University, Utrecht, Netherlands
- ⁶⁵ Institute for Theoretical and Experimental Physics, Moscow, Russia
- ⁶⁶ Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
- ⁶⁷ Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- ⁶⁸ Institute of Physics, Bhubaneswar, India
- ⁶⁹ Institute of Space Science (ISS), Bucharest, Romania
- ⁷⁰ Institut für Informatik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
- ⁷¹ Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
- ⁷² Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Münster, Germany
- ⁷³ Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
- ⁷⁴ Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- ⁷⁵ Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
- ⁷⁶ IRFU, CEA, Université Paris-Saclay, Saclay, France
- ⁷⁷ iThemba LABS, National Research Foundation, Somerset West, South Africa
- ⁷⁸ Joint Institute for Nuclear Research (JINR), Dubna, Russia
- ⁷⁹ Konkuk University, Seoul, Republic of Korea
- ⁸⁰ Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
- ⁸¹ KTO Karatay University, Konya, Turkey
- ⁸² Laboratoire de Physique Corpusculaire (LPC), Clermont Université, Université Blaise Pascal, CNRS– IN2P3, Clermont-Ferrand, France

⁸³ Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France

- ⁸⁴ Lawrence Berkeley National Laboratory, Berkeley, California, United States
- ⁸⁵ Moscow Engineering Physics Institute, Moscow, Russia
- ⁸⁶ Nagasaki Institute of Applied Science, Nagasaki, Japan
- ⁸⁷ National and Kapodistrian University of Athens, Physics Department, Athens, Greece
- ⁸⁸ National Centre for Nuclear Studies, Warsaw, Poland
- ⁸⁹ National Institute for Physics and Nuclear Engineering, Bucharest, Romania
- ⁹⁰ National Institute of Science Education and Research, HBNI, Jatni, India
- ⁹¹ National Nuclear Research Center, Baku, Azerbaijan
- ⁹² National Research Centre Kurchatov Institute, Moscow, Russia
- ⁹³ Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

⁹⁴ Nikhef, Nationaal instituut voor subatomaire fysica, Amsterdam, Netherlands

⁹⁵ Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom

- ⁹⁶ Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež u Prahy, Czech Republic
- ⁹⁷ Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
- ⁹⁸ Petersburg Nuclear Physics Institute, Gatchina, Russia
- ⁹⁹ Physics Department, Creighton University, Omaha, Nebraska, United States
- ¹⁰⁰ Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
- ¹⁰¹ Physics Department, Panjab University, Chandigarh, India
- ¹⁰² Physics Department, University of Cape Town, Cape Town, South Africa
- ¹⁰³ Physics Department, University of Jammu, Jammu, India
- ¹⁰⁴ Physics Department, University of Rajasthan, Jaipur, India
- ¹⁰⁵ Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany
- ¹⁰⁶ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
- ¹⁰⁷ Physik Department, Technische Universität München, Munich, Germany
- ¹⁰⁸ Purdue University, West Lafayette, Indiana, United States

¹⁰⁹ Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

- ¹¹⁰ Rudjer Bošković Institute, Zagreb, Croatia
- ¹¹¹ Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
- ¹¹² Saha Institute of Nuclear Physics, Kolkata, India
- ¹¹³ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
- ¹¹⁴ Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
- ¹¹⁵ SSC IHEP of NRC Kurchatov institute, Protvino, Russia
- ¹¹⁶ Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
- ¹¹⁷ SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France
- ¹¹⁸ Suranaree University of Technology, Nakhon Ratchasima, Thailand
- ¹¹⁹ Technical University of Košice, Košice, Slovakia
- ¹²⁰ Technical University of Split FESB, Split, Croatia

¹²¹ The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland

- ¹²² The University of Texas at Austin, Physics Department, Austin, Texas, United States
- ¹²³ Universidad Autónoma de Sinaloa, Culiacán, Mexico
- ¹²⁴ Universidade de São Paulo (USP), São Paulo, Brazil
- ¹²⁵ Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- ¹²⁶ Universidade Federal do ABC, Santo Andre, Brazil
- ¹²⁷ University of Houston, Houston, Texas, United States
- ¹²⁸ University of Jyväskylä, Jyväskylä, Finland
- ¹²⁹ University of Liverpool, Liverpool, United Kingdom
- ¹³⁰ University of Tennessee, Knoxville, Tennessee, United States
- ¹³¹ University of the Witwatersrand, Johannesburg, South Africa
- ¹³² University of Tokyo, Tokyo, Japan
- ¹³³ University of Tsukuba, Tsukuba, Japan
- ¹³⁴ Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, Lyon, France
- ¹³⁵ Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Strasbourg, France
- ¹³⁶ Università degli Studi di Pavia and Sezione INFN, Pavia, Italy
- ¹³⁷ Università di Brescia and Sezione INFN, Brescia, Italy
- ¹³⁸ V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia
- ¹³⁹ Variable Energy Cyclotron Centre, Kolkata, India
- ¹⁴⁰ Warsaw University of Technology, Warsaw, Poland
- ¹⁴¹ Wayne State University, Detroit, Michigan, United States

¹⁴² Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary

- ¹⁴³ Yale University, New Haven, Connecticut, United States

 ¹⁴⁴ Yonsei University, Seoul, Republic of Korea
 ¹⁴⁵ Zentrum für Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms, Germany